Introduction to Sensors for Ranging and Imaging. Dr. Graham Brooker S SCITEOT. publishmefinc. SciTech Publishing, Inc Raleigh, NC

Size: px
Start display at page:

Download "Introduction to Sensors for Ranging and Imaging. Dr. Graham Brooker S SCITEOT. publishmefinc. SciTech Publishing, Inc Raleigh, NC"

Transcription

1 Introduction to Sensors for Ranging and Imaging Dr. Graham Brooker S SCITEOT publishmefinc. SciTech Publishing, Inc Raleigh, NC

2 Introduction to Sensors for Ranging and Imaging Chapter 1 Chapter 2 Introduction to Sensing 1.1 Introduction Active Sensors Passive Sensors A Brief History of Sensing Sonar Radar Lidar Passive Infrared Sensing Sensor Systems Frequency Band Allocations for the Electromagnetic Spectrum 1.6 Frequency Band Allocations for the Acoustic Spectrum References 21 Signal Processing and Modulation 2.1 The Nature of Electronic Signals Static and Quasi-Static Signals Periodic and Repetitive Signals Transient and Quasi Transient Signals Noise Thermal Noise Noise Power Spectrum for Thermal Noise Shot Noise Noise Power Spectrum for Shot Noise /f Noise Avalanche Noise Signals Signals and Noise in the Frequency Domain The Fourier Series Sampled Signals Generating Signals in MATLAB Aliasing 37

3 VI Table of Contents 2.6 Filtering Filter Categories Butterworth Chebyshev Bessel Elliptic Filter Roll-off The Ear as a Filter Bank Analog Modulation and Demodulation Amplitude Modulation Frequency Modulation (FM) Linear Frequency Modulation Pulse Coded Modulation Techniques Pulse Amplitude Modulation Frequency Shift Keying Phase Shift Keying Stepped Frequency Modulation Convolution Linear Time Invariant Systems The Convolution Sum Worked Example: Pulsed Radar Echo Amplitude References 67 Chapter 3 IR Radiometers & Image Intensifies ' Introduction Thermal Emission Blackbody Radiation The Planck Function Properties of the Planck Function Confirmation of Stefan-Boltzmann and Rayleigh-Jean Laws Emissivity and Reflectivity Worked Example: Black Body Radiation from Human Body Detecting Thermal Radiation External Photoeffect Internal Photoeffect Photoconductive Detectors Photovoltaic Detectors Heating Bolometers Pyroelectric Sensors Thermopiles 84

4 VII 3.6 Performance Criteria for Detectors Responsivity Noise Equivalent Power (NEP) Detectivity and Specific Detectivity Noise Processes and Effects Applications Passive Ultraviolet Sensor (External Photoeffect) Radiation Thermometer (Internal Photoeffect: Thermopile) Passive Infrared Sensor (Internal Photoeffect: Pyroelectric) Crookes' Radiometer Introduction to Thermal Imaging Systems Scattering and Absorption Scanning Mechanisms and Arrays Micro-bolometer Arrays Key Optical Parameters Performance Measures for Infrared Imagers Detector Field of View Spatial Frequency Signal to Noise Ratio for a Point Target Worked Example: IRST System SNR Signal to Noise Ratio for a Target in Ground Clutter Noise Equivalent Temperature Difference (NETD) Example The Minimum Resolvable Temperature Difference (MRTD) Target Detection and Recognition Example of FLIR Detection Thermal Imaging Applications Image Intensifiers First Generation Tubes Second Generation Tubes Limitations of MicroChannel Plates Third Generation Tubes Spectral Characteristics of die Scene Time Gating MicroChannel Plates References 119 Chapter 4 Millimeter Wave Radiometers 4.1 Antenna Power Temperature Correspondence Example of Power Received from a Blackbody

5 4.2 Brightness Temperature Apparent Temperature Atmospheric Effects Attenuation Downwelling Radiation Upwelling Radiation Terrain Brightness Worked Example: Space-based Radiometer Temperature Contrast Antenna Considerations Beamwidth Efficiency Fill Ratio Receiver Considerations Mixer Implementations for Microwave Receivers Mixer Specifications Noise Figure The System Noise Temperature Radiometer Temperature Sensitivity Radiometer Implementation Total Power Radiometer Dicke Radiometer Performance Comparison between Radiometer Types Intermediate Frequency and Video Gain Requirements Worked Example: Anti Tank Submunition Sensor Design Radiometer Implementation Receiver Noise Temperature Minimum Detectable Temperature Difference Radiometric Imaging Image Processing Applications Airborne Scanned Millimeter Wave Radiometer Scanning Multi-channel Microwave Radiometer (SMMR) Ground Based Millimeter Wave Radiometers Low Visibility Imaging Concealed Weapon Detection Surveillance and Law Enforcement Medical Imaging Radio Astronomy Single Dish Telescopes 156

6 IX 4.16 References Telescope Arrays Applications 157 Chapter 5 Active Ranging Sensors Overview Triangulation Pulsed Time-of-Flight Operation Sensor Requirements Speed of Propagation The Antenna The Transmitter Radar Transmitters Underwater Sonar Transmitters Ultrasonic Transmitters Laser Transmitters The Receiver Pulsed Range Measurement Timing Discriminators Pulse Integration Time Transformation Other Methods to Measure Range Ranging using an Unmodulated Carrier Ranging using a Modulated Carrier Tellurometer Example The Radar Range Equation Derivation The db Form Worked Example: Radar Detection Calculation Receiver Noise Determining the Required Signal Level Pulse integration and the probability of detection The Acoustic Range Equation Example of Using the Acoustic Range Equation TOF Measurement Considerations Range Measurement Radar for a Cruise References 212 Chapter 6 Active Imaging Sensors Imaging Techniques Range-Gate limited 2D Image Construction 216

7 X Table of Contents 6.3 Beamwidth Limited 3D Image Construction Push-Broom Scanning Mechanical Scanning The Lidar Range Equation Lidar System Performance Direct Detection Direct Detection Photodiodes Heterodyne Detection Signal to Noise Ratio and Detection Probability Worked Example: Laser Radar Reflection from the Moon Digital Terrain Models Surface Models Digital Landscapes Thematic Visualization Geographic Information Systems D City Models Airborne Lidar Hydrography D Imaging Radar Systems Focused Beam Radar Imaging Lidar Imaging Jigsaw Foliage Penetrating Lidar Acoustic Imaging 244 ' Scanning Acoustic Microscopes Worked Example: Lidar Locust Tracker Requirement Specifications System Hardware Determining the Required Aircraft Speed Laser Power Density on the Ground The power density of the reflected signals back at the laser The Effect of the Sun The Receiver Conclusions References 254 Chapter 7 Signal Propagation The Sensing Environment Attenuation of Electromagnetic Waves Clear Weather Attenuation 259

8 XI Effect of Atmospheric Pressure (air density) Effect of Rain Effect of Fog and Clouds Overall Attenuation Attenuation through Dust and Smoke Attenuation of Radar Signals Attenuation of Laser Signals Effect of atmosphere composition Electromagnetic propagation through solid Refraction of Electromagnetic Waves Acoustics and Vibration Characteristic Impedance (Z) and Sound Pressure Sound Intensity (I) Sound Propagation in Gases Worked Example: Effect of Molecular Weight on Speed of Sound Effect of Temperature and Pressure Sound Propagation in Water Sound Propagation in Solids Attenuation of Sound in Air Attenuation of Sound in Water Reflection and Refraction of Sound Waves normal to the Interface Waves at an angle to the Interface Refraction and Refraction Multipath Effects Mechanism Multipath Lobing Multipath Fading Multipath Tracking Effects on Imaging References 297 Chapter 8 Target and Clutter Characteristics Introduction Target Cross-Section Cross-section and the Equivalent Sphere Cross-section of Real Targets Radar Cross-sections (RCS) RCS of Simple Shapes Flat Plate 302

9 8.4.2 The Sphere Trihedral Reflector Other Simple Calibration Reflectors Radar Cross-section of Complex Targets Aircraft Ships Ground Vehicles Effect of Target Material RCS of Living Creatures Human Beings Birds Insects Fluctuations in Radar Cross-section Temporal Fluctuations Spatial Distribution of Cross-section Radar Stealth Minimizing Detectability Anti-Stealth Technology Target Cross-section in the Infrared Acoustic Target Cross-section Target Composition Target Properties Particulate Targets Underwater Targets Clutter TS of a Sphere TS of Other Shapes Ground Clutter Spatial Variations Temporal Variations Sea Clutter Calculating Surface Clutter Backscatter Calculating Volume Backscatter Rain Dust and Mist Backscatter Sonar Clutter and Reverberation Backscatter Volume Reverberation Worked Example: Orepass Radar Development Requirement Selection of a Sensor 344

10 XIII References 355 Range Resolution 345 Target Characteristics 345 Clutter Characteristics 346 Target Signal-to-Clutter Ratio (SCR) 346 Antenna Size and Radar Frequency 347 Radar Configuration 347 Component Selection Antenna Options Radar Transmitter Receiver Options 349 Signal-to-Noise Ratio 351 Output Signal-to-Noise Ratio 351 Required IF Gain 352 Detection Probability and Pulses Integrated 352 Measurement Update Rate 352 Monitoring Rock Falling Down the Pass 352 Prototype Build and Test 353 Chapter 9 Detection of Signals in Noise 9.1 Receiver Noise Radar Noise Noise Probability Density Functions Infrared Detection and Lidar Noise Thermal Noise Shot Noise Avalanche Noise /f Noise Total Noise Contribution Sonar Noise Thermal Noise Noise from the Sea Effects of Signal-to-noise Ratio Probability of False Alarm Example Probability of Detection Detector Loss Relative to an Ideal System The Matched Filter Coherent Detection Integration of Pulse Trains Detection of Fluctuating Signals Detecting Targets in Clutter

11 XIV Table of Contents 9.8 Constant False Alarm Rate (CFAR) Processors Target Detection Analysis Worked Example: Target Detection with Air Surveillance Radar Determine Receiver Parameters Radar Range Equation Determine the Receiver Noise and SNR Solve for the Detection Range (m) Range Analysis Software Packages Detection Range in Rain Noise Jamming Noise Jamming Example References 388 Chapter 10 Doppler Measurement The Doppler Shift Doppler Shift Derivation Doppler Geometry Targets moving at low velocities (v «c) Targets Moving at High Speed (v < c) Doppler Shift Extraction Direction Discrimination Sideband Filtering Offset Carrier Demodulation In-phase/Quadrature Demodulation Pulsed Doppler Doppler Sensors Continuous Wave Doppler Ultrasound Continuous Wave Doppler Radar Intruder Detection Sports Radar Police Radar Speed Trap Worked Example: Police Radar and Detector Comparison Projectile Tracking Radar Doppler Target Identification Pulsed Doppler Ultrasound Pulsed Doppler Radar Doppler Target Generator 416

12 xv 10.7 Case Study: Estimating the Speed of Radio Controlled Aircraft Background Measured Data References 423 Chapter 11 High Range-Resolution Techniques Classical Modulation Techniques Amplitude Modulation Range Resolution Frequency & Phase Modulation Matched Filter Phase-Coded Pulse Compression Barker Codes Random Codes Optimal Binary Sequences Correlation Binary Correlation Circular Correlation SAW Based Pulse Compression Step Frequency Frequency-modulated continuous-wave Radar Operational Principles Matched Filtering The Ambiguity Function Effect of a Non-Linear Chirp Chirp Linearization Open Loop Techniques Determining the Effectiveness of Linearization Techniques Implementation of Closed-Loop Linearization Direct Digital Synthesis Extraction of Range Information and Range Gating FFT Processing Other Range Gating Methods Problems with FMCW Stretch Interrupted FMCW Disadvantages Optimizing for a Long Range Imaging Application Implementation 458

13 XVI Table of Contents Sidelobes and Weighting for Linear FM Systems High Resolution Radar Systems Industry Automotive Radar Research Radars Worked Example: Brimstone Antitank Missile System Specifications Seeker Specifications (known) Operational procedure Lock-on after launch System Performance (speculated) Target Detection and Identification Radar Front End Antenna and Scanner Signal Processing Signal-to-Clutter Ratio: Clutter Levels Target Levels Signal-to-Clutter Ratio Signal-to-Noise Ratio Target Identification: Doppler Processing Target Identification: Other Techniques Tracking and Guidance References 477 Chapter 12 High Angular-Resolution Techniques Introduction Phased Arrays Advantages of using Phased Arrays Array Synthesis Two Point Array Point Array The General Case The Radiation Pattern Linear Array Radiation pattern: 2D Rectangular Array Beam Steering Active and Passive Arrays Corrections to Improve Range Resolution Array Characteristics Antenna Gain and Beamwidth Matching and Mutual Coupling Thinned arrays Conformal Arrays 495

14 XVII 12.6 Applications Acoustic Array New Generation MMIC Phased Arrays Early Warning Phased Array Radar Sidescan Sonar Operational Principles Hardware Operation and Image Interpretation Signal Processing Worked Example: Performance of the ICT-5202 Transducer Doppler Beam-Sharpening Operational Principles of Synthetic Aperture Range and Cross-range Resolution Unfocused SAR Focused SAR Resolution Comparison Worked Example: Synthetic Aperture Sonar Radar Image Quality Issues Perspective of a Radar Image Image Distortion Stretching Shadowing Speckle SAR on Unmanned Aerial Vehicles TESAR MiniSAR Airborne SAR Capability Space-based SAR Interferometry Magellan Mission to Venus References 537 Chapter 13 Range and Angle Estimation and Tracking Introduction Range Estimation and Tracking Range Gating Principles of a Split-Gate Tracker Range Transfer Function Noise on Split-Gate Trackers Range Tracking Loop Implementation The A-ß Filter 543

15 XVIII Table of Contents The Kaiman Filter Other Tracking Filters Ultrasonic Range Tracker Example Tracking Noise after Filtering Tracking Lag for an Accelerating Target Worked Example: Range Tracker Bandwidth Optimization Range Tracking Systems Lidar Speed Trap Seduction Jamming Angle Measurement Amplitude Thresholding Proximity Detector Example Angle Tracking Principles Scanning Across the Target Null Steering Lobe Switching (Sequential Lobing) Main Disadvantages of Lobe Switching Conical Scan The Squint Angle Optimization Process Measuring the Conscan Antenna Transfer Function Application Main Disadvantages Other considerations Infrared Target Trackers Amplitude Comparison Monopulse Antenna Patterns Generation of Error Signals Comparison between Conscan and Monopulse Angle Tracking Loops Angle Estimation and Tracking Applications Instrument Landing System (ILS) Localizer Transmitter Localizer Receiver Glide Slope Equipment Worked Example: Combined Acoustic and Infrared Tracker Operational Principles of Prototype Theoretical Performance Tracker Implementation Beacon Receiver 582

16 XIX Construction Control Algorithms Angle Track Jamming Triangulation Loran-C References 591 ' Summary of Operation Measurement Process Advantages of Loran-C 590 Chapter 14 Tracking Moving Targets Track While Scan The Coherent Pulsed Tracking Radar Single Channel Detection I/Q Detection Moving Target Indicator (MTI) Blind Speeds Staggered PRF and Blind Speed Limitations to MTI Performance Range-Gated Pulsed Doppler Tracking Coordinate Frames Measurement Frame Tracking and Estimation Frame Antenna Mounts and Servo Systems On-Axis Tracking Crossing Targets and Apparent Acceleration Millimeter Wave Tracking Radar Tracking in Cartesian Space Worked Example: Fire Control Radar Requirements Selection of Polarization Positioner Specifications Radar Horizon Selection of Frequency Adverse Weather Effects Required Single Pulse Signal-to-Noise Ratio Tracking Gate Size Signal-to-Clutter Moving Target Indicator The Pulse Repetition Frequency Search Requirement Integration Gain 630

17 XX Table of Contents Matched Filter Transmitter Power System Configuration Free Space Detection Range Effects of Multipath on Aircraft Detection Detection Threshold and CFAR Transition to Track Target Tracking References 640 Chapter 15 Radio Frequency Identification Tags and Transponders Principle of Operation History Secondary Surveillance Radar Interrogation Equipment Transponder Equipment Operation SSR Issues Sidelobe problems Congestion Radio Frequency Identification (RFID) Systems Electronic Article Surveillance (EAS) Radio Frequency Tags Acousto-Magnetic Tags Microwave Tags (E-tags) Multibit EAS Tags Magnetic Coupled RFID Transponder Systems Operational Principles Electromagnetic Coupled RFID Transponder Systems Other Applications House Arrest Tag Social Issues Technical Challenges Harmonic Radar Battlefield Combat ID System (BCIS) Combat Identification: The Future References 657 Chapter 16 Tomography and 3D Imaging Principle of Operation CT Imaging Image Reconstruction 662

18 XXI What is displayed in CT images Two Dimensional Displays Three Dimensional Displays Magnetic Resonance Imaging (MRI) Nuclear Magnetic Resonance (NMR) Imaging Process Imaging Resolution MRI Images Functional MRI Investigations of Brain Function Positron Emission Tomography Examples of the use of PET Scans D Ultrasound Imaging D Medical Ultrasound D Extension Medical Applications Dangers of Ultrasound Use Ultrasonic Computed Tomography D Sonar Imaging Ground Penetrating Radar D Imaging using GPR Worked Example: Detecting a Ruby Nodule in a Rock Matrix References 693 Index 695

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p.

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. Preface p. xv Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. 6 Doppler Ambiguities and Blind Speeds

More information

Basic Radar Definitions Introduction p. 1 Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p.

Basic Radar Definitions Introduction p. 1 Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p. Basic Radar Definitions Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p. 11 Decibel representation of the radar equation p. 13 Radar frequencies p. 15

More information

Principles of Modern Radar

Principles of Modern Radar Principles of Modern Radar Vol. I: Basic Principles Mark A. Richards Georgia Institute of Technology James A. Scheer Georgia Institute of Technology William A. Holm Georgia Institute of Technology PUBLiSH]J

More information

Fundamental Concepts of Radar

Fundamental Concepts of Radar Fundamental Concepts of Radar Dr Clive Alabaster & Dr Evan Hughes White Horse Radar Limited Contents Basic concepts of radar Detection Performance Target parameters measurable by a radar Primary/secondary

More information

Copyrighted Material. Contents

Copyrighted Material. Contents Preface xiii 1 Introduction 1 1.1 Concepts 1 1.2 Spacecraft Sensors Cost 5 1.2.1 Introduction to Cost Estimating 5 1.2.2 Cost Data 7 1.2.3 Cost Estimating Methodologies 8 1.2.4 The Cost Estimating Relationship

More information

Radar Equations. for Modern Radar. David K. Barton ARTECH HOUSE BOSTON LONDON. artechhouse.com

Radar Equations. for Modern Radar. David K. Barton ARTECH HOUSE BOSTON LONDON. artechhouse.com Radar Equations for Modern Radar David K Barton ARTECH HOUSE BOSTON LONDON artechhousecom Contents Preface xv Chapter 1 Development of the Radar Equation 1 11 Radar Equation Fundamentals 1 111 Maximum

More information

Modern Radar Systems

Modern Radar Systems Modern Radar Systems Second Edition Hamish Meikle ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Foreward Preface to the second edition Preface to the first edition xvii xix xxi Chapter 1 The radar

More information

Set No.1. Code No: R

Set No.1. Code No: R Set No.1 IV B.Tech. I Semester Regular Examinations, November -2008 RADAR SYSTEMS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any

More information

Introduction to Microwave Remote Sensing

Introduction to Microwave Remote Sensing Introduction to Microwave Remote Sensing lain H. Woodhouse The University of Edinburgh Scotland Taylor & Francis Taylor & Francis Group Boca Raton London New York A CRC title, part of the Taylor & Francis

More information

INTRODUCTION TO RADAR SIGNAL PROCESSING

INTRODUCTION TO RADAR SIGNAL PROCESSING INTRODUCTION TO RADAR SIGNAL PROCESSING Christos Ilioudis University of Strathclyde c.ilioudis@strath.ac.uk Overview History of Radar Basic Principles Principles of Measurements Coherent and Doppler Processing

More information

Optical Signal Processing

Optical Signal Processing Optical Signal Processing ANTHONY VANDERLUGT North Carolina State University Raleigh, North Carolina A Wiley-Interscience Publication John Wiley & Sons, Inc. New York / Chichester / Brisbane / Toronto

More information

Radar. Seminar report. Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical

Radar.   Seminar report. Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical A Seminar report on Radar Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org Preface I have made

More information

QUESTION BANK FOR IV B.TECH II SEMESTER ( )

QUESTION BANK FOR IV B.TECH II SEMESTER ( ) DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK F IV B.TECH II SEMESTER (2018 19) MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY (Autonomous Institution UGC, Govt. of India) (Affiliated

More information

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc.

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc. Transceiver and System Design for Digital Communications Scott R. Bullock, P.E. Third Edition B SCITEQ PUBLISHtN^INC. SciTech Publishing, Inc. Raleigh, NC Contents Preface xvii About the Author xxiii Transceiver

More information

INTRODUCTION. Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems

INTRODUCTION. Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems Tracking Radar H.P INTRODUCTION Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems 2 RADAR FUNCTIONS NORMAL RADAR FUNCTIONS 1. Range (from pulse

More information

Modern Radar Systems (ATEP 01) 10 Apr Apr All rights reserved, PSATRI

Modern Radar Systems (ATEP 01) 10 Apr Apr All rights reserved, PSATRI Modern Radar Systems (ATEP 01) 10 Apr. - 14 Apr. 2016 Training Course Information: Modern Radar Systems (ATEP 01) 10 Apr. - 14 Apr. 2016 COURSE AIMS This course aims to impart an appreciation of the capabilities,

More information

Dhanalakshmi College of Engineering. Department of electronics and communication engineering. EC Radar and Navigational Aids

Dhanalakshmi College of Engineering. Department of electronics and communication engineering. EC Radar and Navigational Aids Dhanalakshmi College of Engineering Department of electronics and communication engineering EC6015 - Radar and Navigational Aids Unit I 1. What is radar? Radar is an electromagnetic system for the detection

More information

Radar Systems Engineering Lecture 15 Parameter Estimation And Tracking Part 1

Radar Systems Engineering Lecture 15 Parameter Estimation And Tracking Part 1 Radar Systems Engineering Lecture 15 Parameter Estimation And Tracking Part 1 Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course 1 Block Diagram of Radar System Transmitter Propagation Medium

More information

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Test & Measurement Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Modern radar systems serve a broad range of commercial, civil, scientific and military applications.

More information

Principles of Space- Time Adaptive Processing 3rd Edition. By Richard Klemm. The Institution of Engineering and Technology

Principles of Space- Time Adaptive Processing 3rd Edition. By Richard Klemm. The Institution of Engineering and Technology Principles of Space- Time Adaptive Processing 3rd Edition By Richard Klemm The Institution of Engineering and Technology Contents Biography Preface to the first edition Preface to the second edition Preface

More information

Lecture 3 SIGNAL PROCESSING

Lecture 3 SIGNAL PROCESSING Lecture 3 SIGNAL PROCESSING Pulse Width t Pulse Train Spectrum of Pulse Train Spacing between Spectral Lines =PRF -1/t 1/t -PRF/2 PRF/2 Maximum Doppler shift giving unambiguous results should be with in

More information

Subsystems of Radar and Signal Processing and ST Radar

Subsystems of Radar and Signal Processing and ST Radar Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 5 (2013), pp. 531-538 Research India Publications http://www.ripublication.com/aeee.htm Subsystems of Radar and Signal Processing

More information

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides Matt Young Optics and Lasers Including Fibers and Optical Waveguides Fourth Revised Edition With 188 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Microwave Remote Sensing

Microwave Remote Sensing Provide copy on a CD of the UCAR multi-media tutorial to all in class. Assign Ch-7 and Ch-9 (for two weeks) as reading material for this class. HW#4 (Due in two weeks) Problems 1,2,3 and 4 (Chapter 7)

More information

ACTIVE SENSORS RADAR

ACTIVE SENSORS RADAR ACTIVE SENSORS RADAR RADAR LiDAR: Light Detection And Ranging RADAR: RAdio Detection And Ranging SONAR: SOund Navigation And Ranging Used to image the ocean floor (produce bathymetic maps) and detect objects

More information

Electronic Warfare (EW) Principles and Overview p. 1 Electronic Warfare Taxonomy p. 6 Electronic Warfare Definitions and Areas p.

Electronic Warfare (EW) Principles and Overview p. 1 Electronic Warfare Taxonomy p. 6 Electronic Warfare Definitions and Areas p. Electronic Warfare (EW) Principles and Overview p. 1 Electronic Warfare Taxonomy p. 6 Electronic Warfare Definitions and Areas p. 6 Electronic Warfare Support Measures (ESM) p. 6 Signals Intelligence (SIGINT)

More information

Lecture Notes Prepared by Prof. J. Francis Spring Remote Sensing Instruments

Lecture Notes Prepared by Prof. J. Francis Spring Remote Sensing Instruments Lecture Notes Prepared by Prof. J. Francis Spring 2005 Remote Sensing Instruments Material from Remote Sensing Instrumentation in Weather Satellites: Systems, Data, and Environmental Applications by Rao,

More information

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing GMAT 9600 Principles of Remote Sensing Week 4 Radar Background & Surface Interactions Acknowledgment Mike Chang Natural Resources Canada Process of Atmospheric Radiation Dr. Linlin Ge and Prof Bruce Forster

More information

UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1

UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1 UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1 The ability of a radar receiver to detect a weak echo signal is limited by the noise energy that occupies the same portion of the frequency spectrum as does

More information

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target Moving Target Indicator 1 Objectives Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target velocity. Be able to

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

Basics of INTERFEROMETRY

Basics of INTERFEROMETRY Basics of INTERFEROMETRY P Hariharan CSIRO Division of Applied Sydney, Australia Physics ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers Boston San Diego New York London Sydney Tokyo Toronto

More information

Optical Delay Line Application Note

Optical Delay Line Application Note 1 Optical Delay Line Application Note 1.1 General Optical delay lines system (ODL), incorporates a high performance lasers such as DFBs, optical modulators for high operation frequencies, photodiodes,

More information

Antenna pattern. Figure 1: Antenna Gain as a function of Angle. Modulated Transmitter Antenna Modulated Transmission Target

Antenna pattern. Figure 1: Antenna Gain as a function of Angle. Modulated Transmitter Antenna Modulated Transmission Target ANGLE TRACKING Amplitude Measurement Amplitude threshold is used to determine that a target is within the beam This gives a very rough measure of the target direction (within one beamwidth) if the target

More information

The Physics of Echo. The Physics of Echo. The Physics of Echo Is there pericardial calcification? 9/30/13

The Physics of Echo. The Physics of Echo. The Physics of Echo Is there pericardial calcification? 9/30/13 Basic Ultrasound Physics Kirk Spencer MD Speaker has no disclosures to make Sound Audible range 20Khz Medical ultrasound Megahertz range Advantages of imaging with ultrasound Directed as a beam Tomographic

More information

Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A "Baseline" Monopulse Radar p.

Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A Baseline Monopulse Radar p. Preface p. xu Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A "Baseline" Monopulse Radar p. 8 Advantages and Disadvantages of Monopulse p. 17 Non-Radar

More information

FLY EYE RADAR MINE DETECTION GROUND PENETRATING RADAR ON TETHERED DRONE PASSIVE RADAR FOR SMALL UAS PASSIVE SMALL PROJECTILE TRACKING RADAR

FLY EYE RADAR MINE DETECTION GROUND PENETRATING RADAR ON TETHERED DRONE PASSIVE RADAR FOR SMALL UAS PASSIVE SMALL PROJECTILE TRACKING RADAR PASSIVE RADAR FOR SMALL UAS PLANAR MONOLITHICS INDUSTRIES, INC. East Coast: 7311F GROVE ROAD, FREDERICK, MD 21704 USA PHONE: 301-662-5019 FAX: 301-662-2029 West Coast: 4921 ROBERT J. MATHEWS PARKWAY, SUITE

More information

Physics of Ultrasound Ultrasound Imaging and Artifacts รศ.นพ.เดโช จ กราพาน ชก ล สาขาหท ยว ทยา, ภาคว ชาอาย รศาสตร คณะแพทยศาสตร ศ ร ราชพยาบาล

Physics of Ultrasound Ultrasound Imaging and Artifacts รศ.นพ.เดโช จ กราพาน ชก ล สาขาหท ยว ทยา, ภาคว ชาอาย รศาสตร คณะแพทยศาสตร ศ ร ราชพยาบาล Physics of Ultrasound Ultrasound Imaging and Artifacts รศ.นพ.เดโช จ กราพาน ชก ล สาขาหท ยว ทยา, ภาคว ชาอาย รศาสตร คณะแพทยศาสตร ศ ร ราชพยาบาล Diagnosis TTE TEE ICE 3D 4D Evaluation of Cardiac Anatomy Hemodynamic

More information

Boost Your Skills with On-Site Courses Tailored to Your Needs

Boost Your Skills with On-Site Courses Tailored to Your Needs Boost Your Skills with On-Site Courses Tailored to Your Needs www.aticourses.com The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current

More information

RF AND MICROWAVE ENGINEERING

RF AND MICROWAVE ENGINEERING RF AND MICROWAVE ENGINEERING FUNDAMENTALS OF WIRELESS COMMUNICATIONS Frank Gustrau Dortmund University of Applied Sciences and Arts, Germany WILEY A John Wiley & Sons, Ltd., Publication Preface List of

More information

VHF Radar Target Detection in the Presence of Clutter *

VHF Radar Target Detection in the Presence of Clutter * BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6, No 1 Sofia 2006 VHF Radar Target Detection in the Presence of Clutter * Boriana Vassileva Institute for Parallel Processing,

More information

Electronic Warfare Receivers. and Receiving Systems. Richard A. Poisel ARTECH HOUSE BOSTON LONDON. artechhouse.com

Electronic Warfare Receivers. and Receiving Systems. Richard A. Poisel ARTECH HOUSE BOSTON LONDON. artechhouse.com Electronic Warfare Receivers and Receiving Systems Richard A. Poisel ARTECH HOUSE BOSTON LONDON artechhouse.com Table of Contents Preface Chapter 1 Receiving Systems and Receiving System Architectures

More information

Phased Array Antennas

Phased Array Antennas Phased Array Antennas Second Edition R. С HANSEN Consulting Engineer R. C. Hansen, Inc. www.rchansen.com WILEY A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface to the First Edition Preface to the

More information

UNCLASSIFIED. UNCLASSIFIED R-1 Line Item #13 Page 1 of 11

UNCLASSIFIED. UNCLASSIFIED R-1 Line Item #13 Page 1 of 11 Exhibit R-2, PB 2010 Air Force RDT&E Budget Item Justification DATE: May 2009 Applied Research COST ($ in Millions) FY 2008 Actual FY 2009 FY 2010 FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 Cost To Complete

More information

ATS 351 Lecture 9 Radar

ATS 351 Lecture 9 Radar ATS 351 Lecture 9 Radar Radio Waves Electromagnetic Waves Consist of an electric field and a magnetic field Polarization: describes the orientation of the electric field. 1 Remote Sensing Passive vs Active

More information

Index 275. K Ka-band, 250, 259 Knowledge-based concepts, 110

Index 275. K Ka-band, 250, 259 Knowledge-based concepts, 110 Index A Acquisition planning, 225 Across-track, 30, 41, 88, 90 93 Across-track interferometry, 30 Along-track, 3, 10, 19, 41, 88, 90, 91, 93, 94, 103 Along-track interferometry, 41 Ambiguous elevation

More information

3. give specific seminars on topics related to assigned drill problems

3. give specific seminars on topics related to assigned drill problems HIGH RESOLUTION AND IMAGING RADAR 1. Prerequisites Basic knowledge of radar principles. Good background in Mathematics and Physics. Basic knowledge of MATLAB programming. 2. Course format and dates The

More information

White paper on SP25 millimeter wave radar

White paper on SP25 millimeter wave radar White paper on SP25 millimeter wave radar Hunan Nanoradar Science and Technology Co.,Ltd. Version history Date Version Version description 2016-08-22 1.0 the 1 st version of white paper on SP25 Contents

More information

Introduction Objective and Scope p. 1 Generic Requirements p. 2 Basic Requirements p. 3 Surveillance System p. 3 Content of the Book p.

Introduction Objective and Scope p. 1 Generic Requirements p. 2 Basic Requirements p. 3 Surveillance System p. 3 Content of the Book p. Preface p. xi Acknowledgments p. xvii Introduction Objective and Scope p. 1 Generic Requirements p. 2 Basic Requirements p. 3 Surveillance System p. 3 Content of the Book p. 4 References p. 6 Maritime

More information

MAKING TRANSIENT ANTENNA MEASUREMENTS

MAKING TRANSIENT ANTENNA MEASUREMENTS MAKING TRANSIENT ANTENNA MEASUREMENTS Roger Dygert, Steven R. Nichols MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 ABSTRACT In addition to steady state performance, antennas

More information

RADAR CHAPTER 3 RADAR

RADAR CHAPTER 3 RADAR RADAR CHAPTER 3 RADAR RDF becomes Radar 1. As World War II approached, scientists and the military were keen to find a method of detecting aircraft outside the normal range of eyes and ears. They found

More information

Kadi Sarva Vishwavidyalaya Gandhinagar

Kadi Sarva Vishwavidyalaya Gandhinagar A. Course Objective: The educational objectives of this course are B.E Semester: 8 Electronics & Communication Engineering Subject Name: Radar and Navigational Aids Subject Code : EC-802-B( E P II) To

More information

Receiver Design for Passive Millimeter Wave (PMMW) Imaging

Receiver Design for Passive Millimeter Wave (PMMW) Imaging Introduction Receiver Design for Passive Millimeter Wave (PMMW) Imaging Millimeter Wave Systems, LLC Passive Millimeter Wave (PMMW) sensors are used for remote sensing and security applications. They rely

More information

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2)

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2) Remote Sensing Ch. 3 Microwaves (Part 1 of 2) 3.1 Introduction 3.2 Radar Basics 3.3 Viewing Geometry and Spatial Resolution 3.4 Radar Image Distortions 3.1 Introduction Microwave (1cm to 1m in wavelength)

More information

Lecture 1 INTRODUCTION. Dr. Aamer Iqbal Bhatti. Radar Signal Processing 1. Dr. Aamer Iqbal Bhatti

Lecture 1 INTRODUCTION. Dr. Aamer Iqbal Bhatti. Radar Signal Processing 1. Dr. Aamer Iqbal Bhatti Lecture 1 INTRODUCTION 1 Radar Introduction. A brief history. Simplified Radar Block Diagram. Two basic Radar Types. Radar Wave Modulation. 2 RADAR The term radar is an acronym for the phrase RAdio Detection

More information

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti Lecture 6 SIGNAL PROCESSING Signal Reception Receiver Bandwidth Pulse Shape Power Relation Beam Width Pulse Repetition Frequency Antenna Gain Radar Cross Section of Target. Signal-to-noise ratio Receiver

More information

Mobile-to-Mobile Wireless Channels

Mobile-to-Mobile Wireless Channels Mobile-to-Mobile Wireless Channels Alenka Zajic ARTECH HOUSE BOSTON LONDON artechhouse.com Contents PREFACE xi ma Inroduction 1 1.1 Mobile-to-Mobile Communication Systems 2 1.1.1 Vehicle-to-Vehicle Communication

More information

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging Medical Imaging X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging From: Physics for the IB Diploma Coursebook 6th Edition by Tsokos, Hoeben and Headlee And Higher Level Physics 2 nd Edition

More information

Comparison of Two Detection Combination Algorithms for Phased Array Radars

Comparison of Two Detection Combination Algorithms for Phased Array Radars Comparison of Two Detection Combination Algorithms for Phased Array Radars Zhen Ding and Peter Moo Wide Area Surveillance Radar Group Radar Sensing and Exploitation Section Defence R&D Canada Ottawa, Canada

More information

Ultrasound Bioinstrumentation. Topic 2 (lecture 3) Beamforming

Ultrasound Bioinstrumentation. Topic 2 (lecture 3) Beamforming Ultrasound Bioinstrumentation Topic 2 (lecture 3) Beamforming Angular Spectrum 2D Fourier transform of aperture Angular spectrum Propagation of Angular Spectrum Propagation as a Linear Spatial Filter Free

More information

Radar level measurement - The users guide

Radar level measurement - The users guide Radar level measurement The user's guide Radar level measurement - The users guide Peter Devine written by Peter Devine additional information Karl Grießbaum type setting and layout Liz Moakes final drawings

More information

INTRODUCTION TO RF PROPAGATION

INTRODUCTION TO RF PROPAGATION INTRODUCTION TO RF PROPAGATION John S. Seybold, Ph.D.,WILEY- 'interscience JOHN WILEY & SONS, INC. Preface XIII 1. Introduction 1.1 Frequency Designations 1 1.2 Modes of Propagation 3 1.2.1 Line-of-Sight

More information

Special Projects Office. Mr. Lee R. Moyer Special Projects Office. DARPATech September 2000

Special Projects Office. Mr. Lee R. Moyer Special Projects Office. DARPATech September 2000 Mr. Lee R. Moyer DARPATech 2000 6-8 September 2000 1 CC&D Tactics Pose A Challenge to U.S. Targeting Systems The Challenge: Camouflage, Concealment and Deception techniques include: Masking: Foliage cover,

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

SODAR- sonic detecting and ranging

SODAR- sonic detecting and ranging Active Remote Sensing of the PBL Immersed vs. remote sensors Active vs. passive sensors RADAR- radio detection and ranging WSR-88D TDWR wind profiler SODAR- sonic detecting and ranging minisodar RASS RADAR

More information

A bluffer s guide to Radar

A bluffer s guide to Radar A bluffer s guide to Radar Andy French December 2009 We may produce at will, from a sending station, an electrical effect in any particular region of the globe; (with which) we may determine the relative

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

SATELLITE OCEANOGRAPHY

SATELLITE OCEANOGRAPHY SATELLITE OCEANOGRAPHY An Introduction for Oceanographers and Remote-sensing Scientists I. S. Robinson Lecturer in Physical Oceanography Department of Oceanography University of Southampton JOHN WILEY

More information

Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield?

Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield? Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield? By Sefa Tanis Share on As automotive radars become more widespread, the heavily occupied RF spectrum will resemble

More information

Synthetic Aperture Radar

Synthetic Aperture Radar Synthetic Aperture Radar Picture 1: Radar silhouette of a ship, produced with the ISAR-Processor of the Ocean Master A Synthetic Aperture Radar (SAR), or SAR, is a coherent mostly airborne or spaceborne

More information

This article reports on

This article reports on Millimeter-Wave FMCW Radar Transceiver/Antenna for Automotive Applications A summary of the design and performance of a 77 GHz radar unit David D. Li, Sam C. Luo and Robert M. Knox Epsilon Lambda Electronics

More information

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003 Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry 28 April 2003 Outline Passive Microwave Radiometry Rayleigh-Jeans approximation Brightness temperature Emissivity and dielectric constant

More information

Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and

Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and optics p. 4 Communication systems p. 6 Radar systems p.

More information

Systems. Advanced Radar. Waveform Design and Diversity for. Fulvio Gini, Antonio De Maio and Lee Patton. Edited by

Systems. Advanced Radar. Waveform Design and Diversity for. Fulvio Gini, Antonio De Maio and Lee Patton. Edited by Waveform Design and Diversity for Advanced Radar Systems Edited by Fulvio Gini, Antonio De Maio and Lee Patton The Institution of Engineering and Technology Contents Waveform diversity: a way forward to

More information

Understanding GPS/GNSS

Understanding GPS/GNSS Understanding GPS/GNSS Principles and Applications Third Edition Contents Preface to the Third Edition Third Edition Acknowledgments xix xxi CHAPTER 1 Introduction 1 1.1 Introduction 1 1.2 GNSS Overview

More information

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J.

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J. PRINCIPLES OF RADAR By Members of the Staff of the Radar School Massachusetts Institute of Technology Third Edition by J. Francis Reintjes ASSISTANT PBOFESSOR OF COMMUNICATIONS MASSACHUSETTS INSTITUTE

More information

remote sensing? What are the remote sensing principles behind these Definition

remote sensing? What are the remote sensing principles behind these Definition Introduction to remote sensing: Content (1/2) Definition: photogrammetry and remote sensing (PRS) Radiation sources: solar radiation (passive optical RS) earth emission (passive microwave or thermal infrared

More information

HiFi Radar Target. Kristian Karlsson (RISE)

HiFi Radar Target. Kristian Karlsson (RISE) HiFi Radar Target Kristian Karlsson (RISE) Outline HiFi Radar Target: Overview Background & goals Radar introduction RCS measurements: Setups Uncertainty contributions (ground reflection) Back scattering

More information

Wave Field Analysis Using Virtual Circular Microphone Arrays

Wave Field Analysis Using Virtual Circular Microphone Arrays **i Achim Kuntz таг] Ш 5 Wave Field Analysis Using Virtual Circular Microphone Arrays га [W] та Contents Abstract Zusammenfassung v vii 1 Introduction l 2 Multidimensional Signals and Wave Fields 9 2.1

More information

Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections Xiaoli Sun and James B. Abshire NASA Goddard Space Flight Center Solar System Division,

More information

A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR

A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR Progress In Electromagnetics Research, PIER 66, 229 237, 2006 A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR A. Kr. Singh, P. Kumar, T. Chakravarty, G. Singh and S. Bhooshan

More information

Sonic Distance Sensors

Sonic Distance Sensors Sonic Distance Sensors Introduction - Sound is transmitted through the propagation of pressure in the air. - The speed of sound in the air is normally 331m/sec at 0 o C. - Two of the important characteristics

More information

MODULE 9 LECTURE NOTES 1 PASSIVE MICROWAVE REMOTE SENSING

MODULE 9 LECTURE NOTES 1 PASSIVE MICROWAVE REMOTE SENSING MODULE 9 LECTURE NOTES 1 PASSIVE MICROWAVE REMOTE SENSING 1. Introduction The microwave portion of the electromagnetic spectrum involves wavelengths within a range of 1 mm to 1 m. Microwaves possess all

More information

RADAR (RAdio Detection And Ranging)

RADAR (RAdio Detection And Ranging) RADAR (RAdio Detection And Ranging) CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE Real

More information

Radar Imaging Wavelengths

Radar Imaging Wavelengths A Basic Introduction to Radar Remote Sensing ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland, Oregon 3 November 2015 Radar Imaging

More information

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR 3 nd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry POLinSAR 2007 January 25, 2007 ESA/ESRIN Frascati, Italy MULTI-CHANNEL SAR EXPERIMENTS FROM THE

More information

Sensing. Autonomous systems. Properties. Classification. Key requirement of autonomous systems. An AS should be connected to the outside world.

Sensing. Autonomous systems. Properties. Classification. Key requirement of autonomous systems. An AS should be connected to the outside world. Sensing Key requirement of autonomous systems. An AS should be connected to the outside world. Autonomous systems Convert a physical value to an electrical value. From temperature, humidity, light, to

More information

746A27 Remote Sensing and GIS

746A27 Remote Sensing and GIS 746A27 Remote Sensing and GIS Lecture 1 Concepts of remote sensing and Basic principle of Photogrammetry Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University What

More information

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April ISSN Modern Radar Signal Processor

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April ISSN Modern Radar Signal Processor International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 12 Modern Radar Signal Processor Dr. K K Sharma Assoc Prof, Department of Electronics & Communication, Lingaya

More information

Remote Sensing 1 Principles of visible and radar remote sensing & sensors

Remote Sensing 1 Principles of visible and radar remote sensing & sensors Remote Sensing 1 Principles of visible and radar remote sensing & sensors Nick Barrand School of Geography, Earth & Environmental Sciences University of Birmingham, UK Field glaciologist collecting data

More information

(Refer Slide Time: 2:45)

(Refer Slide Time: 2:45) Millimeter Wave Technology. Professor Minal Kanti Mandal. Department of Electronics and Electrical Communication Engineering. Indian Institute of Technology, Kharagpur. Lecture-01. Introduction to Millimeter-Wave

More information

Ambiguity Function Analysis of SFCW and Comparison of Impulse GPR and SFCW GPR

Ambiguity Function Analysis of SFCW and Comparison of Impulse GPR and SFCW GPR Ambiguity Function Analysis of SFCW and Comparison of Impulse GPR and SFCW GPR Shrikant Sharma, Paramananda Jena, Ramchandra Kuloor Electronics and Radar Development Establishment (LRDE), Defence Research

More information

Basics of INTERFEROMETRY

Basics of INTERFEROMETRY Basics of INTERFEROMETRY Second Edition P. HARIHARAN School ofphysics, Sydney, Australia University of Sydney CPi AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE

More information

Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering

Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering Second Edition Peter Russer ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xvii Chapter 1 Introduction

More information

1. INTRODUCTION ABSTRACT

1. INTRODUCTION ABSTRACT Handheld microwave bomb-detecting imaging system Ashok Gorwara*, Pavlo Molchanov Planar Monolithics Industries Inc. 7311-F Grove Road, Frederick, MD USA 21704 ABSTRACT Proposed novel imaging technique

More information

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction Radar, SAR, InSAR; a first introduction Ramon Hanssen Delft University of Technology The Netherlands r.f.hanssen@tudelft.nl Charles University in Prague Contents Radar background and fundamentals Imaging

More information

«Integrated Air Defence Systems - Countering Low Observable Airborne Threats»

«Integrated Air Defence Systems - Countering Low Observable Airborne Threats» Cranfield University Alumni Event and Defence Education Conference «Integrated Air Defence Systems - Countering Low Observable Airborne Threats» JUNE 2017 World War I Battle of Britain Scramble Dogfight

More information

LE/ESSE Payload Design

LE/ESSE Payload Design LE/ESSE4360 - Payload Design 3.2 Spacecraft Sensors Introduction to Sensors Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Professor of Space Engineering Department of Earth and Space Science and Engineering

More information

A new Sensor for the detection of low-flying small targets and small boats in a cluttered environment

A new Sensor for the detection of low-flying small targets and small boats in a cluttered environment UNCLASSIFIED /UNLIMITED Mr. Joachim Flacke and Mr. Ryszard Bil EADS Defence & Security Defence Electronics Naval Radar Systems (OPES25) Woerthstr 85 89077 Ulm Germany joachim.flacke@eads.com / ryszard.bil@eads.com

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION Spatial resolution in ultrasonic imaging is one of many parameters that impact image quality. Therefore, mechanisms to improve system spatial resolution could result in improved

More information