Unit 2 Electrical Circuit Diagrams

Size: px
Start display at page:

Download "Unit 2 Electrical Circuit Diagrams"

Transcription

1 2.1. Electrical Circuit Definition Unit 2 Electrical Circuit Diagrams In general terms, a circuit can be described as any group of electrical or electronic devices connected together by conductors. Conductors are most often metallic, and copper wires are used commonly. In the today s electrical circuits, it's more common to find metallic pathways, often called traces, on a board constructed of a mixture of fiberglass and epoxy. An electrical circuit is assembled normally on a printed circuit board, PCB, and the terms of board and card are often interchangeable. In addition to PCBs, wires and cables are used to make connection between parts of a power electrical circuit. To read an electrical or electronic circuit diagram, you need to get familiar with electrical and electronic symbols that are used for drawing a schematic diagram. The symbols are ranged from a simple form of a ground, GND, to a complex module of an IC. Electric circuits, whether simple or complex, are commonly described with minimum words. Saying something like "The anode of diode D1 is connected to upper tap of transformer T1" is a sufficient amount of words to describe a simple link between two devices. Fig. 1. Electronic circuit of an ac dc converter 2.2. How to read an Electrical Diagram A schematic allows a user or a service technician to understand how the circuit is functioning and become familiar with how the expected outputs of the electrical circuit are achieved. Reading an

2 electrical diagram can be pretty simple or very complex. The electrical diagrams have a language of their own to be read. Normally, we talk and use words as, for instance, the word of resistor which brings something like this into your mind, an image of the written word. Well, in the electrical diagram there is no words, instead, they use symbols to say the same thing so we have to understand the language of symbols. The language of diagrams always includes symbols, words, numbers, and lines. All this stuff is on there and it's all for the purpose of helping us follow the map. When you're looking at an electrical diagram remember that it is not a street map but a map of electrical circuit where the electrical current trying to find its path from positive to negative. Fig. 2 shows a map of Tehran and I happened to live there in the Jey District near the Ostad Moien St. and I had a friend who lived in the Tarasht Dorm of Sharif University. If we both wanted to meet in Azadi Tower, I should take the dashed line and he would take the straight line so we could meet in the Azadi Sq. Now if this were an electrical map, my path would be the ground side, my friend s path would be the power rail, and the Azadi Sq. would be the load. Fig. 2. Part of Tehran Map Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 12

3 It s always true on the map to find the destination and that's true also on our electrical diagrams the first thing to do is locate the load, a device that consumes the power, like a light bulb, blower motor, or a simple coil. The second thing on a map is to locate your location and to estimate how to reach the destination. This is also the same for an electrical diagram, in which where the power sources and ground are originated and how are fed into the load. The first thing to understanding the wide diagrams is to know what the symbols mean on it, so it's best if you get a page with all the symbols on it so you know what is going on and what about common ones you'll see on a wiring diagram. The symbols are as same as alphabets when you want to read a book. You need to put certain symbols together to translate a part of diagram into an electrical description. Some of the most common electrical schematic symbols have been given in Fig. 3, on next page. Here is the steps to read an electrical diagram. Step 1: Understand the electrical language. There will be a variety of schematic symbols on the schematic that represent real world devices and wires. A basic understanding of these symbols is required to read a schematic. Step 2: Read schematics in the pattern that you would read a text. With rare exceptions, schematics should be read left to right and top to bottom. The signal being generated or used by the circuit will flow in this direction. The user can follow the same path that the signal uses to understand what the signal does or how it is being modified. Step 3: Understand ground. Ground is represented by either a triangle pointing down or a set of parallel lines that become shorter as they appear below each other, in effect representing the inner area of the triangle pointing down. Ground is a common reference point that schematics use to show the overall unity of the various functions of the circuit. Step 4: Learn that a line represents a wire. Wires are used to connect the devices together. All points along the wire are identical and connected. Wires may cross each other on a schematic, but that does not necessarily mean that they connect. If they do not connect, one will be shown looping around the other in a semicircle. If they do connect, they will cross and a dot will be seen at the point where the lines cross. Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 13

4 Fig. 3. Electrical schematic symbols Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 14

5 Step 5: The most confusing devices and their tasks for an electrical engineer are active devices. Determine the diagram tasks performed by the active devices. To determine the tasks, acquire and read the manufacturer's data sheet for each individual device. Step 6: Evaluate what the diagram does. Based on the schematic, decide what parts of the diagram are performing what functions. This will help you determine the performance function of the entire circuit. If the circuit has a block diagram, it would be also better to use the system approach to understand the whole concept of the diagram first. Task 1: Study the Fig. 3 and write a short note on different components. See the example given in below and complete the text in your own words: Relays are switches that open and close circuits electromechanically or electronically. Relays control one electrical circuit by opening and closing contacts in another circuit. In an electrical diagram three different contacts of relays may be used: SPST, SPDT, and DPDT which are stand for. Furthermore, bobbins of different relays are presented differently in the diagram. For instance, bobbin of a thermal relay, that is used as a safety relay in 3-phase electromotor wiring circuits, is shown uniquely. Relays can be found in different,,. Moreover, a relay. Task 2: The difference between a schematic, a block diagram, and a wiring diagram has been given in the following text with some jumbled words bolded in the passage. Write the correct form of each word and then answer to the questions as they followed: A schematic shows connection in a cutciri in a way that is clear and standardized. It is a way of communicating to other engineers exactly what openstocmn are involved in a circuit as well as how they are connected. A good schematic will show component names and uselav, and provide labels for sections or components to help cutemonicam the intended purpose. Note how connections on wires are shown using dots and non-connections are shown without a dot. A block diagram shows a higher level or organizational youtal Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 15

6 of functional units in a circuit or a device, cinemah, or collection of these. It shows data flow or organization between separate units of function. A block diagram gives you an reviewov of the interconnected nature of circuit assemblies or components. A wiring diagram is sometimes helpful to illustrate how a mathsicec can be realized in a prototype or production environment. A proper wiring diagram will be labeled and show connections in a way that prevents confusion about how connections are made. Typically, they are designed for end-users or installers. They focus on connections rather than components. 1. What would a perfect wiring diagram be like? 2. What is an organization layout? 3. What information are provided by a good schematic? 4. How does a schematic communicate with an engineer? Task 3: Study the following block diagrams and describe them in a proper manner. Find the meaning of all abbreviations used in Fig. 5 according to their functions. Fig. 4: Block diagram of a feedback control system Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 16

7 Fig. 5: Block diagram of a Frequency Modulated Continuous Wave (FMCW) 2.3. Electrical Ladder Diagram Electrical ladder drawings are one of the common and reliable tools used to describe an electrical process and to troubleshoot equipment when it fails. As with any good troubleshooting tool, one must be familiar with its basic features to make the most of the diagram in the field. In other words, possessing a basic understanding of how the drawing is laid out as well as the meaning of numbers and symbols found on the schematic will make you that much more seasoned as a maintenance professional. There are typically two distinct parts of a ladder drawing: the power component and the control component. The power portion consists of items such as the motor, motor starter contacts and overloads, disconnect(s), and protective devices (fuses and circuit breakers). The control part encompasses items that make the power components do their work. In the following passage, we'll focus on the control portion of the drawing. Fig. 6 shows the most common components used in the ladder diagrams. Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 17

8 Fig. 6: A sampling of common symbols can be found on the majority of ladder drawings. Many times, the input devices are said to be either normally open (NO) or normally closed (NC). The normally open or closed status refers to the shelf state of the device. If a device is normally open, a resistance check of the device with a digital multimeter will give a reading of O.L. If the device is normally closed, a resistance check will give a reading of 0.0. The normally open and normally closed state of the devices is not labeled on the ladder drawing. Rather, you must recognize the symbol. A helpful hint in trying to determine whether the contacts are open or closed is to think of them in terms of gravity. If gravity is acting on the device, its normal state is as shown in the drawing. An exception to this concept is found in devices that contain springs. For instance, in the drawing of a normally open pushbutton, it appears that the pushbutton should be falling down and closing. However, there is a spring in the pushbutton that holds the contacts in the open (up) position. The control voltage (AC or DC) for the system may come from a control transformer that is fed from the power portion of the drawing or a different source. For safety reasons, it's important to determine the source of the control voltage prior to working on the system because the power disconnect switch may not turn off the control voltage. Therefore, an electrically safe condition would not be established. The ladder drawing should clearly show the source of the control voltage, but always check for the absence/presence of voltage before making any off-line resistance checks. Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 18

9 The drawing is called a ladder drawing because it resembles a ladder in the way it is constructed and presented on the paper. The two vertical lines (wires) that serve as a boundary for the control system and deliver the control voltage to the devices are called the rails. The rails may have overcurrent devices in them (fuses and/or circuit breakers) and may have contacts from control devices. These control lines may be thicker than the others to help better identify them. Like a real ladder, the rails are the supports for the rungs. If the ladder drawing runs across several pages, the control voltage is carried from one page to the next along the rails. There are a number of ways that this may be represented on the drawing. One way this is done is with the use of continuation arrows at the bottom of the first page, which indicates that the rails continue on to another page. The page number on which the rails continue should be noted. On the page where the rails continue, there are also continuation arrows with the page number notation from which the control voltage lines originated. The rungs of the ladder are made up of wires and input devices that either allow current flow or interrupt current flow to the output devices. These lines may be thin lines when compared to the lines of the rails. From the placement of the input and output devices, you can determine the sequence of events that either energize or de-energize the outputs. The key to good troubleshooting is determining this sequence of events. Input devices are typically placed on the left side of the rungs, while the output devices are placed on the right (Fig. 7). Placement of input devices. The input devices are placed on the rungs in a way that indicates the current flow through the rung when there is a complete path to the outputs. There are several ways in which these input devices can be placed on the rungs, although as stated earlier, they are typically placed on the left side. The STOP input devices are typically normally closed and are placed in series on the rung. This means that they are placed end to end in the drawing. In order for the current to flow through them, they must be in the closed position. Typical STOP input devices include components such as normally closed pushbuttons and mushroom head buttons, limit switches, and contacts for light curtains, photocells, and proximity switches. Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 19

10 The START input devices are typically normally open and are usually placed in series with and after the STOP devices. If there is more than one START device, it is usually placed in parallel with the others. When the STOP and START devices are placed in order on the rung, the flow of current to the output devices can be seen. Understanding this flow is a great aide in troubleshooting. A key question to always ask yourself is: What does it take to energize the output? Fig. 7: A circuit arrangement of switches and output. Here's a simple example to analyze. In Fig. 7, what does it take to energize the output CR1? When either start pushbutton is depressed, the path is complete, and the coil of CR1 is energized. In following the path for the current, you can see the logic of the placement of the input devices. This logic determines the decision making process of the input devices and the path for current as it travels to energize the outputs. There are several logic statements that can be used in placing the input devices in the rungs. The most common of these are the AND, the OR, and the combination AND/OR function. In Fig. 7, all three are present. The end-to-end placement of the stop and start pushbuttons makes an AND logic statement. In other words, both the stop AND the start buttons must be used to energize the coil. The parallel placements of the start buttons make an OR logic statement. Either start pushbutton will complete the path and energize the coil. Placing the stop pushbutton in series with the parallel start pushbuttons supports the AND/OR logic statement. Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 20

11 As noted earlier, the output devices are placed on the right side of the ladder drawing. Unlike input devices, it's important that the output devices only be placed in parallel. If they are placed in series, electrical theory says that the voltage will drop across the resistance of each output. If this happens, they will not operate properly. Outputs include items such as lights, coils, solenoids, and heating elements. In addition to the commonly accepted symbols shown in Fig. 6, letters and numbers also help to identify the output devices. Coils will typically have contacts associated with them. These contacts will change state when the coil is energized. The changing contacts will either complete or open the path for current. When the pushbutton is pressed down, the path is completed, and current will flow to energize the coil. When the coil is energized, the contacts associated with the coil will change state. The red light will go on, and the green light will go off. In the ladder drawing, the contacts associated with the coil can be located using a cross-reference system. The rungs are usually numbered on the left side of the rail. A number on the right side of the rail references the contacts associated with the coil. These numbers are the rungs in which the contacts can be found. A number without a line under it references an open contact. Drawing a line under the number on the right rail references a closed contact. Task 4: Study the following ladder diagrams and write a short on how each diagram works, then translate each function into a logic expression Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 21

12 Word Study Nouns that are formed from verbs can name a person or a device through the suffixes or and er. They can also name the activity taking place, often by taking the suffix tion. Recognizing these noun endings can help with differentiating the two noun types and identifying them from the root verb. See the following table and complete the missing parts. Verb Noun Actor/Device Noun Activity/Concept amplify amplifier amplification attenuate attenuation communicate communication compress compressor conduct conduction/conductivity convert conversion detector detection generate generator identify identifier induct induction interrupt interrupter manipulate mediate modulate operate oscillate receive reflect regulate resist respond simulate subscribe transform transmit Writing Skill: Anatomy of a Scientific Paper Title, author, and contact information: Typically, research articles begin with a title. Next, the authors are identified along with their affiliation (i.e., who they work for, such as a university or Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 22

13 agency). Usually, one author - who can be contacted for further information or permission to use the article - is listed at the bottom of the first page of the research article. Abstract and keywords: This is a summary of the research article followed by keywords (sometimes also called Index Terms). It provides an overview of the research, which is useful to determine if the article is relevant to the reader s work. Abstracts typically follow a standard format. The authors briefly state why the research is important, the methodology used, the results, and a concluding statement based on the findings. Introduction or literature review: In this section, the authors describe the rationale for the study by outlining what research has already been done in this area. The literature review provides the reader with a summary of other research related to the topic. It also addresses questions that remain unanswered or require additional research. In general, this is also the section where the authors research question is introduced, and hypotheses or anticipated results are stated. Methods or methodology or Experimental: In this section, the authors outline how the research was conducted. Results: The authors present the research findings in this section. Any statistical analyses that the authors conducted are described as well. The results are often displayed using tables, charts, or figures along with a written explanation. Discussion: In this section, the authors interpret the results. The authors may provide possible explanations for what they found, including an interpretation of unexpected results. Conclusion and summary: In this section, the authors summarize what they found and link it back to the current literature in the area. Often, any limitations of the study are described in this section. For example, if the researchers used a convenience sample to recruit participants, the results may not apply to people that are different in some way from the study participants. The authors may also suggest directions for future research in this section. Acknowledgment, References or sources: The references section lists the publications that the authors cited in the article. The references may help the reader judge the quality of the article and can be used to learn more about the topic area. Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 23

14 Biography of Author(s) or Bio: Bio of authors is the part that explains the academic progress and achievements of the authors, their interesting research area, etc. Task 5: Browse the internet and find a related article to your field of study. Highlight the different parts of the article using different watermark colors. Faculty of Electrical &Computer Engineering, Hakim Sabzevari University Page 24

Take for instance this circuit:

Take for instance this circuit: Ladder diagrams Ladder diagrams are specialized schematics commonly used to document industrial control logic systems. They are called "ladder" diagrams because they resemble a ladder, with two vertical

More information

SAMPLE. Electrical Diagrams C H A P T E R 7

SAMPLE. Electrical Diagrams C H A P T E R 7 H A P T E 7 Electrical Diagrams INTODUTION Quite often, when you encounter a problem with a piece of HVA equipment, the problem turns out to be electrical in nature. If you have a clear understanding of

More information

Closed loop Heat Temperature Thermostat Heater Voltage to Heater

Closed loop Heat Temperature Thermostat Heater Voltage to Heater EET 273 Spring 2017 HW1 1. Control Terminology For the following 3 systems, explain which element of the system corresponds to which control element. An open loop system may not have all of the elements

More information

Electrical Controls. Isaac Queen

Electrical Controls. Isaac Queen Electrical Controls Isaac Queen iqueen@atn.org www.atn.org 1 Contact blocks include normally open (NO), normally closed (NC), or both NO and NC contacts. 2 A joystick is used to control many different

More information

Lessons In Industrial Instrumentation

Lessons In Industrial Instrumentation Lessons In Industrial Instrumentation c 2008-207 by Tony R. Kuphaldt under the terms and conditions of the Creative Commons Attribution 4.0 International Public License Version 2.25 (development) Last

More information

Circuit Analysis and Ohm s Law

Circuit Analysis and Ohm s Law Excerpt from Circuit Analysis and Ohm s Law By Robert Cecci iii Preview The following is a sample excerpt from a study unit converted into the Adobe Acrobat format. A sample online exam is available for

More information

ECET 211 Electric Machines & Controls Lecture 2-1 (Part 1 of 3) Symbols and Drawing for Electric Motor Control Systems

ECET 211 Electric Machines & Controls Lecture 2-1 (Part 1 of 3) Symbols and Drawing for Electric Motor Control Systems ECET 211 Electric Machines & Controls Lecture 2-1 (Part 1 of 3) Symbols and Drawing for Electric Motor Control Systems Text Book: Chapter 2. Understanding Electrical Drawings, Electric Motors and Control

More information

AC/DC ELECTRICAL SYSTEMS

AC/DC ELECTRICAL SYSTEMS AC/DC ELECTRICAL SYSTEMS LEARNING ACTIVITY PACKET CIRCUIT ANALYSIS BB227-BC03UEN LEARNING ACTIVITY PACKET 3 CIRCUIT ANALYSIS INTRODUCTION The previous LAP discussed how current, resistance, and voltage

More information

The Ins and Outs of Basic. A practical approach to reading and understanding the schematic diagrams used to explain how HVACR systems operate.

The Ins and Outs of Basic. A practical approach to reading and understanding the schematic diagrams used to explain how HVACR systems operate. Part 3 The Ins and Outs of Basic Sch ematic Symbols A practical approach to reading and understanding the schematic diagrams used to explain how HVACR systems operate. B y H o w a r d L. P e m p e r, C

More information

ELECTRICAL MAINTENANCE SKILLS

ELECTRICAL MAINTENANCE SKILLS ELECTRICAL MAINTENANCE SKILLS FOR INSTRUMENTATION PERSONNEL COURSE 120: 7 DAYS: Max 8 Candidates The end objectives are identical to those of the Electrical maintenance skills (Course 110) but this starts

More information

Introduction to PLC and Ladder Logic Programming

Introduction to PLC and Ladder Logic Programming Introduction Introduction to PLC and Ladder Logic Programming A PLC (Programmable Logic Controller) is an industrial computer used for automation of electromechanical processes, such as control of machinery

More information

Chapter 5 Electric Logic Sensors and Actuators

Chapter 5 Electric Logic Sensors and Actuators Chapter 5: Electric logic sensors and actuators -IE337 Chapter 5 Electric Logic Sensors and Actuators 1 5.1 Introduction to Electric Logic Sensors and Actuators Electric sensors and actuators can be classified

More information

Creating Electrical Designs

Creating Electrical Designs C h a p t e r 2 Creating Electrical Designs In this chapter, we will learn the following to World Class standards: Understanding Control and Power Circuits Drawing the Control Circuit Selecting the Pushbutton

More information

SUBELEMENT T6 Electrical components: semiconductors; circuit diagrams; component functions 4 Exam Questions - 4 Groups

SUBELEMENT T6 Electrical components: semiconductors; circuit diagrams; component functions 4 Exam Questions - 4 Groups SUBELEMENT T6 Electrical components: semiconductors; circuit diagrams; component functions 4 Exam Questions - 4 Groups 1 T6A Electrical components: fixed and variable resistors; capacitors and inductors;

More information

ECET 211 Electric Machines & Controls Lecture 2-1 (Part 1 of 3) Symbols and Drawing for Electric Motor Control Systems

ECET 211 Electric Machines & Controls Lecture 2-1 (Part 1 of 3) Symbols and Drawing for Electric Motor Control Systems ECET 211 Electric Machines & Controls Lecture 2-1 (Part 1 of 3) Symbols and Drawing for Electric Motor Control Systems Text Book: Chapter 2. Understanding Electrical Drawings, Electric Motors and Control

More information

Construction Electrician/Industrial Electrician/Power Electrician Common Core Level 2

Construction Electrician/Industrial Electrician/Power Electrician Common Core Level 2 Common Core Level 2 Unit: B1 Commercial Electrical Code Level: Two Duration: 60 hours Theory: Practical: 60 hours 0 hours Overview: This unit is designed to provide the apprentice with the knowledge about

More information

ELECTRICAL DRAWINGS AND CONTROL CIRCUITS

ELECTRICAL DRAWINGS AND CONTROL CIRCUITS ELECTRICAL DRAWINGS AND CONTROL CIRCUITS SECTOR / ENGINEERING NON-TECHNICAL & CERTIFIED TRAINING COURSE This training seminar will cover all the aspects with respect to electrical blueprint reading and

More information

Power systems Protection course

Power systems Protection course Al-Balqa Applied University Power systems Protection course Department of Electrical Energy Engineering 1 Part 5 Relays 2 3 Relay Is a device which receive a signal from the power system thought CT and

More information

Wisconsin Technical College System Curriculum Standards Model & Program Design Summary ELECTRICAL & INSTRUMENTATION APPRENTICE

Wisconsin Technical College System Curriculum Standards Model & Program Design Summary ELECTRICAL & INSTRUMENTATION APPRENTICE Curriculum Standards Model & Program Design Summary 50-414-2 ELECTRICAL & INSTRUMENTATION APPRENTICE Program Information Program Electrical & Instrumentation Technicians install, service, troubleshoot;

More information

Exercise 9. Electromagnetism and Inductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Magnetism, magnets, and magnetic field

Exercise 9. Electromagnetism and Inductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Magnetism, magnets, and magnetic field Exercise 9 Electromagnetism and Inductors EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the concepts of magnetism, magnets, and magnetic field, as well as electromagnetism

More information

Overcurrent and Overload Protection of AC Machines and Power Transformers

Overcurrent and Overload Protection of AC Machines and Power Transformers Exercise 2 Overcurrent and Overload Protection of AC Machines and Power Transformers EXERCISE OBJECTIVE When you have completed this exercise, you will understand the relationship between the power rating

More information

Industrial Electrician Level 3

Industrial Electrician Level 3 Industrial Electrician Level 3 Industrial Electrician Unit: C1 Industrial Electrical Code I Level: Three Duration: 77 hours Theory: Practical: 77 hours 0 hours Overview: This unit is designed to provide

More information

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT INTRODUCTION Thus far this text has dealt with direct current (DC); that is, current that does not change direction. However, a coil rotating in a magnetic field

More information

Cornerstone Electronics Technology and Robotics I Week 19 Electrical Relays

Cornerstone Electronics Technology and Robotics I Week 19 Electrical Relays Cornerstone Electronics Technology and Robotics I Week 19 Electrical Relays Administration: o Prayer o Turn in quiz o Review voltage regulators: Review SPST, SPDT, DPST, DPDT switches http://cornerstonerobotics.org/curriculum/lessons_year1/er%20week8,%

More information

CHAPTER 3 PROJECT METHODOLOGY

CHAPTER 3 PROJECT METHODOLOGY CHAPTER 3 PROJECT METHODOLOGY 3.1 Introduction This chapter will cover the details explanation of methodology that is being used to make this project complete and working well. Many methodology or findings

More information

PREVIEW COPY. Table of Contents. Introduction to Schematics and Symbols...3. Lesson Two Symbols on Schematics...21

PREVIEW COPY. Table of Contents. Introduction to Schematics and Symbols...3. Lesson Two Symbols on Schematics...21 Table of Contents Lesson One Introduction to Schematics and Symbols...3 Lesson Two Symbols on Schematics...21 Lesson Three Electrical Symbols...37 Lesson Four Electrical Diagrams...53 Lesson Five Lesson

More information

Construction Electrician Level 2

Construction Electrician Level 2 Level 2 Rev. September 2008 Unit: B1 Electrical Code II Level: Two Duration: 120 hours Theory: Practical: 99 hours 21 hours Overview: This unit of instruction is designed to provide the Electrician apprentice

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

TABLE OF CONTENT

TABLE OF CONTENT Page : 1 of 34 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia TABLE OF CONTENT SCOPE 3 REFERENCES

More information

Switches. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Switches. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Switches This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Switches. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Switches. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Switches This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Basic Microprocessor Interfacing Trainer Lab Manual

Basic Microprocessor Interfacing Trainer Lab Manual Basic Microprocessor Interfacing Trainer Lab Manual Control Inputs Microprocessor Data Inputs ff Control Unit '0' Datapath MUX Nextstate Logic State Memory Register Output Logic Control Signals ALU ff

More information

120 VAC. 12 VAC center-tapped

120 VAC. 12 VAC center-tapped INST 200 (Introduction to Instrumentation), Review Exam MASTERY NAME: # Question type 1st attempt 2nd attempt 1 Circuit sketching 2-3 DC circuits 4-5 Mathematics 6 Circuit fault analysis 7-8 AC and opamp

More information

MODEL 421 Over/Under Motor Load Monitor

MODEL 421 Over/Under Motor Load Monitor MODEL 421 Over/Under Motor Load Monitor Monitors True Motor Power (volts x current x power factor) Detects Motor Overload or Underload Operates on 120 or, Single-phase or 3-phase Built-in Trip and Restart

More information

Associate In Applied Science In Electronics Engineering Technology Expiration Date:

Associate In Applied Science In Electronics Engineering Technology Expiration Date: PROGRESS RECORD Study your lessons in the order listed below. Associate In Applied Science In Electronics Engineering Technology Expiration Date: 1 2330A Current and Voltage 2 2330B Controlling Current

More information

TEACHER ASSESSMENT BLUEPRINT ELECTRICAL CONSTRUCTION TECHNOLOGY. Test Code: 5171 Version: 01

TEACHER ASSESSMENT BLUEPRINT ELECTRICAL CONSTRUCTION TECHNOLOGY. Test Code: 5171 Version: 01 TEACHER ASSESSMENT BLUEPRINT ELECTRICAL CONSTRUCTION TECHNOLOGY Test Code: 5171 Version: 01 Specific Competencies and Skills Tested in this Assessment: OSHA Regulations and Electrical Safety Practices

More information

Metal Detector. Student Lab Guide. Engineering Teaching Laboratory. Lab Partner(s)

Metal Detector. Student Lab Guide. Engineering Teaching Laboratory. Lab Partner(s) Metal Detector Student Lab Guide Engineering Teaching Laboratory Name Date Lab Partner(s) NEW TERMS Electric Circuit: Electric circuits are paths for transmitting electric current, or moving electricity.

More information

(c) Figure 1.1: Schematic elements. (a) Voltage source. (b) Light bulb. (c) Switch, open (off). (d) Switch, closed (on).

(c) Figure 1.1: Schematic elements. (a) Voltage source. (b) Light bulb. (c) Switch, open (off). (d) Switch, closed (on). Chapter 1 Switch-based logic functions 1.1 Basic flashlight A schematic is a diagram showing the important electrical components of an electrical circuit and their interconnections. One of the simplest

More information

Power Electrician Level 3

Power Electrician Level 3 s Power Electrician Level 3 Rev. September 2008 Power Electrician Unit: C1 Electrical Code III Level: Three Duration: 60 hours Theory: Practical: 60 hours 0 hours Overview: This unit of instruction is

More information

Programmable Logic Controllers: Programming Methods. and Applications

Programmable Logic Controllers: Programming Methods. and Applications Programmable Logic Controllers: Programming Methods and Applications by John R. Hackworth and Frederick D. Hackworth, Jr. Table of Contents Chapter 1 - Ladder Diagram Fundamentals Chapter 2 - The Programmable

More information

Introduction to Pspice

Introduction to Pspice 1. Objectives Introduction to Pspice The learning objectives for this laboratory are to give the students a brief introduction to using Pspice as a tool to analyze circuits and also to demonstrate the

More information

E X A M I N A T I O N S C O U N C I L SECONDARY EDUCATION CERTIFICATE EXAMINATION ELECTRICAL AND ELECTRONIC TECHNOLOGY TECHNICAL PROFICIENCY

E X A M I N A T I O N S C O U N C I L SECONDARY EDUCATION CERTIFICATE EXAMINATION ELECTRICAL AND ELECTRONIC TECHNOLOGY TECHNICAL PROFICIENCY TEST CODE 01317031/SBA FORM TP 2012069 JUNE 2012 C A R I B B E A N E X A M I N A T I O N S C O U N C I L SECONDARY EDUCATION CERTIFICATE EXAMINATION ELECTRICAL AND ELECTRONIC TECHNOLOGY TECHNICAL PROFICIENCY

More information

Maintenance Manual INTERNAL BATTERY STANDBY CHARGER OPTION BC01 (9669), 9670 AND 9771 (FOR MASTR II STATIONS) Mobile Communications LBI-30869L

Maintenance Manual INTERNAL BATTERY STANDBY CHARGER OPTION BC01 (9669), 9670 AND 9771 (FOR MASTR II STATIONS) Mobile Communications LBI-30869L L Mobile Communications INTERNAL BATTERY STANDBY CHARGER OPTION BC01 (9669), 9670 AND 9771 (FOR MASTR II STATIONS) Printed in U.S.A. Maintenance Manual TABLE OF CONTENTS Page DESCRIPTION...................................................

More information

SUBCOURSE EDITION OD1725 BASIC SCHEMATIC INTERPRETATION

SUBCOURSE EDITION OD1725 BASIC SCHEMATIC INTERPRETATION SUBCOURSE EDITION OD1725 B BASIC SCHEMATIC INTERPRETATION BASIC SCHEMATIC INTERPRETATION Subcourse Number OD1725 Edition B March 1996 United States Army Ordnance Center and School 5 Credit Hours SUBCOURSE

More information

Auto Diagnosis Test #2 Review

Auto Diagnosis Test #2 Review Auto Diagnosis Test #2 Review Your own hand written notes may be used for the 1 st 10 minutes of the test For the Most Effective Personal Review, Look Over the On Line Study Guide Multimedia Based on Chapters

More information

SECTION 20. ELECTRICAL AND ELECTRONIC SYMBOLS

SECTION 20. ELECTRICAL AND ELECTRONIC SYMBOLS 9/8/98 AC 43.13-1B SECTION 20. ELECTRICAL AND ELECTRONIC SYMBOLS 11-271. GENERAL. The electrical and electronic symbols shown here are those that are likely to be encountered by the aviation maintenance

More information

ELECTRONIC FUNDAMENTALS

ELECTRONIC FUNDAMENTALS Part 66 Cat. B1 Module 4 ELECTRONIC FUNDAMENTALS Vilnius-2017 Issue 1. Effective date 2017-02-28 FOR TRAINING PURPOSES ONLY Page 1 of 67 Figure 1-4. Standard diode color code system Color Digit Diode suffix

More information

1. In the circuit shown in the figure above, what will happen when switches S 1

1. In the circuit shown in the figure above, what will happen when switches S 1 Student ID: 22133336 Exam: 002001RR - Introduction to Electronics When you have completed your exam and reviewed your answers, click Submit Exam. Answers will not be recorded until you hit Submit Exam.

More information

Introduction. Inductors in AC Circuits.

Introduction. Inductors in AC Circuits. Module 3 AC Theory What you ll learn in Module 3. Section 3.1 Electromagnetic Induction. Magnetic Fields around Conductors. The Solenoid. Section 3.2 Inductance & Back e.m.f. The Unit of Inductance. Factors

More information

Laboratory Equipment Instruction Manual 2011

Laboratory Equipment Instruction Manual 2011 University of Toronto Department of Electrical and Computer Engineering Instrumentation Laboratory GB341 Laboratory Equipment Instruction Manual 2011 Page 1. Wires and Cables A-2 2. Protoboard A-3 3. DC

More information

PREREQUISITES: MODULE 10: MICROCONTROLLERS II; MODULE 14: DISCRETE COMPONENTS. MODULE 13 (SENSORS) WOULD ALSO BE HELPFUL.

PREREQUISITES: MODULE 10: MICROCONTROLLERS II; MODULE 14: DISCRETE COMPONENTS. MODULE 13 (SENSORS) WOULD ALSO BE HELPFUL. ELECTROMECHANICAL SYSTEMS PREREQUISITES: MODULE 10: MICROCONTROLLERS II; MODULE 14: DISCRETE COMPONENTS. MODULE 13 (SENSORS) WOULD ALSO BE HELPFUL. OUTLINE OF MODULE 17: What you will learn about in this

More information

DC Solid State Power Controller Module

DC Solid State Power Controller Module DC Solid State Power Controller Module Description: The Solid State Power Controller (SSPC) Module is a microcontroller-based Solid State Relay rated upto 25A designed to be used in Army, Air force and

More information

Curriculum. Technology Education ELECTRONICS

Curriculum. Technology Education ELECTRONICS Curriculum Technology Education ELECTRONICS Supports Academic Learning Expectation # 3 Students and graduates of Ledyard High School will employ problem-solving skills effectively Approved by Instructional

More information

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G P R O F. S L A C K L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G G B S E E E @ R I T. E D U B L D I N G 9, O F F I C E 0 9-3 1 8 9 ( 5 8 5 ) 4 7 5-5 1 0

More information

Chapters 11 & 12 Electronic Controls & Automation

Chapters 11 & 12 Electronic Controls & Automation Chapters 11 & 12 Electronic Controls & Automation Use the Textbook Pages 255 297 to help answer the questions Why You Learn So Well in Tech & Engineering Classes 1. All control systems have and devices.

More information

Using Circuits, Signals and Instruments

Using Circuits, Signals and Instruments Using Circuits, Signals and Instruments To be ignorant of one s ignorance is the malady of the ignorant. A. B. Alcott (1799-1888) Some knowledge of electrical and electronic technology is essential for

More information

Rotary Relay Replacement. for the ICOM 720A KA6BFB

Rotary Relay Replacement. for the ICOM 720A KA6BFB Rotary Relay Replacement for the ICOM 720A by KA6BFB BACKGROUND There are several modifications available for converting the Icom IC-720A rotary relay in the filter module to fixed relays. The most popular

More information

GCSE Electronics. Scheme of Work

GCSE Electronics. Scheme of Work GCSE Electronics Scheme of Work Week Topic Detail Notes 1 Practical skills assemble a circuit using a diagram recognize a component from its physical appearance (This is a confidence building/motivating

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

1 CHAPTER 1 INTRODUCTION This chapter 1 is contains about the introduction of the project where it involve of the objectives, problem statements, scope, methodology, and report structure. 1.1 Background

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

3/4/2015. Basic relay construction. Shading coil in AC relays. Timothy L. Skvarenina and William E. DeWitt Electrical Power and Controls, 2e

3/4/2015. Basic relay construction. Shading coil in AC relays. Timothy L. Skvarenina and William E. DeWitt Electrical Power and Controls, 2e FIGURE 12-1 Basic relay construction. FIGURE 12-2 Shading coil in AC relays. 1 FIGURE 12-3 Contactor coil and shaded pole stators. FIGURE 12-4 Magnetic motor starter. 2 FIGURE 12-5 Thermal overload devices.

More information

Electrical Fundamentals and Basic Components Chapters T2, T3, G4

Electrical Fundamentals and Basic Components Chapters T2, T3, G4 Electrical Fundamentals and Basic Components Chapters T2, T3, G4 Some Basic Math, Electrical Fundamentals, AC Power, The Basics of Basic Components, A Little More Component Detail, Reactance and Impedance

More information

Power systems 2: Transformation

Power systems 2: Transformation Power systems 2: Transformation Introduction In this series of articles, we will be looking at each of the main stages of the electrical power system in turn. s you will recall from our Introduction to

More information

Technician Licensing Class T6

Technician Licensing Class T6 Technician Licensing Class T6 Amateur Radio Course Monroe EMS Building Monroe, Utah January 11/18, 2014 January 22, 2014 Testing Session Valid dates: July 1, 2010 June 30, 2014 Amateur Radio Technician

More information

Debugging a Boundary-Scan I 2 C Script Test with the BusPro - I and I2C Exerciser Software: A Case Study

Debugging a Boundary-Scan I 2 C Script Test with the BusPro - I and I2C Exerciser Software: A Case Study Debugging a Boundary-Scan I 2 C Script Test with the BusPro - I and I2C Exerciser Software: A Case Study Overview When developing and debugging I 2 C based hardware and software, it is extremely helpful

More information

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit. I.E.S-(Conv.)-1995 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Some useful data: Electron charge: 1.6 10 19 Coulomb Free space permeability: 4 10 7 H/m Free space permittivity: 8.85 pf/m Velocity

More information

Busbars and lines are important elements

Busbars and lines are important elements CHAPTER CHAPTER 23 Protection of Busbars and Lines 23.1 Busbar Protection 23.2 Protection of Lines 23.3 Time-Graded Overcurrent Protection 23.4 Differential Pilot-Wire Protection 23.5 Distance Protection

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Exercise 1: PWM Modulator University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Lab 3: Power-System Components and

More information

WESTERN IOWA TECH COMMUNITY COLLEGE. Course Syllabus. Electrical Technician Level 2

WESTERN IOWA TECH COMMUNITY COLLEGE. Course Syllabus. Electrical Technician Level 2 Course Title: Electrical Technician Level Total Hours:56 Meeting time/ location :TBA Instructor: Chris Sewalson Phone:712-274-8733 ext1407 E-mail Chris.sewalson@witcc.edu Office Location: Lemars Center

More information

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 2 Ohm s Law 2.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

CONTENTS. 1. Introduction Generating Stations 9 40

CONTENTS. 1. Introduction Generating Stations 9 40 CONTENTS 1. Introduction 1 8 Importance of Electrical Energy Generation of Electrical Energy Sources of Energy Comparison of Energy Sources Units of Energy Relationship among Energy Units Efficiency Calorific

More information

Practical 2P12 Semiconductor Devices

Practical 2P12 Semiconductor Devices Practical 2P12 Semiconductor Devices What you should learn from this practical Science This practical illustrates some points from the lecture courses on Semiconductor Materials and Semiconductor Devices

More information

User s Manual ISL71218MEVAL1Z. User s Manual: Evaluation Board. High Reliability Space

User s Manual ISL71218MEVAL1Z. User s Manual: Evaluation Board. High Reliability Space User s Manual ISL71218MEVAL1Z User s Manual: Evaluation Board High Reliability Space Rev. Aug 217 USER S MANUAL ISL71218MEVAL1Z Evaluation Board UG139 Rev.. 1. Overview The ISL71218MEVAL1Z evaluation platform

More information

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated Rev. D CE Series Power Amplifier Service Manual 3 Circuit Theory 3.0 Overview This section of the manual explains the general operation of the CE power amplifier. Topics covered include Front End Operation,

More information

MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS

MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS Introduction...2 Powering The MFJ-219/219N...3 Battery Installation...3 Operation Of The MFJ-219/219N...4 SWR and the MFJ-219/219N...4 Measuring

More information

Radio Control Installation and Operating Instructions System 4

Radio Control Installation and Operating Instructions System 4 Radio Control Installation and Operating Instructions System 4 P.O. Box 403, One Cedar Parkway, Jackson, WI 53037 Phone: 800-628-1909 Fax: 262-677-2058 Revision: April 19, 2012 Contents Introduction 3

More information

BETWEEN SCAN TOOL & SUCCESSFUL DIAGNOSIS FILLING IN THE GAPS

BETWEEN SCAN TOOL & SUCCESSFUL DIAGNOSIS FILLING IN THE GAPS ETWEEN SCAN TOOL & SUCCESSFUL DIAGNOSIS FILLING IN THE GAPS 38 April 0 Y ERNIE THOMPSON A scan tool is an invaluable aid to vehicle diagnostics, but you may need to rely on other methods as well when vital

More information

Pre-Laboratory Assignment

Pre-Laboratory Assignment Measurement of Electrical Resistance and Ohm's Law PreLaboratory Assignment Read carefully the entire description of the laboratory and answer the following questions based upon the material contained

More information

Moving Game X to YOUR Location In this tutorial, you will remix Game X, making changes so it can be played in a location near you.

Moving Game X to YOUR Location In this tutorial, you will remix Game X, making changes so it can be played in a location near you. Moving Game X to YOUR Location In this tutorial, you will remix Game X, making changes so it can be played in a location near you. About Game X Game X is about agency and civic engagement in the context

More information

6CARRIER-CURRENT-PILOT AND MICROWAVE-PILOT RELAYS

6CARRIER-CURRENT-PILOT AND MICROWAVE-PILOT RELAYS 6CARRIER-CURRENT-PILOT AND MICROWAVE-PILOT RELAYS Chapter 5 introduced the subject of pilot relaying, gave the fundamental principles involved, and described some typical wire-pilot relaying equipments.

More information

ELEXBO. Electrical - Experimentation Box

ELEXBO. Electrical - Experimentation Box ELEXBO Electrical - Experimentation Box 1 Table of contents 2 Introduction...3 Basics...3 The current......4 The voltage...6 The resistance....9 Measuring resistance...10 Summary of the electrical values...11

More information

Numbering System for Protective Devices, Control and Indication Devices for Power Systems

Numbering System for Protective Devices, Control and Indication Devices for Power Systems Appendix C Numbering System for Protective Devices, Control and Indication Devices for Power Systems C.1 APPLICATION OF PROTECTIVE RELAYS, CONTROL AND ALARM DEVICES FOR POWER SYSTEM CIRCUITS The requirements

More information

total j = BA, [1] = j [2] total

total j = BA, [1] = j [2] total Name: S.N.: Experiment 2 INDUCTANCE AND LR CIRCUITS SECTION: PARTNER: DATE: Objectives Estimate the inductance of the solenoid used for this experiment from the formula for a very long, thin, tightly wound

More information

FCC Technician License Course

FCC Technician License Course FCC Technician License Course 2014-2018 FCC Element 2 Technician Class Question Pool Presented by: Tamiami Amateur Radio Club (TARC) WELCOME To the SECOND of 4, 3-hour classes presented by TARC to prepare

More information

FCC Technician License Course

FCC Technician License Course FCC Technician License Course 2018-2022 FCC Element 2 Technician Class Question Pool Presented by: Tamiami Amateur Radio Club (TARC) WELCOME To the SECOND of 3, 4-hour classes presented by TARC to prepare

More information

Lab Equipment EECS 311 Fall 2009

Lab Equipment EECS 311 Fall 2009 Lab Equipment EECS 311 Fall 2009 Contents Lab Equipment Overview pg. 1 Lab Components.. pg. 4 Probe Compensation... pg. 8 Finite Instrumentation Impedance. pg.10 Simulation Tools..... pg. 10 1 - Laboratory

More information

Electrical Motor Controls Chapter 5 (4 th Edition) Chapter 5 (5 th Edition)

Electrical Motor Controls Chapter 5 (4 th Edition) Chapter 5 (5 th Edition) Electrical Motor Controls Chapter 5 (4 th Edition) Chapter 5 (5 th Edition) 1. How many loads should be placed in any one circuit line between L 1 and L 2? 2. If more than one load is controlled by the

More information

Practical 2P12 Semiconductor Devices

Practical 2P12 Semiconductor Devices Practical 2P12 Semiconductor Devices What you should learn from this practical Science This practical illustrates some points from the lecture courses on Semiconductor Materials and Semiconductor Devices

More information

Development of a noval Switched Beam Antenna for Communications

Development of a noval Switched Beam Antenna for Communications Master Thesis Presentation Development of a noval Switched Beam Antenna for Communications By Ashraf Abuelhaija Supervised by Prof. Dr.-Ing. Klaus Solbach Institute of Microwave and RF Technology Department

More information

Block Diagram of a DC Power Supply. Wiring diagrams are used to help with the actual circuit wiring.

Block Diagram of a DC Power Supply. Wiring diagrams are used to help with the actual circuit wiring. Electronics Technology and Robotics I Week 3 Schematics, Conductors, and Insulators Administration: o Prayer o Review measuring voltage, current, and resistance w/ DMM Electrical Diagrams: o Schematic

More information

CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW

CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW IB PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW 1. This question is about electric circuits. (a) (b) Define (i) (ii) electromotive force

More information

ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier

ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier Michael W. Marcellin The first portion of this document describes preparatory work to be completed in

More information

Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law

Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law Exercise 7 Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate the equivalent resistance of multiple

More information

Contents. Acknowledgments. About the Author

Contents. Acknowledgments. About the Author Contents Figures Tables Preface xi vii xiii Acknowledgments About the Author xv xvii Chapter 1. Basic Mathematics 1 Addition 1 Subtraction 2 Multiplication 2 Division 3 Exponents 3 Equations 5 Subscripts

More information

The Semiconductor Diode

The Semiconductor Diode Physics Topics The Semiconductor Diode If necessary, review the following topics and relevant textbook sections from Neamen Semiconductor Physics and Devices, 4th Ed. Section 8.1.5, especially equation

More information

Experiment 1: Circuits Experiment Board

Experiment 1: Circuits Experiment Board 01205892C AC/DC Electronics Laboratory Experiment 1: Circuits Experiment Board EQUIPMENT NEEDED: AC/DC Electronics Lab Board: Wire Leads Dcell Battery Graph Paper Purpose The purpose of this lab is to

More information

IPR LA-3 KIT last update 15 march 06

IPR LA-3 KIT last update 15 march 06 IPR LA-3 KIT last update 15 march 06 PART-2: Audio Circuitry CIRCUIT BOARD LAYOUT: Power and Ground Distribution Now that your power supply is functional, it s time to think about how that power will be

More information

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Integrated Circuit Layers MOSFETs CMOS Layers Designing FET Arrays EE 432 VLSI Modeling and Design 2 Integrated Circuit Layers

More information