New Receiving Ground Antenna Using Active Phased Array Antenna

Size: px
Start display at page:

Download "New Receiving Ground Antenna Using Active Phased Array Antenna"

Transcription

1 The 5 th Nano-Satellite Symposium New Receiving Ground Antenna Using Active Phased Array Antenna for Nano-Satellites SOoe S.Ooe, S.Nakata, M.Iwashita, NKaya N.Kaya Kobe University, Japan

2 Presentation Outline Introduction Purpose Phased array antenna Configurations Structure of ground station 8-array antenna system Improvement Digital phase shifter 8 GHz Pre-amplifier Schedule

3 ー Introduction ti ー Anytime! Anywhere!

4 ー Introduction ti ー Active Phased Array Antenna Active phased array antenna Electrical drive Free from mechanical maintenances Scanning fast Concurrent communication Conventional l parabolic antenna Mechanical drive Needs the mechanical maintenances Scanning slow Single communication

5 ー Configurations ー Structure of Ground Station 1 Pole 0.75λ 0.75λ 32array 0.75λ Antenna Amplifier 1 Element Phase shifter Power combiner Frequency mixercs12 Oscillator Kaya Laboratory

6 Cross Dipole Antenna X axis Yaxis Zaxis

7 ー Configurations ー Structure of Ground Station 1 Pole 1 Element Antenna Amplifier Phase shifter Power combiner Frequency mixercs12 Oscillator Kaya Laboratory

8 Control System for ground station PC microwave Nano-satellite internet H8 H8 H8 Ground Station

9 ー Configurations ー 8-array antenna system Antenna Antenna Mixer Combiner Phase Shifter A B Front Back

10 ー Experiments ー Beam directions 0degree 60 degree Calculated Measured Calculated Measured

11 ー Experiments ー Beam directions Calculated 90 degree Measured

12 Improvement Analog gphase shifter Digital phase shifter Space saving Stabilization of the phase control and the characteristic Mounting gpre-amplifiers(8ghz) p Amplification of the receiving signal

13 Improvement Analog gphase shifter Digital phase shifter Space saving Stabilization of the phase control and the characteristic Mounting gpre-amplifiers(8ghz) p Amplification of the receiving signal

14 ー Improvement ー Digital Phase Shifter digital phase shifter 6 bit digital phase shifter Manufacturer : Hittite Frequency range : 3 6 GHz

15 Phase shifter Phase value Analog phase shifter Digital phase shifter [deg.] Phase voltage Digital Input (0~63) Phase [de eg.]

16 Phase shifter Insertion loss Analog phase shifter Digital phase shifter [db] Loss voltage Digital Input (0 ~63 ) Loss [db]

17 Phase error 20 Digital phase shifter 15 error (d degree) phase

18 Improvement Analog gphase shifter Deigital phase shifter Space saving Stabilization of the phase control and the characteristic Mounting gpre-amplifiers(8ghz) p Amplification of the receiving signal

19 ー Improvement ー 8 GHz Pre-amplifier 8 GHz Pre-amplifier GaAs Low Noise Amplifier Manufacturer : Hittite Frequency range : 7 14 GHz

20 ー Improvement ー 8 GHz Pre-amplifier Out tput [dbm m] Input [dbm] Gain [db] Input [dbm]

21 2-array circuit 2-array Experiment for Confirmation of 1Phase shift of the receiving signal 2Phase synthesis φ φ

22 2-array circuit 1 Phase shift of the receiving signal Mea asured phase [de eg.] Control phase [deg.]

23 2-array circuit 2 phase synthesis FIX φ Output [dbm] φ Shift Phase [deg.]

24 Schedule November New 8-array antenna system fabrication and experiment December fabrication of antenna poles January~ Total experiment of the grand station ti

25 New 8-array antenna system Antenna Pre- amplifier Mixer Combiner Front

26 New 8-array antenna system Antenna Digital Phase Shifter Back

27 Schedule November 8-array circuit fabrication and experiment December Construction of antenna poles January~ Total test of the ground station

28 Thank you for your attention.

Developme nt of Active Phased Array with Phase-controlled Magnetrons

Developme nt of Active Phased Array with Phase-controlled Magnetrons Developme nt of Active Phased Array with Phase-controlled Magnetrons Naoki SHINOHARA, Junsuke FUJIWARA, and Hiroshi MATSUMOTO Radio Atmospheric Science Center, Kyoto University Gokasho, Uji, Kyoto, 611-0011,

More information

Microwave Fundamentals A Survey of Microwave Systems and Devices p. 3 The Relationship of Microwaves to Other Electronic Equipment p.

Microwave Fundamentals A Survey of Microwave Systems and Devices p. 3 The Relationship of Microwaves to Other Electronic Equipment p. Microwave Fundamentals A Survey of Microwave Systems and Devices p. 3 The Relationship of Microwaves to Other Electronic Equipment p. 3 Microwave Systems p. 5 The Microwave Spectrum p. 6 Why Microwave

More information

LOW LOSS FERROELECTRIC BASED PHASE SHIFTER FOR HIGH POWER ANTENNA SCAN BEAM SYSTEM

LOW LOSS FERROELECTRIC BASED PHASE SHIFTER FOR HIGH POWER ANTENNA SCAN BEAM SYSTEM LOW LOSS FERROELECTRIC BASED PHASE SHIFTER FOR HIGH POWER ANTENNA SCAN BEAM SYSTEM Franco De Flaviis and N.G. Alexopoulos University of California at Los Angeles, Dep. of Electrical Engineering Los Angeles

More information

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012 Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator F. Winterstein, G. Sessler, M. Montagna, M. Mendijur, G. Dauron, PM. Besso International Radar Symposium 2012 Warsaw,

More information

ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS

ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS Progress In Electromagnetics Research C, Vol. 39, 49 6, 213 ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS Abdelnasser A. Eldek * Department of Computer

More information

3-WAY WIDE-BAND PLANAR POWER DIVIDER

3-WAY WIDE-BAND PLANAR POWER DIVIDER TECHNOLOGICAL AND EDUCATIONAL INSTITUTE OF CENTRAL MACEDONIA, SERRES, GREECE DEPARTMENT OF COMPUTER ENGINEERING 3-WAY WIDE-BAND PLANAR POWER DIVIDER Stelios Tsitsos, Hristos T. Anastassiu, and Anastasios

More information

Selected Papers. Abstract

Selected Papers. Abstract Planar Beam-Scanning Microstrip Antenna Using Tunable Reactance Devices for Satellite Communication Mobile Terminal Naoki Honma, Tomohiro Seki, and Koichi Tsunekawa Abstract A series-fed beam-scanning

More information

BALTICS SCIENTIFIC CONFERENCE. December 5, 2018

BALTICS SCIENTIFIC CONFERENCE. December 5, 2018 BALTICS SCIENTIFIC CONFERENCE December 5, 2018 RF Development courses 12:10-12:20 Phased Array Digital Signal Processing courses 12:20-12:30 Dr. Romass Pauliks Content Objectives of the WP3 The Course

More information

Analog Devices Welcomes Hittite Microwave Corporation

Analog Devices Welcomes Hittite Microwave Corporation Analog Devices Welcomes Hittite Microwave Corporation www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v.915 GaAs MMIC 6-BIT DIGITAL Typical Applications The HMC648ALP6E is ideal for:

More information

SATELLITE SUBSYSTEMS. Networks and Communication Department. Dr. Marwah Ahmed

SATELLITE SUBSYSTEMS. Networks and Communication Department. Dr. Marwah Ahmed 1 SATELLITE SUBSYSTEMS Networks and Communication Department Dr. Marwah Ahmed Outlines Attitude and Orbit Control System (AOCS) Telemetry, Tracking, Command and Monitoring (TTC & M) Power System Communication

More information

System configurations. Main features I SG 64 SOLUTION FOR

System configurations. Main features I SG 64 SOLUTION FOR T- DualScan SG 64 The most accurate solution for testing antennas and wireless devices: SG 64 has been developed to measure stand alone antennas or antennas integrated in subsystems. It is also ideal for

More information

Added Phase Noise measurement for EMBRACE LO distribution system

Added Phase Noise measurement for EMBRACE LO distribution system Added Phase Noise measurement for EMBRACE LO distribution system G. Bianchi 1, S. Mariotti 1, J. Morawietz 2 1 INAF-IRA (I), 2 ASTRON (NL) 1. Introduction Embrace is a system composed by 150 receivers,

More information

Development Status of KSTAR LHCD System

Development Status of KSTAR LHCD System Development Status of KSTAR LHCD System September 24, 2004 Y. S. Bae,, M. H. Cho, W. Namkung Plasma Sheath Lab. Department of Physics, Pohang University of Science and Technology LHCD system overview Objectives

More information

Sources classification

Sources classification Sources classification Radiometry relates to the measurement of the energy radiated by one or more sources in any region of the electromagnetic spectrum. As an antenna, a source, whose largest dimension

More information

A Novel Phase Conjugator for Active Retrodirective Array Applications

A Novel Phase Conjugator for Active Retrodirective Array Applications A Novel Phase Conjugator for Active Retrodirective Array Applications Ryan Y. Miyamoto, Yongxi Qian and Tatsuo Itoh Department of Electrical Engineering University of California, Los Angeles 405 Hilgard

More information

Effects to develop a high-performance millimeter-wave radar with RF CMOS technology

Effects to develop a high-performance millimeter-wave radar with RF CMOS technology Effects to develop a high-performance millimeter-wave radar with RF CMOS technology Yasuyoshi OKITA Kiyokazu SUGAI Kazuaki HAMADA Yoji OHASHI Tetsuo SEKI High Resolution Angle-widening Abstract We are

More information

CHARACTERIZATION OF PHASE SHIFTERS ON A KU-BAND PHASED ARRAY ANTENNA ESA/ESTEC, NOORDWIJK, THE NETHERLANDS 3-5 OCTOBER 2012

CHARACTERIZATION OF PHASE SHIFTERS ON A KU-BAND PHASED ARRAY ANTENNA ESA/ESTEC, NOORDWIJK, THE NETHERLANDS 3-5 OCTOBER 2012 CHARACTERIZATION OF PHASE SHIFTERS ON A KU-BAND PHASED ARRAY ANTENNA ESA/ESTEC, NOORDWIJK, THE NETHERLANDS 3-5 OCTOBER 2012 J. Arendt (1), R. Wansch (1), H. Frühauf (1) (1) Fraunhofer IIS, Am Wolfsmantel

More information

Work Done. RF Circuits / Systems Designed and Fabricated

Work Done. RF Circuits / Systems Designed and Fabricated Work Done RF Circuits / Systems Designed and Fabricated The RF Systems lab has the capability to design any RF subsystem using the specialized softwares like Agilent ADS, Ansoft HFSS, Linmic. The design

More information

DIGITAL BEAM-FORMING ANTENNA RANGE

DIGITAL BEAM-FORMING ANTENNA RANGE DIGITAL BEAM-FORMING ANTENNA RANGE Masahiro Tanabe Toshiba Corporation Komukai Works 1, Komukai, Toshiba-cho, Saiwai-ku, Kawaski, 210-8581 Japan (044)548-5255 msahiro.tanabe@toshiba.co.jp Davd S. Fooshe

More information

Chapter-15. Communication systems -1 mark Questions

Chapter-15. Communication systems -1 mark Questions Chapter-15 Communication systems -1 mark Questions 1) What are the three main units of a Communication System? 2) What is meant by Bandwidth of transmission? 3) What is a transducer? Give an example. 4)

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v3.1211 45 Analog Phase Shifter,

More information

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet 77 GHz VCO for Car Radar Systems Preliminary Data Sheet Operating Frequency: 76-77 GHz Tuning Range > 1 GHz Output matched to 50 Ω Application in Car Radar Systems ESD: Electrostatic discharge sensitive

More information

SATURNE Microsystems Based on Wide Band Gap Materials for Future Space Transmitting Ultra Wideband Receiving Systems

SATURNE Microsystems Based on Wide Band Gap Materials for Future Space Transmitting Ultra Wideband Receiving Systems SATURNE Microsystems Based on Wide Band Gap Materials for Future Space Transmitting Ultra Wideband Receiving Systems A. ZIAEI THALES Research & Technology Research & Technology www.saturne-project.com

More information

White Paper. Gallium Nitride (GaN) Enabled C-Band T/R Modules

White Paper. Gallium Nitride (GaN) Enabled C-Band T/R Modules White Paper Gallium Nitride (GaN) Enabled C-Band T/R Modules Technical Contact: Rick Sturdivant, President Microwave Packaging Technology, Inc. Mobile: 310-980-3039 rsturdivant@mptcorp.com Business Contact:

More information

Doppler Simulator for 10 GHz Doppler Radar

Doppler Simulator for 10 GHz Doppler Radar Doppler Simulator for 10 GHz Doppler Radar Presented by Ngeok Kuan Wai 2252462 Supervised by Prof. Dr.-Ing. K. Solbach Outline Motivation Doppler Radar and Doppler Simulator Phase shifter Other Electronic

More information

A TECHNIQUE TO EVALUATE THE IMPACT OF FLEX CABLE PHASE INSTABILITY ON mm-wave PLANAR NEAR-FIELD MEASUREMENT ACCURACIES

A TECHNIQUE TO EVALUATE THE IMPACT OF FLEX CABLE PHASE INSTABILITY ON mm-wave PLANAR NEAR-FIELD MEASUREMENT ACCURACIES A TECHNIQUE TO EVALUATE THE IMPACT OF FLEX CABLE PHASE INSTABILITY ON mm-wave PLANAR NEAR-FIELD MEASUREMENT ACCURACIES Daniël Janse van Rensburg Nearfield Systems Inc., 133 E, 223rd Street, Bldg. 524,

More information

To design Phase Shifter. To design bias circuit for the Phase Shifter. Realization and test of both circuits (Doppler Simulator) with

To design Phase Shifter. To design bias circuit for the Phase Shifter. Realization and test of both circuits (Doppler Simulator) with Prof. Dr. Eng. Klaus Solbach Department of High Frequency Techniques University of Duisburg-Essen, Germany Presented by Muhammad Ali Ashraf Muhammad Ali Ashraf 2226956 Outline 1. Motivation 2. Phase Shifters

More information

PRELIMINARY DATA SHEET IQ DEMODULATOR FOR DIGITAL VIDEO/DATA RECEIVER. Vcc (I) GND (I) VAGC GND (RF) RF IN RF IN GND (RF) Vcc (RF) GND (Q) Vcc (Q)

PRELIMINARY DATA SHEET IQ DEMODULATOR FOR DIGITAL VIDEO/DATA RECEIVER. Vcc (I) GND (I) VAGC GND (RF) RF IN RF IN GND (RF) Vcc (RF) GND (Q) Vcc (Q) PRELIMINARY DATA SHEET FEATURES DESCRIPTION IQ DEMODULATOR FOR DIGITAL VIDEO/DATA RECEIVER ON CHIP 9 PHASE SHIFTER IQ PHASE AND AMPLITUDE BALANCE: Amplitude Balance: ±.5 db Phase Balance: ± 2. LOW DISTORTION:

More information

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02 Introduction to Radar Systems Radar Antennas Radar Antennas - 1 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs presented on this server were prepared as an account

More information

Antenna Training and Measuring System

Antenna Training and Measuring System Antenna Training and Measuring System LabVolt Series Datasheet Festo Didactic en 120 V - 60 Hz 05/2018 Table of Contents General Description 2 Antennas 5 Features & Benefits 7 List of Equipment 8 List

More information

arxiv:physics/ v1 [physics.optics] 28 Sep 2005

arxiv:physics/ v1 [physics.optics] 28 Sep 2005 Near-field enhancement and imaging in double cylindrical polariton-resonant structures: Enlarging perfect lens Pekka Alitalo, Stanislav Maslovski, and Sergei Tretyakov arxiv:physics/0509232v1 [physics.optics]

More information

High temperature superconducting slot array antenna connected with low noise amplifier

High temperature superconducting slot array antenna connected with low noise amplifier 78 High temperature superconducting slot array antenna connected with low noise amplifier H. Kanaya, G. Urakawa, Y. Tsutsumi, T. Nakamura and K. Yoshida Department of Electronics, Graduate School of Information

More information

A Switchable 3D-Coverage Phased Array Antenna Package for 5G Mobile Terminals Parchin, Naser Ojaroudi; Shen, Ming; Zhang, Shuai; Pedersen, Gert F.

A Switchable 3D-Coverage Phased Array Antenna Package for 5G Mobile Terminals Parchin, Naser Ojaroudi; Shen, Ming; Zhang, Shuai; Pedersen, Gert F. Aalborg Universitet A Switchable 3D-Coverage Phased Array Antenna Package for 5G Mobile Terminals Parchin, Naser Ojaroudi; Shen, Ming; Zhang, Shuai; Pedersen, Gert F. Published in: I E E E Antennas and

More information

GHz 6-Bit Digital Phase Shifter Module

GHz 6-Bit Digital Phase Shifter Module 5. 6.5 GHz 6-Bit Digital Phase Shifter Module Features Frequency Range: 5. to 6.5 GHz Low RMS Phase Error ~ 4 o 8.5 db Maximum Insertion Loss 23dBm Input P 1dB Integrated TTL driver SMA (RF) / D-type(control)

More information

Features OBSOLETE. Parameter Min. Typ. Max. Units. Frequency Range GHz Insertion Loss 5 7 db. Input Return Loss 16 db

Features OBSOLETE. Parameter Min. Typ. Max. Units. Frequency Range GHz Insertion Loss 5 7 db. Input Return Loss 16 db v1.611 Typical Applications The is ideal for: EW Receivers Weather & Military Radar Satellite Communications Beamforming Modules Phase Cancellation Functional Diagram Features Low RMS Phase Error: 1.2

More information

Typical Characteristics for LCM-7R7G8R2G-CD-1

Typical Characteristics for LCM-7R7G8R2G-CD-1 PMI MODEL NUMBER IS AN AMPLIFIED RF LASER CONTROL MODULE FOR USE OVER THE FREQUENCY RANGE OF 7.7GHz TO 8.2GHz WITH AN IF RANGE OF DC TO 10KHz. IT FEATURES A 20dB VOLTAGE PROGRAMMABLE ATTENUATOR, AND PHASE

More information

Beamforming measurements. Markus Loerner, Market Segment Manager RF & microwave component test

Beamforming measurements. Markus Loerner, Market Segment Manager RF & microwave component test Beamforming measurements Markus Loerner, Market Segment Manager RF & microwave component test Phased Arrays not a new concept Airborne ı Phased Array Radars: since the 60 s ı Beams are steerable electronically

More information

An Introduction to Antennas

An Introduction to Antennas May 11, 010 An Introduction to Antennas 1 Outline Antenna definition Main parameters of an antenna Types of antennas Antenna radiation (oynting vector) Radiation pattern Far-field distance, directivity,

More information

TIME/SPACE-PROBING INTERFEROMETER FOR PLASMA DIAGNOSTICS

TIME/SPACE-PROBING INTERFEROMETER FOR PLASMA DIAGNOSTICS TIME/SPACE-PROBING INTERFEROMETER FOR PLASMA DIAGNOSTICS V. A. Manasson, A. Avakian, A. Brailovsky, W. Gekelman*, A. Gigliotti*, L. Giubbolini, I. Gordion, M. Felman, V. Khodos, V. Litvinov, P. Pribyl*,

More information

MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND

MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND Progress In Electromagnetics Research Letters, Vol. 29, 167 173, 212 MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND X.-C. Zhang 1, 2, *, C.-H. Liang 1, and J.-W. Xie 2 1

More information

Parameter Min. Typ. Max. Units

Parameter Min. Typ. Max. Units v4.112 Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Functional Diagram Features General Description The is a

More information

5G Systems and Packaging Opportunities

5G Systems and Packaging Opportunities 5G Systems and Packaging Opportunities Rick Sturdivant, Ph.D. Founder and Chief Technology Officer MPT, Inc. (www.mptcorp.com), ricksturdivant@gmail.com Abstract 5G systems are being developed to meet

More information

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER Progress In Electromagnetics Research C, Vol. 11, 229 236, 2009 A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER E. Jafari, F. Hodjatkashani, and R. Rezaiesarlak Department

More information

Fiber-fed wireless systems based on remote up-conversion techniques

Fiber-fed wireless systems based on remote up-conversion techniques 2008 Radio and Wireless Symposium incorporating WAMICON 22 24 January 2008, Orlando, FL. Fiber-fed wireless systems based on remote up-conversion techniques Jae-Young Kim and Woo-Young Choi Dept. of Electrical

More information

T- DualScan. StarLab

T- DualScan. StarLab T- DualScan StarLab StarLab is the ultimate tool for antenna pattern measurements in laboratories and production environments where space is limited, cost is critical, and the flexibility of a portable

More information

A 6-bit active digital phase shifter

A 6-bit active digital phase shifter A 6-bit active digital phase shifter Alireza Asoodeh a) and Mojtaba Atarodi b) Electrical Engineering Department, Sharif University of Technology, Tehran, Iran a) Alireza asoodeh@yahoo.com b) Atarodi@sharif.edu

More information

Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology Afshin Ziaei, Sébastien Demoustier, Eric Minoux

Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology Afshin Ziaei, Sébastien Demoustier, Eric Minoux Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology Afshin Ziaei, Sébastien Demoustier, Eric Minoux Outline Application hyperfréquence à THALES: Antenne à réseau réflecteur

More information

Microstrip Line Digital Balanced Phase Shifter

Microstrip Line Digital Balanced Phase Shifter Microstrip Line Digital Balanced Phase Shifter Arati Arun Bhonkar, Dr. Udaysingh Sutar ME (Pursuing) AISSMSCOE Pune, bhonkararati91@gmail.com and +91-9657210969 Abstract Phase shifters finds application

More information

> StarLab. Multi-purpose Antenna Measurement Multi-protocol Antenna Development Linear Array Antenna Measurement OTA Testing

> StarLab. Multi-purpose Antenna Measurement Multi-protocol Antenna Development Linear Array Antenna Measurement OTA Testing TECHNOLOGY Near-field / Spherical Near-field / Cylindrical SOLUTIONS FOR Multi-purpose Antenna Measurement Multi-protocol Antenna Development Linear Array Antenna Measurement OTA Testing 18 StarLab: a

More information

Module contents. Antenna systems. RF propagation. RF prop. 1

Module contents. Antenna systems. RF propagation. RF prop. 1 Module contents Antenna systems RF propagation RF prop. 1 Basic antenna operation Dipole Antennas are specific to Frequency based on dimensions of elements 1/4 λ Dipole (Wire 1/4 of a Wavelength) creates

More information

IEEE Topical Symposium on Power Amplifiers for Wireless Communications: Matthew Poulton, David Aichele, Jason Martin 9/15/2009

IEEE Topical Symposium on Power Amplifiers for Wireless Communications: Matthew Poulton, David Aichele, Jason Martin 9/15/2009 IEEE Topical Symposium on Power Amplifiers for Wireless Communications: A Compact L Band GaN based 500W Power Amplifier Session 6: Base station, High Power Amplifiers Matthew Poulton, David Aichele, Jason

More information

Parameter Symbol Units MIN MAX. RF Input power (CW) Pin dbm +10

Parameter Symbol Units MIN MAX. RF Input power (CW) Pin dbm +10 AMT-A0112 11 GHz to 18 GHz Broadband Low Noise Amplifier Data Sheet Features 11 GHz to 18 GHz Frequency Range Typical Noise Figure < 1.4 db Typical Gain 40 db Gain Flatness < ± 2 db +14 dbm P1dB Internally

More information

Reflector antennas and their feeds

Reflector antennas and their feeds Reflector antennas and their feeds P. Hazdra, M. Mazanek,. hazdrap@fel.cvut.cz Department of Electromagnetic Field Czech Technical University in Prague, FEE www.elmag.org v. 23.4.2015 Outline Simple reflector

More information

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed.

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed. UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE 422H1S RADIO AND MICROWAVE WIRELESS SYSTEMS Final Examination

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v.41 Typical Applications The HMC649ALP6E

More information

a 1550nm telemeter for outdoor application based on off-the-shelf components

a 1550nm telemeter for outdoor application based on off-the-shelf components a 155nm telemeter for outdoor application based on off-the-shelf components Joffray Guillory, Jean-Pierre Wallerand, Jorge Garcia Marquez, Daniel Truong (mechanical engineering), Christophe Alexandre (digital

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Introduction of vertically connected wireless system] Date Submitted: [ 14 JAN, 2004] Source: [Ami Kanazawa

More information

MMA RECEIVERS: HFET AMPLIFIERS

MMA RECEIVERS: HFET AMPLIFIERS MMA Project Book, Chapter 5 Section 4 MMA RECEIVERS: HFET AMPLIFIERS Marian Pospieszalski Ed Wollack John Webber Last revised 1999-04-09 Revision History: 1998-09-28: Added chapter number to section numbers.

More information

WIDEBAND IQ DEMODULATOR FOR DIGITAL RECEIVERS VCC (IFQ) VCC (RF)

WIDEBAND IQ DEMODULATOR FOR DIGITAL RECEIVERS VCC (IFQ) VCC (RF) FEATURES BROADBAND OPERATION RF & LO DC to GHz IF (IQ) DC to MHz WIDEBAND IQ PHASE AND AMPLITUDE MATCHING Amplitude Matching: ±. db Typical Phase Matching: ±. (driven in phase) AGC DYNAMIC RANGE: db Typical

More information

Development Activity of Terahertz Power Amplifiers -W-band to 300GHz-

Development Activity of Terahertz Power Amplifiers -W-band to 300GHz- 6 th Japan-EU Symposium on ICT Research and Innovation at Makuhari Messe Development Activity of Terahertz Power Amplifiers -W-band to 300GHz- Oct. 7, 2016 NEC Network and Sensor Systems, Ltd. Microwave

More information

Microwave Imaging in the Large Helical Device

Microwave Imaging in the Large Helical Device Microwave Imaging in the Large Helical Device T. Yoshinaga 1), D. Kuwahara 2), K. Akaki 3), Z.B. Shi 4), H. Tsuchiya 1), S. Yamaguchi 5), Y. Kogi 6), S. Tsuji-Iio 2), Y. Nagayama 1), A. Mase 3), H. Hojo

More information

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS Introduction As wireless system designs have moved from carrier frequencies at approximately 9 MHz to wider bandwidth applications like Personal Communication System (PCS) phones at 1.8 GHz and wireless

More information

Antennas and Receivers in Radio Astronomy

Antennas and Receivers in Radio Astronomy Antennas and Receivers in Radio Astronomy Mark McKinnon Eleventh Synthesis Imaging Workshop Socorro, June 10-17, 2008 Outline 2 Context Types of antennas Antenna fundamentals Reflector antennas Mounts

More information

Features OBSOLETE. = +25 C, IF= 1 GHz, USB, LO = +15 dbm [1]

Features OBSOLETE. = +25 C, IF= 1 GHz, USB, LO = +15 dbm [1] v1.414 HMC141LC4 Typical Applications The HMC141LC4 is Ideal for: Point-to-Point Radio Point-to-Multi-Point Radio Test Equipment & Sensors Military End Use Functional Diagram Features Wide IF Bandwidth:

More information

Features. Parameter Min. Typ. Max. Units. Frequency Range 3 6 GHz Insertion Loss* db. Input Return Loss* 12 db

Features. Parameter Min. Typ. Max. Units. Frequency Range 3 6 GHz Insertion Loss* db. Input Return Loss* 12 db Typical Applications The is ideal for: EW Receivers Weather & Military Radar Satellite Communications Beamforming Modules Phase Cancellation Functional Diagram Features Low RMS Phase Error: Low Insertion

More information

Features. Parameter Min. Typ. Max. Units. Frequency Range 8 12 GHz Insertion Loss* 5 7 db. Input Return Loss* 10 db

Features. Parameter Min. Typ. Max. Units. Frequency Range 8 12 GHz Insertion Loss* 5 7 db. Input Return Loss* 10 db v2.29 HMC4 Typical Applications The HMC4 is ideal for: EW Receivers Weather & Military Radar Satellite Communications Beamforming Modules Features Low RMS Phase Error: Low Insertion Loss: 6. db Excellent

More information

Features. = +25 C, 50 Ohm System. Return Loss (Input and Output) 5-18 GHz 8 db

Features. = +25 C, 50 Ohm System. Return Loss (Input and Output) 5-18 GHz 8 db v.89 4 ANALOG PHASE SHIFTER Typical Applications The is ideal for: Fiber Optics Military Test Equipment Features Wide Bandwidth: Phase Shift: >4 Single Positive Voltage Control Small Size: 2. x 1.6 x.1

More information

Parameter Symbol Units MIN MAX. RF Input power (CW) Pin dbm +10

Parameter Symbol Units MIN MAX. RF Input power (CW) Pin dbm +10 AMT-A0091 0.01 GHz to 6 GHz Broadband Low Noise Medium Power Amplifier Data Sheet Features 0.01 GHz to 6 GHz Frequency Range Typical Noise Figure < 1.2 db Typical Gain 45 db Gain Flatness < ± 1.2 db +20

More information

WIDE SCANNING PHASED ARRAY ANTENNA USING PRINTED DIPOLE ANTENNAS WITH PARASITIC ELEMENT

WIDE SCANNING PHASED ARRAY ANTENNA USING PRINTED DIPOLE ANTENNAS WITH PARASITIC ELEMENT Progress In Electromagnetics Research Letters, Vol. 2, 187 193, 2008 WIDE SCANNING PHASED ARRAY ANTENNA USING PRINTED DIPOLE ANTENNAS WITH PARASITIC ELEMENT H.-W. Yuan, S.-X. Gong, P.-F. Zhang, andx. Wang

More information

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION 6.1 Introduction In this chapter we have made a theoretical study about carbon nanotubes electrical properties and their utility in antenna applications.

More information

Microwave/Millimeter-wave Antenna Test System

Microwave/Millimeter-wave Antenna Test System Microwave/Millimeter-wave Antenna Test System Product Overview Microwave/Millimeter-wave antenna test system is mainly used for performance and parameters test of antennas supporting satellite, missile,

More information

Parameter Symbol Units MIN MAX. RF Input power (CW) Pin dbm +20

Parameter Symbol Units MIN MAX. RF Input power (CW) Pin dbm +20 AMT-A0142 1 GHz to 18 GHz Broadband Medium Power with Low Noise Amplifier Data Sheet Features 1 GHz to 18 GHz Frequency Range Typical P1dB power > +23 dbm Gain 18 db Typical Gain Flatness ± 1 db Typical

More information

Optical Delay Line Application Note

Optical Delay Line Application Note 1 Optical Delay Line Application Note 1.1 General Optical delay lines system (ODL), incorporates a high performance lasers such as DFBs, optical modulators for high operation frequencies, photodiodes,

More information

NTT DOCOMO Technical Journal. Method for Measuring Base Station Antenna Radiation Characteristics in Anechoic Chamber. 1.

NTT DOCOMO Technical Journal. Method for Measuring Base Station Antenna Radiation Characteristics in Anechoic Chamber. 1. Base Station Antenna Directivity Gain Method for Measuring Base Station Antenna Radiation Characteristics in Anechoic Chamber Base station antennas tend to be long compared to the wavelengths at which

More information

KULLIYYAH OF ENGINEERING

KULLIYYAH OF ENGINEERING KULLIYYAH OF ENGINEERING DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING ANTENNA AND WAVE PROPAGATION LABORATORY (ECE 4103) EXPERIMENT NO 3 RADIATION PATTERN AND GAIN CHARACTERISTICS OF THE DISH (PARABOLIC)

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v1.14 AMPLIFIER, 18-4 GHz Typical

More information

Time-modulated arrays for smart WPT

Time-modulated arrays for smart WPT Time-modulated arrays for smart WPT Diego Masotti RFCAL: RF circuit and antenna design Lab DEI University of Bologna, Italy Graz, March 3, 25 Outline Time-modulated arrays (TMAs) architecture TMAs possible

More information

Vertical Integration of MM-wave MMIC s and MEMS Antennas

Vertical Integration of MM-wave MMIC s and MEMS Antennas JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.3, SEPTEMBER, 2006 169 Vertical Integration of MM-wave MMIC s and MEMS Antennas Youngwoo Kwon, Yong-Kweon Kim, Sanghyo Lee, and Jung-Mu Kim Abstract

More information

Microwave/Millimeter-wave Antenna Test System

Microwave/Millimeter-wave Antenna Test System Microwave/Millimeter-wave Antenna Test System Product Overview Microwave/Millimeter-wave antenna test system is mainly used for performance and parameters test of antennas supporting satellite, missile,

More information

ELEC RADAR FRONT-END SUMMARY

ELEC RADAR FRONT-END SUMMARY ELEC Radar Front-End is designed for FMCW (including CW) radar application. The output frequency of each RX provides range, speed, and amplitude information to DSP. It will detect target azimuth angle

More information

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios The University Of Cincinnati College of Engineering Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios Seth W. Waldstein The University of Cincinnati-Main Campus Miguel A. Barbosa

More information

III-Nitride microwave switches Grigory Simin

III-Nitride microwave switches Grigory Simin Microwave Microelectronics Laboratory Department of Electrical Engineering, USC Research Focus: - Wide Bandgap Microwave Power Devices and Integrated Circuits - Physics, Simulation, Design and Characterization

More information

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz GHz. Attenuation Range GHz 15.

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz GHz. Attenuation Range GHz 15. v.91.5 db LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR,.1-33 GHz Typical Applications The HMC941LP4 / HMC941LP4E is ideal for: Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar &

More information

Recent Test Results of a Flight X-Band Solid-State Power Amplifier Utilizing GaAs MESFET, HFET, and PHEMT Technologies

Recent Test Results of a Flight X-Band Solid-State Power Amplifier Utilizing GaAs MESFET, HFET, and PHEMT Technologies Recent Test Results of a Flight X-Band Solid-State Amplifier Utilizing GaAs MESFET, HFET, and PHEMT Technologies Elbert Nhan, Sheng Cheng, Marshall J. Jose, Steve O. Fortney, and John E. Penn The Johns

More information

PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING

PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING F.E. VAN VLIET J. STULEMEIJER # K.W.BENOIST D.P.H. MAAT # M.K.SMIT # R. VAN DIJK * * TNO Physics and Electronics Laboratory P.O. Box 96864 2509

More information

R. A. Abd-Alhameed and C. H. See Mobile and Satellite Communications Research Centre University of Bradford, Bradford, BD7 1DP, UK

R. A. Abd-Alhameed and C. H. See Mobile and Satellite Communications Research Centre University of Bradford, Bradford, BD7 1DP, UK Progress In Electromagnetics Research C, Vol. 17, 121 130, 2010 HARMONICS MEASUREMENT ON ACTIVE PATCH ANTENNA USING SENSOR PATCHES D. Zhou Surrey Space Centre, University of Surrey Guildford, GU2 7XH,

More information

ELECTRONICALLY SCANNED ARRAYS USING MICRO ELECTRO MECHANICAL SWITCH (MEMS) TECHNOLOGY

ELECTRONICALLY SCANNED ARRAYS USING MICRO ELECTRO MECHANICAL SWITCH (MEMS) TECHNOLOGY ELECTRONICALLY SCANNED ARRAYS USING MICRO ELECTRO MECHANICAL SWITCH (MEMS) TECHNOLOGY Mark L. Pugh John K. Smith Air Force Research Laboratory Defense Research Projects Agency 32 Brooks Road 370 North

More information

ECEN 4634/5634, MICROWAVE AND RF LABORATORY

ECEN 4634/5634, MICROWAVE AND RF LABORATORY ECEN 4634/5634, MICROWAVE AND RF LABORATORY Final Exam December 18, 2017 7:30-10:00pm 150 minutes, closed book, 1 sheet allowed, no calculators (estimates need to be within 3dB) Part 1 (60%). Briefly answer

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com Report Title: Report Type: Date: Qualification Test Report See Attached

More information

LE/ESSE Payload Design

LE/ESSE Payload Design LE/ESSE4360 - Payload Design 4.3 Communications Satellite Payload - Hardware Elements Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Professor of Space Engineering Department of Earth and Space Science

More information

PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 60 GHZ BAND

PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 60 GHZ BAND PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 6 GHZ BAND J.A.G. Akkermans and M.H.A.J. Herben Radiocommunications group, Eindhoven University of Technology, Eindhoven, The Netherlands, e-mail:

More information

S. K. Sanyal Department of Electronics and Telecommunication Engineering Jadavpur University Kolkata, , India

S. K. Sanyal Department of Electronics and Telecommunication Engineering Jadavpur University Kolkata, , India Progress In Electromagnetics Research, PIER 60, 187 196, 2006 A NOVEL BEAM-SWICHING ALGORIHM FOR PROGRAMMABLE PHASED ARRAY ANENNA S. K. Sanyal Department of Electronics and elecommunication Engineering

More information

MODIFIED BROADBAND SCHIFFMAN PHASE SHIFTER USING DENTATE MICROSTRIP AND PATTERNED GROUND PLANE

MODIFIED BROADBAND SCHIFFMAN PHASE SHIFTER USING DENTATE MICROSTRIP AND PATTERNED GROUND PLANE Progress In Electromagnetics Research Letters, Vol. 24, 9 16, 2011 MODIFIED BROADBAND SCHIFFMAN PHASE SHIFTER USING DENTATE MICROSTRIP AND PATTERNED GROUND PLANE Z. Zhang *, Y.-C. Jiao, S.-F. Cao, X.-M.

More information

L/S-Band 0.18 µm CMOS 6-bit Digital Phase Shifter Design

L/S-Band 0.18 µm CMOS 6-bit Digital Phase Shifter Design 6th International Conference on Mechatronics, Computer and Education Informationization (MCEI 06) L/S-Band 0.8 µm CMOS 6-bit Digital Phase Shifter Design Xinyu Sheng, a and Zhangfa Liu, b School of Electronic

More information

On the Plane Wave Assumption in Indoor Channel Modelling

On the Plane Wave Assumption in Indoor Channel Modelling On the Plane Wave Assumption in Indoor Channel Modelling Markus Landmann 1 Jun-ichi Takada 1 Ilmenau University of Technology www-emt.tu-ilmenau.de Germany Tokyo Institute of Technology Takada Laboratory

More information

Two-dimensional beam steering array using planar eight-element composite right/left-handed leaky-wave antennas

Two-dimensional beam steering array using planar eight-element composite right/left-handed leaky-wave antennas RADIO SCIENCE, VOL. 43,, doi:10.1029/2007rs003800, 2008 Two-dimensional beam steering array using planar eight-element composite right/left-handed leaky-wave antennas Atsushi Sanada 1 Received 4 December

More information

Parameter Symbol Units MIN MAX. RF Input power (CW) Pin dbm +37

Parameter Symbol Units MIN MAX. RF Input power (CW) Pin dbm +37 AMT-A0246 4 GHz to 8 GHz Broadband LNA with 5 W Protection Limiter Data Sheet Features 4 GHz to 8 GHz Frequency Range +37 dbm (5W) CW Pin survival Gain 28 db Typical Gain Flatness ± 0.6 db Typical 2.2

More information

Features. Parameter Min. Typ. Max. Units. Frequency Range 8 12 GHz Insertion Loss* db. Input Return Loss* 10 db

Features. Parameter Min. Typ. Max. Units. Frequency Range 8 12 GHz Insertion Loss* db. Input Return Loss* 10 db v4.711 HMC-C Features Low RMS Phase Error: Low Insertion Loss: 7 db Excellent Flatness 3 Coverage, LSB = 22. Hermetically Sealed Module Field Replaceable SMA Female Connectors Typical Applications The

More information

Beam Shaping for Short-Range Wireless Sensor Application at 2.4GHz using 0.18 µm Technology

Beam Shaping for Short-Range Wireless Sensor Application at 2.4GHz using 0.18 µm Technology Beam Shaping for Short-Range Wireless Sensor Application at 2.4GHz using.8 µm Technology Utkarshkrishna Unnikrishna, Sudipta Saha, Priyam Khanna, and Talal Al-Attar Department of Electrical Engineering,

More information

Multi-functional miniaturized slot antenna system for small satellites

Multi-functional miniaturized slot antenna system for small satellites Multi-functional miniaturized slot antenna system for small satellites Jose Padilla, Frederic Bongard, Stefano Vaccaro (JAST SA, a ViaSat company) Gabriele Rosati, Juan Mosig (LEMA-EPFL) Anton Ivanov (Space

More information