The Physics of Echo. The Physics of Echo. The Physics of Echo Is there pericardial calcification? 9/30/13

Size: px
Start display at page:

Download "The Physics of Echo. The Physics of Echo. The Physics of Echo Is there pericardial calcification? 9/30/13"

Transcription

1 Basic Ultrasound Physics Kirk Spencer MD Speaker has no disclosures to make Sound Audible range 20Khz Medical ultrasound Megahertz range Advantages of imaging with ultrasound Directed as a beam Tomographic Reflected from small objects Non-ionizing Disadvantages Propagates poorly through air Penetration poor (attenuation) λ = wavelength = v/f v= velocity f = frequency cycle Velocity of sound α density and temperature 1,540 m/sec soft tissue Frequency 3.5 MHz (1-7 MHz) λ = (1,540 m/sec)/(3.5 MHz) = 0.44 mm 1

2 Scattering echoes originating from relatively small, weakly reflective, irregularly shaped objects object size > λ/4 not angle dependant inefficient Reflection echoes originating from relatively large, regularly shaped objects with smooth surfaces objects large α wavelength angle dependant valve, endocardium, pericardium Is there pericardial calcification? 2

3 Resolution: Lateral resolution - the ability to resolve objects side by side Structures must be separated by more than the width of the ultrasound beam to be distinguished as separate Transducer size (larger better) Frequency (higher better) Focusing Gain (lower better) Beam width Low gain Medium gain High gain Resolution: Axial Resolution - Axial resolution is the ability to resolve objects that lie along the path of the ultrasound beam Related to frequency of transducer and pulse duration In practical terms, axial resolution is roughly twice the wavelength Frequency Wavelength 2.2 MHz 0.68 mm 3.5 MHz 0.43 mm 5.0 MHz 0.3 mm 3

4 Axial resolution vs penetration frequency leads to better resolution Penetration wavelength (1/ frequency) More scattering (more reflection by smaller scatterers) More attenuation Penetration Resolution Attenuation Loss of ultrasound energy as it passes through tissue (scattering and absorption) half-power (cm) Water 380 Blood 15 Soft tissue 1-5 Muscle Bone Air 0.08 Resolution vs penetration frequency leads to better resolution Penetration wavelength (1/frequency) Use the highest frequency probe that gives you an adequate image 2.5 Mhz MHz 4

5 Permanently-polarized material such as quartz (SiO2) will produce an electric field when the material changes dimensions as a result of an imposed mechanical force. These materials are piezoelectric, and this phenomenon is known as the piezoelectric effect. Conversely, an applied electric field can cause a piezoelectric material to change dimensions. This phenomenon is known as electrostriction, or the reverse piezoelectric effect This shape deformation creates ultrasound waveforms Scanning Mechanical transducers Rotating multiple elements, or a single element and set of acoustic mirrors to generate the sweeping beam for 2D imaging Electronic / array transducers Have the ability to be steered by sequentially stimulating each element. This feature creates the sector scan by rapidly steering the beam from left to right to give the two dimensional cross sectional image. 5

6 Electronic / array transducers Linear array Sequential firing or array elements moves beam linearly Require large acoustic window Creates a linear or rectangular shaped scan plane Electronic / array transducers Phased array Phased control of array firing controls beam direction (and thus scan line) Creates a sector or pie shaped scan plane. Imaging Electrical stimulate piezoelectric crystal which sends ultrasound pulse 0.4 µsec Transducer then listens for returning ultrasound signals Transducer listens 99 percent of time, which increases sensitivity 1-2 µsec 6

7 Modes: A Mode - amplitude mode. Where the signals are displayed as spikes that are dependent on the amplitude of the returning sound energy. B Mode - brightness mode. Where the signals are displayed as various points whose brightness depends on the amplitude of the returning sound energy. Modes: M Mode - motion mode. The application of B-mode and a strip chart recorder allows visualization of the structures as a function of depth and time. Modes: 2D Mode - 2 dimensional mode. The spatially oriented B-mode where structures are seen as a function of depth and width. The beam is rapidly swept back and forth to create a cross section of the imaged structures. 7

8 Shadowing The loss of information behind an object because the sound energy was reflected back by the object such that no signal passes beyond it Bone, metal valve, air Artifacts - sidelobe Ultrasound reflections off real objects, but from the ultrasound beam sidelobes, not the central beam Occurs because ultrasound beam has width to it Worse when gain is high Is there a catheter in RA? 8

9 Artifacts - reverberations Multipath artifacts Sound bounces back and forth between two interfaces. This prolongs the time of flight, producing an artifact deep to the interface. Artifacts - reverberation Results from ultrasound strikes a target composed of several highly reflective interfaces Appear as relatively parallel irregular bright lines extending from the structure Artifacts - reverberation Appears as a linear brightness in the direction of the sound beam and deep to a strong reflector Results from multiple back and forth reflections Appear as relatively parallel irregular bright lines extending from the structure 9

10 Harmonics Depth Mechanical Index Triggering Compression Frame rate Focus PRF Transducer frequency Packet size Gain Post-processing Grayscale / power Doppler Overall gain Increases the intensity of received echoes Makes image brighter Depth Use the least depth that fits the structure of interest on the screen 10

11 Nonlinear distortion of ultrasound Amplitude Fundamental Amplitude Fundamental Harmonics Frequency Frequency Harmonic imaging Lateral resolution Smaller harmonic beam width Clutter reduction Sidelobe levels decrease with increasing harmonic number Near field artifact reduction Amplitude On-Axis Reflectors Off-Axis Reflectors Fund Harm Frequency MHz Doppler Effect Christian Johann Doppler 1842 If a source of sound is stationary, the wavelength and frequency of sound emanating from the source are constant If a source of sound is moving toward you, it s wavelength is decreasing (frequency increasing) If a source of sound is moving away from you, it s wavelength is increasing (frequency decreasing ) 11

12 Dependence on angle between scatter and incident ultrasound beam Doppler echocardiography Continuous wave Separate transmit and receive transducer Continuously receiving No maximal velocity limit Range is ambiguous 12

13 Doppler echocardiography Continuous wave Doppler echocardiography Pulsed wave Range gated Doppler Inability to detect high frequency Doppler shifts Inability to detect high velocities 13

14 Doppler echocardiography Color Doppler Multiple pulsed Doppler samples along each scan line Doppler echocardiography Color Doppler Velocities colored coded Blue- away, Red - toward 14

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound Ultrasound Physics History: Ultrasound Ultrasound 1942: Dr. Karl Theodore Dussik transmission ultrasound investigation of the brain 1949-51: Holmes and Howry subject submerged in water tank to achieve

More information

Physics of Ultrasound Ultrasound Imaging and Artifacts รศ.นพ.เดโช จ กราพาน ชก ล สาขาหท ยว ทยา, ภาคว ชาอาย รศาสตร คณะแพทยศาสตร ศ ร ราชพยาบาล

Physics of Ultrasound Ultrasound Imaging and Artifacts รศ.นพ.เดโช จ กราพาน ชก ล สาขาหท ยว ทยา, ภาคว ชาอาย รศาสตร คณะแพทยศาสตร ศ ร ราชพยาบาล Physics of Ultrasound Ultrasound Imaging and Artifacts รศ.นพ.เดโช จ กราพาน ชก ล สาขาหท ยว ทยา, ภาคว ชาอาย รศาสตร คณะแพทยศาสตร ศ ร ราชพยาบาล Diagnosis TTE TEE ICE 3D 4D Evaluation of Cardiac Anatomy Hemodynamic

More information

12/26/2017. Alberto Ardon M.D.

12/26/2017. Alberto Ardon M.D. Alberto Ardon M.D. 1 Preparatory Work Ultrasound Physics http://www.nysora.com/mobile/regionalanesthesia/foundations-of-us-guided-nerve-blockstechniques/index.1.html Basic Ultrasound Handling https://www.youtube.com/watch?v=q2otukhrruc

More information

The physics of ultrasound. Dr Graeme Taylor Guy s & St Thomas NHS Trust

The physics of ultrasound. Dr Graeme Taylor Guy s & St Thomas NHS Trust The physics of ultrasound Dr Graeme Taylor Guy s & St Thomas NHS Trust Physics & Instrumentation Modern ultrasound equipment is continually evolving This talk will cover the basics What will be covered?

More information

Lesson 06: Pulse-echo Imaging and Display Modes. These lessons contain 26 slides plus 15 multiple-choice questions.

Lesson 06: Pulse-echo Imaging and Display Modes. These lessons contain 26 slides plus 15 multiple-choice questions. Lesson 06: Pulse-echo Imaging and Display Modes These lessons contain 26 slides plus 15 multiple-choice questions. These lesson were derived from pages 26 through 32 in the textbook: ULTRASOUND IMAGING

More information

Lesson 02: Sound Wave Production. This lesson contains 24 slides plus 11 multiple-choice questions.

Lesson 02: Sound Wave Production. This lesson contains 24 slides plus 11 multiple-choice questions. Lesson 02: Sound Wave Production This lesson contains 24 slides plus 11 multiple-choice questions. Accompanying text for the slides in this lesson can be found on pages 2 through 7 in the textbook: ULTRASOUND

More information

Optimisation of Image Acquisition Bordeaux 16th November J.S. McGhie W.B. Vletter R. Frowijn No disclosures

Optimisation of Image Acquisition Bordeaux 16th November J.S. McGhie W.B. Vletter R. Frowijn No disclosures Optimisation of Image Acquisition Bordeaux 16th November 2016 J.S. McGhie W.B. Vletter R. Frowijn No disclosures Image optimisation: The Echo machine It looks difficult to drive an echo machine!! Some

More information

Sonic Distance Sensors

Sonic Distance Sensors Sonic Distance Sensors Introduction - Sound is transmitted through the propagation of pressure in the air. - The speed of sound in the air is normally 331m/sec at 0 o C. - Two of the important characteristics

More information

Chapter 4. Pulse Echo Imaging. where: d = distance v = velocity t = time

Chapter 4. Pulse Echo Imaging. where: d = distance v = velocity t = time Chapter 4 Pulse Echo Imaging Ultrasound imaging systems are based on the principle of pulse echo imaging. These systems require the use of short pulses of ultrasound to create two-dimensional, sectional

More information

Physics of ultrasound

Physics of ultrasound 1 Physics of ultrasound Basic principles Nature of ultrasound Sound = longitudinal, mechanical wave particles move parallel to direction of travel Audible sound < 20 khz Ultrasound > 20 khz Sound cannot

More information

Artifacts. Artifacts. Causes. Imaging assumptions. Common terms used to describe US images. Common terms used to describe US images

Artifacts. Artifacts. Causes. Imaging assumptions. Common terms used to describe US images. Common terms used to describe US images Artifacts Artifacts Chapter 20 What are they? Simply put they are an error in imaging These artifacts include reflections that are: not real incorrect shape, size or position incorrect brightness displayed

More information

Lesson 06: Pulse-echo Imaging and Display Modes. This lesson contains 22 slides plus 15 multiple-choice questions.

Lesson 06: Pulse-echo Imaging and Display Modes. This lesson contains 22 slides plus 15 multiple-choice questions. Lesson 06: Pulse-echo Imaging and Display Modes This lesson contains 22 slides plus 15 multiple-choice questions. Accompanying text for the slides in this lesson can be found on pages 26 through 32 in

More information

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging Medical Imaging X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging From: Physics for the IB Diploma Coursebook 6th Edition by Tsokos, Hoeben and Headlee And Higher Level Physics 2 nd Edition

More information

Ultrasound Beamforming and Image Formation. Jeremy J. Dahl

Ultrasound Beamforming and Image Formation. Jeremy J. Dahl Ultrasound Beamforming and Image Formation Jeremy J. Dahl Overview Ultrasound Concepts Beamforming Image Formation Absorption and TGC Advanced Beamforming Techniques Synthetic Receive Aperture Parallel

More information

Ultrasound & Artifacts

Ultrasound & Artifacts ISSN 2005-7881 Journal of Neurosonology 3(Suppl. 2):1-17, 2011 Ultrasound & Artifacts Siryung Han The Catholic University of Korea Artifacts False image- echoes without anatomic correlate US image dose

More information

3. Ultrasound Imaging(2)

3. Ultrasound Imaging(2) 3. Ultrasound Imaging(2) Lecture 13, 14 Medical Imaging Systems Jae Gwan Kim, Ph.D. jaekim@gist.ac.kr, X 2220 Department of BioMedical Science and Engineering Gwangju Institute of Sciences and Technology

More information

Ultrasound Imaging Ultr Michael Dadd 2007

Ultrasound Imaging Ultr Michael Dadd 2007 Ultrasound Imaging Ultrasound Physics & Instrumentation - Recommended Reading 1. Diagnostic Ultrasound: Principles and Instruments (7th Ed) Frederick W Kremkau W B Saunders Company 2. Applied Physics &

More information

INTRODUCTION. Have applications for imaging, detection and navigation.

INTRODUCTION. Have applications for imaging, detection and navigation. ULTRASONICS INTRODUCTION The word ultrasonic combines the Latin roots ultra - beyond sonic - sound. Having frequencies above the audible range i.e. above 20000Hz Have applications for imaging, detection

More information

Physics of Ultrasound & Doppler. Sang Jae Rhee. MD., PhD. Division of Cardiovascular Medicine Wonkwang University Hospital

Physics of Ultrasound & Doppler. Sang Jae Rhee. MD., PhD. Division of Cardiovascular Medicine Wonkwang University Hospital Physics of Ultrasound & Doppler Sang Jae Rhee. MD., PhD. Division of Cardiovascular Medicine Wonkwang University Hospital Classification of Sound Infrasound Audible sound Ultrasound < 20 Hz 20-20,000 Hz

More information

Principles of Ultrasound Imaging Image Optimization

Principles of Ultrasound Imaging Image Optimization Principles of Ultrasound Imaging Image Optimization Robert A. Levine, MD, FACE, ECNU Thyroid Center of New Hampshire Geisel School of Medicine at Dartmouth College Disclosures: No relevant financial or

More information

Ultrasonic Linear Array Medical Imaging System

Ultrasonic Linear Array Medical Imaging System Ultrasonic Linear Array Medical Imaging System R. K. Saha, S. Karmakar, S. Saha, M. Roy, S. Sarkar and S.K. Sen Microelectronics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064.

More information

Key Physics and Doppler Principles

Key Physics and Doppler Principles Key Physics and Doppler Principles Robert A. Levine, MD, FACE, ECNU Thyroid Center of New Hampshire Geisel School of Medicine at Dartmouth College AACE/ACE Advanced Neck Ultrasound Training Course Disclosures:

More information

Lesson 12: Doppler Principles. This lesson contains 50 slides plus 26 multiple-choice questions.

Lesson 12: Doppler Principles. This lesson contains 50 slides plus 26 multiple-choice questions. Lesson 12: Doppler Principles This lesson contains 50 slides plus 26 multiple-choice questions. Accompanying text for the slides in this lesson can be found on pages 59 through 80 in the textbook: DOPPLER

More information

Biomedical. Measurement and Design ELEC4623/ELEC9734. Electrical Safety and Performance Standards

Biomedical. Measurement and Design ELEC4623/ELEC9734. Electrical Safety and Performance Standards Biomedical Instrumentation, Measurement and Design ELEC4623/ELEC9734 Electrical Safety and Performance Standards Contents Physiological Effects of Electrical Currents Safety Standards for Medical Instrumentation

More information

Answer: TGC is needed to amplify echoes from deeper structures so that they appear as bright as similar structures located at more shallow depths.

Answer: TGC is needed to amplify echoes from deeper structures so that they appear as bright as similar structures located at more shallow depths. Q47. When performing a sonogram why the sonographer needs to use the TGC? TGC is needed to amplify echoes from deeper structures so that they appear as bright as similar structures located at more shallow

More information

Interaction of Sound and. logarithms. Logarithms continued. Decibels (db) Decibels (db) continued. Interaction of Sound and Media continued

Interaction of Sound and. logarithms. Logarithms continued. Decibels (db) Decibels (db) continued. Interaction of Sound and Media continued Interaction of Sound and Media continued Interaction of Sound and Media Chapter 6 As sound travels through a media and interacts with normal anatomical structures its intensity weakens through what is

More information

SODAR- sonic detecting and ranging

SODAR- sonic detecting and ranging Active Remote Sensing of the PBL Immersed vs. remote sensors Active vs. passive sensors RADAR- radio detection and ranging WSR-88D TDWR wind profiler SODAR- sonic detecting and ranging minisodar RASS RADAR

More information

Fig. 1

Fig. 1 PhysicsAndMathsTutor.com 1 1. Fig. 1 shows data for the intensity of a parallel beam of X-rays after penetration through varying thicknesses of a material. intensity / MW m 2 thickness / mm 0.91 0.40 0.69

More information

Explain what is meant by a photon and state one of its main properties [2]

Explain what is meant by a photon and state one of its main properties [2] 1 (a) A patient has an X-ray scan taken in hospital. The high-energy X-ray photons interact with the atoms inside the body of the patient. Explain what is meant by a photon and state one of its main properties....

More information

Medical Imaging (EL582/BE620/GA4426)

Medical Imaging (EL582/BE620/GA4426) Medical Imaging (EL582/BE620/GA4426) Jonathan Mamou, PhD Riverside Research Lizzi Center for Biomedical Engineering New York, NY jmamou@riversideresearch.org On behalf of Prof. Daniel Turnbull Outline

More information

Introduction to Ultrasound Physics

Introduction to Ultrasound Physics Introduction to Ultrasound Physics Vassilis Sboros Medical Physics and Cardiovascular Sciences University of Edinburgh Transverse waves Water remains in position Disturbance traverse producing more wave

More information

4 Working With Scan Modes

4 Working With Scan Modes 4 Working With Scan Modes Scan Modes Overview All of the information in this chapter pertains to live imaging. Many of the controls and functions change when you freeze the scan. For information on using

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION Spatial resolution in ultrasonic imaging is one of many parameters that impact image quality. Therefore, mechanisms to improve system spatial resolution could result in improved

More information

Ultrasound Bioinstrumentation. Topic 2 (lecture 3) Beamforming

Ultrasound Bioinstrumentation. Topic 2 (lecture 3) Beamforming Ultrasound Bioinstrumentation Topic 2 (lecture 3) Beamforming Angular Spectrum 2D Fourier transform of aperture Angular spectrum Propagation of Angular Spectrum Propagation as a Linear Spatial Filter Free

More information

Image Optimization: The Sonographer s Responsibility. Prepared by Cathy Daniels, EdD, RTR, RDMS, RDCS, RVT

Image Optimization: The Sonographer s Responsibility. Prepared by Cathy Daniels, EdD, RTR, RDMS, RDCS, RVT Image Optimization: The Sonographer s Responsibility Prepared by Cathy Daniels, EdD, RTR, RDMS, RDCS, RVT Image Optimization: The Sonographer s Responsibility Cathy Daniels, EdD, RTR, RDMS, RDCS, RVT Disclosure

More information

Introduction to Medical Engineering (Medical Imaging) Ultrasound Imaging. Ho Kyung Kim Pusan National University

Introduction to Medical Engineering (Medical Imaging) Ultrasound Imaging. Ho Kyung Kim Pusan National University Introduction to Medical Engineering (Medical Imaging) Suetens 6 Ultrasound Imaging Ho Kyung Kim Pusan National University Sound Sonic: 20 Hz 20 khz (audible frequency) Subsonic () Ultrasound

More information

Photomultiplier Tube

Photomultiplier Tube Nuclear Medicine Uses a device known as a Gamma Camera. Also known as a Scintillation or Anger Camera. Detects the release of gamma rays from Radionuclide. The radionuclide can be injected, inhaled or

More information

EMBEDDED DOPPLER ULTRASOUND SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE ARRAYS

EMBEDDED DOPPLER ULTRASOUND SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE ARRAYS EMBEDDED DOPPLER ULTRASOUND SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE ARRAYS Diaa ElRahman Mahmoud, Abou-Bakr M. Youssef and Yasser M. Kadah Biomedical Engineering Department, Cairo University, Giza,

More information

Nuove tecnologie per ecografia ad ultrasuoni: da 2D a 4D

Nuove tecnologie per ecografia ad ultrasuoni: da 2D a 4D DINFO Dipartimento di Ingegneria dell Informazione Department of Information Engineering Nuove tecnologie per ecografia ad ultrasuoni: da 2D a 4D Piero Tortoli Microelectronics Systems Design Lab 1 Introduction

More information

Doppler in Obstetrics: book by K Nicolaides, G Rizzo, K Hecher. Chapter on Doppler ultrasound: principles and practice by Colin Deane

Doppler in Obstetrics: book by K Nicolaides, G Rizzo, K Hecher. Chapter on Doppler ultrasound: principles and practice by Colin Deane Doppler in Obstetrics: book by K Nicolaides, G Rizzo, K Hecher Chapter on Doppler ultrasound: principles and practice by Colin Deane INTRODUCTION Competent use of Doppler ultrasound techniques requires

More information

Physics in Modern Medicine Fall 2010

Physics in Modern Medicine Fall 2010 Physics in Modern Medicine Fall 2010 Homework #3 Chapter 3 Lasers in Medicine Questions Q3.1 Absorption in melanin increases with decreasing wavelength, and has a maximum, according to figure 3.23 in the

More information

Multi-Element Synthetic Transmit Aperture Method in Medical Ultrasound Imaging Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki and Marcin Lewandowski

Multi-Element Synthetic Transmit Aperture Method in Medical Ultrasound Imaging Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki and Marcin Lewandowski Multi-Element Synthetic Transmit Aperture Method in Medical Ultrasound Imaging Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki and Marcin Lewandowski Abstract The paper presents the multi-element synthetic

More information

Exploiting nonlinear propagation in echo sounders and sonar

Exploiting nonlinear propagation in echo sounders and sonar Exploiting nonlinear propagation in echo sounders and sonar Fabrice Prieur 1, Sven Peter Näsholm 1, Andreas Austeng 1, Sverre Holm 1 1 Department of Informatics, University of Oslo, P.O. Box 1080, NO-0316

More information

ACOUSTIC MICRO IMAGING ANALYSIS METHODS FOR 3D PACKAGES

ACOUSTIC MICRO IMAGING ANALYSIS METHODS FOR 3D PACKAGES ACOUSTIC MICRO IMAGING ANALYSIS METHODS FOR 3D PACKAGES Janet E. Semmens Sonoscan, Inc. Elk Grove Village, IL, USA Jsemmens@sonoscan.com ABSTRACT Earlier studies concerning evaluation of stacked die packages

More information

Lecture 19. Ultrasound Imaging

Lecture 19. Ultrasound Imaging Lecture 19 Ultrasound Imaging Contents 1. Introduction 2. Ultrasound and its generation 3. Wave propagation in the matter 4. Data acquisition (A, B, M and Doppler model) 5. Imaging reconstruction (5 steps)

More information

ATS 351 Lecture 9 Radar

ATS 351 Lecture 9 Radar ATS 351 Lecture 9 Radar Radio Waves Electromagnetic Waves Consist of an electric field and a magnetic field Polarization: describes the orientation of the electric field. 1 Remote Sensing Passive vs Active

More information

Attenuation and velocity of ultrasound in solid state materials (transmission)

Attenuation and velocity of ultrasound in solid state materials (transmission) Attenuation and velocity of ultrasound in solid 5.1.6.08 Related Topics Propagation of ultrasonic waves, time of flight, sound velocity, damping of ultrasonic waves (scattering, reflection, absorption),

More information

Real Time Deconvolution of In-Vivo Ultrasound Images

Real Time Deconvolution of In-Vivo Ultrasound Images Paper presented at the IEEE International Ultrasonics Symposium, Prague, Czech Republic, 3: Real Time Deconvolution of In-Vivo Ultrasound Images Jørgen Arendt Jensen Center for Fast Ultrasound Imaging,

More information

SOUND. Second, the energy is transferred from the source in the form of a longitudinal sound wave.

SOUND. Second, the energy is transferred from the source in the form of a longitudinal sound wave. SOUND - we can distinguish three aspects of any sound. First, there must be a source for a sound. As with any wave, the source of a sound wave is a vibrating object. Second, the energy is transferred from

More information

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2 1. A small vibrating object S moves across the surface of a ripple tank producing the wave fronts shown above. The wave fronts move with speed v. The object is traveling in what direction and with what

More information

Acoustic Velocity Independent Ultrasonic Flow-Meter

Acoustic Velocity Independent Ultrasonic Flow-Meter flotek.g 2017- Innovative Solutions in Flow Measurement and Control - Oil, Water and Gas August 28-30, 2017, FCRI, Palakkad, Kerala, India Acoustic Velocity Independent Ultrasonic Flow-Meter ABSTRACT Shalini

More information

Physics B Waves and Sound Name: AP Review. Show your work:

Physics B Waves and Sound Name: AP Review. Show your work: Physics B Waves and Sound Name: AP Review Mechanical Wave A disturbance that propagates through a medium with little or no net displacement of the particles of the medium. Parts of a Wave Crest: high point

More information

, where I 0 is the. From the definition of intensity level, I I

, where I 0 is the. From the definition of intensity level, I I Acoustics of buildings Obtaining right amount of reverberation is the secret of good acoustics Topics: Applied acoustics: Sound transducers and their characteristics. Recording and reproduction of sound.

More information

FPGA-BASED CONTROL SYSTEM OF AN ULTRASONIC PHASED ARRAY

FPGA-BASED CONTROL SYSTEM OF AN ULTRASONIC PHASED ARRAY The 10 th International Conference of the Slovenian Society for Non-Destructive Testing»Application of Contemporary Non-Destructive Testing in Engineering«September 1-3, 009, Ljubljana, Slovenia, 77-84

More information

Ques on (2): [18 Marks] a) Draw the atrial synchronous Pacemaker block diagram and explain its operation. Benha University June 2013

Ques on (2): [18 Marks] a) Draw the atrial synchronous Pacemaker block diagram and explain its operation. Benha University June 2013 Benha University June 2013 Benha Faculty of Engineering Electrical Department Hospital Instrumentations (E472) 4 Th year (control) Dr.Waleed Abdel Aziz Salem Time: 3 Hrs Answer the following questions.

More information

Doppler Ultrasound. Amanda Watson.

Doppler Ultrasound. Amanda Watson. Doppler Ultrasound Amanda Watson amanda.watson1@nhs.net Before we start Why does blood appear black on a B-mode image? B-mode echoes vs. Doppler echoes In B-Mode we are concerned with the position and

More information

Easy Ultrasonic Phased Array Inspection of Corrosion - Resistant Alloys and Dissimilar Weld Materials

Easy Ultrasonic Phased Array Inspection of Corrosion - Resistant Alloys and Dissimilar Weld Materials Multimedia Application Notes Easy Ultrasonic Phased Array Inspection of Corrosion - Resistant Alloys and Dissimilar Weld Materials Many industries increasingly use austenitic welds and welds containing

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4, 6, 2M Open access books available International authors and editors Downloads Our authors are

More information

Nondestructive Testing and Flaw Detection in Steel block Using extension of Split Spectrum Processing based on Chebyshev IIR filter

Nondestructive Testing and Flaw Detection in Steel block Using extension of Split Spectrum Processing based on Chebyshev IIR filter Nondestructive Testing and Flaw Detection in Steel block Using extension of Split Spectrum Processing based on Chebyshev IIR filter Revathi.T.S 1, Salim Paul 2 1 M.tech (Signal Processing), Dept. Of ECE,

More information

Equipment for Attenuation and velocity of ultrasound in solid state materials (transmission), experimental set-up

Equipment for Attenuation and velocity of ultrasound in solid state materials (transmission), experimental set-up Attenuation and velocity of ultrasound in solid TEAS Related Topics Propagation of ultrasonic waves, time of flight, sound velocity, damping of ultrasonic waves (scattering, reflection, absorption), transmission

More information

RECENT ADVANCEMENTS IN THE APPLICATION OF EMATS TO NDE

RECENT ADVANCEMENTS IN THE APPLICATION OF EMATS TO NDE RECENT ADVANCEMENTS IN THE APPLICATION OF EMATS TO NDE D. MacLauchlan, S. Clark, B. Cox, T. Doyle, B. Grimmett, J. Hancock, K. Hour, C. Rutherford BWXT Services, Non Destructive Evaluation and Inspection

More information

CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS

CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS Alexander A.KARABUTOV 1, Elena V.SAVATEEVA 2, Alexei N. ZHARINOV 1, Alexander A.KARABUTOV 1 Jr. 1 International Laser Center of M.V.Lomonosov

More information

INTRODUCTION TO RADAR SIGNAL PROCESSING

INTRODUCTION TO RADAR SIGNAL PROCESSING INTRODUCTION TO RADAR SIGNAL PROCESSING Christos Ilioudis University of Strathclyde c.ilioudis@strath.ac.uk Overview History of Radar Basic Principles Principles of Measurements Coherent and Doppler Processing

More information

ULTRASONIC DEFECT DETECTION IN BILLET USING TIME- OF-FLIGHT OF BOTTOM ECHO

ULTRASONIC DEFECT DETECTION IN BILLET USING TIME- OF-FLIGHT OF BOTTOM ECHO ULTRASONIC DEFECT DETECTION IN BILLET USING TIME- OF-FLIGHT OF BOTTOM ECHO Ryusuke Miyamoto Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki 305-8573 Japan

More information

Ultrasound physical principles in today s technology

Ultrasound physical principles in today s technology Education Ultrasound physical principles in today s technology Brian Starkoff M.App.Sc.(Med. Ultrasound), AMS Holland Park Brisbane Queensland Australia Correspondence to email starkoff@optusnet.com.au

More information

MAKING TRANSIENT ANTENNA MEASUREMENTS

MAKING TRANSIENT ANTENNA MEASUREMENTS MAKING TRANSIENT ANTENNA MEASUREMENTS Roger Dygert, Steven R. Nichols MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 ABSTRACT In addition to steady state performance, antennas

More information

THE NATURE OF GROUND CLUTTER AFFECTING RADAR PERFORMANCE MOHAMMED J. AL SUMIADAEE

THE NATURE OF GROUND CLUTTER AFFECTING RADAR PERFORMANCE MOHAMMED J. AL SUMIADAEE International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN(P): 2249-684X; ISSN(E): 2249-7951 Vol. 6, Issue 2, Apr 2016, 7-14 TJPRC Pvt. Ltd.

More information

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear?

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear? Intext Exercise 1 How does the sound produced by a vibrating object in a medium reach your ear? When an vibrating object vibrates, it forces the neighbouring particles of the medium to vibrate. These vibrating

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013 Time Reversal Mirror in Ultrasound Imaging using High Speed Data Acquisition System FPGA (Vertex-5) AISHWARYA B, DUSHYANTH Student, Assistant Professor Abstract Applications Time delay focusing in ultrasound

More information

Architecture of Quality Imaging Mary K. Henne, MS, CNMT, RDMS, RVT Ultrasound Education Specialist GE Healthcare

Architecture of Quality Imaging Mary K. Henne, MS, CNMT, RDMS, RVT Ultrasound Education Specialist GE Healthcare Architecture of Quality Imaging Mary K. Henne, MS, CNMT, RDMS, RVT Ultrasound Education Specialist GE Healthcare 2 DOC1292532 Architecture of Quality Imaging Agile Acoustic Architecture E-Series and XDclear

More information

COMPUTER PHANTOMS FOR SIMULATING ULTRASOUND B-MODE AND CFM IMAGES

COMPUTER PHANTOMS FOR SIMULATING ULTRASOUND B-MODE AND CFM IMAGES Paper presented at the 23rd Acoustical Imaging Symposium, Boston, Massachusetts, USA, April 13-16, 1997: COMPUTER PHANTOMS FOR SIMULATING ULTRASOUND B-MODE AND CFM IMAGES Jørgen Arendt Jensen and Peter

More information

Set No.1. Code No: R

Set No.1. Code No: R Set No.1 IV B.Tech. I Semester Regular Examinations, November -2008 RADAR SYSTEMS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any

More information

Quick Reference Guide

Quick Reference Guide siemens.com/nx3 Quick Reference Guide ACUSON NX3 Series Contents 2 System Overview 3 Getting Started 8 2D Mode and M-mode 12 Color and Spectral Doppler 24 Measurements and Calculations 38 Text, Arrows

More information

REAL-TIME B-SCAN ULTRASONIC IMAGING USING A DIGITAL PHASED. Robert Dunki-Jacobs and Lewis Thomas General Electric Company Schenectady, New York, 12301

REAL-TIME B-SCAN ULTRASONIC IMAGING USING A DIGITAL PHASED. Robert Dunki-Jacobs and Lewis Thomas General Electric Company Schenectady, New York, 12301 REAL-TIME B-SCAN ULTRASONIC IMAGING USING A DIGITAL PHASED ARRAY SYSTEM FOR NDE Robert Dunki-Jacobs and Lewis Thomas General Electric Company Schenectady, New York, 12301 INTRODUCTION Phased array systems

More information

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target Moving Target Indicator 1 Objectives Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target velocity. Be able to

More information

Introduction. Parametric Imaging. The Ultrasound Research Interface: A New Tool for Biomedical Investigations

Introduction. Parametric Imaging. The Ultrasound Research Interface: A New Tool for Biomedical Investigations The Ultrasound Research Interface: A New Tool for Biomedical Investigations Shelby Brunke, Laurent Pelissier, Kris Dickie, Jim Zagzebski, Tim Hall, Thaddeus Wilson Siemens Medical Systems, Issaquah WA

More information

A COST-EFFECTIVE METHOD FOR ULTRASOUND VOLUMETRIC IMAGING

A COST-EFFECTIVE METHOD FOR ULTRASOUND VOLUMETRIC IMAGING Mathematical & Computational Applications, Voll, No. 2,pp 127-132, 1996 Association for Scientific ReseardJ. A COST-EFFECTIVE METHOD FOR ULTRASOUND VOLUMETRIC IMAGING F. Nazan Urar * and Mustafa Karaman

More information

Multi-spectral acoustical imaging

Multi-spectral acoustical imaging Multi-spectral acoustical imaging Kentaro NAKAMURA 1 ; Xinhua GUO 2 1 Tokyo Institute of Technology, Japan 2 University of Technology, China ABSTRACT Visualization of object through acoustic waves is generally

More information

SYLLABUS. 1. Identification of Subject:

SYLLABUS. 1. Identification of Subject: SYLLABUS Date/ Revision : 30 January 2017/1 Faculty : Life Sciences Approval : Dean, Faculty of Life Sciences SUBJECT : Biophysics 1. Identification of Subject: Name of Subject : Biophysics Code of Subject

More information

COMPUTED TOMOGRAPHY 1

COMPUTED TOMOGRAPHY 1 COMPUTED TOMOGRAPHY 1 Why CT? Conventional X ray picture of a chest 2 Introduction Why CT? In a normal X-ray picture, most soft tissue doesn't show up clearly. To focus in on organs, or to examine the

More information

Copyright 2004 Society of Photo Instrumentation Engineers.

Copyright 2004 Society of Photo Instrumentation Engineers. Copyright 2004 Society of Photo Instrumentation Engineers. This paper was published in SPIE Proceedings, Volume 5160 and is made available as an electronic reprint with permission of SPIE. One print or

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Echo Artifacts: The Cause and Solution

Echo Artifacts: The Cause and Solution Echo Artifacts: The Cause and Solution David Adams, RCS, RDCS, FASE Duke University Medical Center Disclosures None My Happy / Sad ratio 20% Sad 1 st talk on Sunday (post party) Talk about Artifacts Artifacts

More information

ULTRASONIC IMAGING of COPPER MATERIAL USING HARMONIC COMPONENTS

ULTRASONIC IMAGING of COPPER MATERIAL USING HARMONIC COMPONENTS ULTRASONIC IMAGING of COPPER MATERIAL USING HARMONIC COMPONENTS T. Stepinski P. Wu Uppsala University Signals and Systems P.O. Box 528, SE- 75 2 Uppsala Sweden ULTRASONIC IMAGING of COPPER MATERIAL USING

More information

Visibility of Detail

Visibility of Detail Visibility of Detail Radiographic Quality Quality radiographic images represents the, and information is for diagnosis. The of the anatomic structures and the accuracy of their ( ) determine the overall

More information

A Breakthrough in Sputtering Target Inspections: Ultra-High Speed Phased Array Scanning with Volume Focusing

A Breakthrough in Sputtering Target Inspections: Ultra-High Speed Phased Array Scanning with Volume Focusing 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China A Breakthrough in Sputtering Target Inspections: Ultra-High Speed Phased Array Scanning with Volume Focusing Dominique Braconnier,

More information

Holographic Measurement of the Acoustical 3D Output by Near Field Scanning by Dave Logan, Wolfgang Klippel, Christian Bellmann, Daniel Knobloch

Holographic Measurement of the Acoustical 3D Output by Near Field Scanning by Dave Logan, Wolfgang Klippel, Christian Bellmann, Daniel Knobloch Holographic Measurement of the Acoustical 3D Output by Near Field Scanning 2015 by Dave Logan, Wolfgang Klippel, Christian Bellmann, Daniel Knobloch LOGAN,NEAR FIELD SCANNING, 1 Introductions LOGAN,NEAR

More information

Pass Ultrasound Physics Exam

Pass Ultrasound Physics Exam Pass Ultrasound Physics Exam Match the Answers By Mansoor Khan MBBS, RDMS, RDCS 1 Copyright 2014 Blue Cube Venture, LLC All rights reserved. The Pass Ultrasound Physics Exam Match the Answers is protected

More information

INTRODUCTION. Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems

INTRODUCTION. Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems Tracking Radar H.P INTRODUCTION Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems 2 RADAR FUNCTIONS NORMAL RADAR FUNCTIONS 1. Range (from pulse

More information

ECHO-CANCELLATION IN A SINGLE-TRANSDUCER ULTRASONIC IMAGING SYSTEM

ECHO-CANCELLATION IN A SINGLE-TRANSDUCER ULTRASONIC IMAGING SYSTEM ECHO-CANCELLATION IN A SINGLE-TRANSDUCER ULTRASONIC IMAGING SYSTEM Johan Carlson a,, Frank Sjöberg b, Nicolas Quieffin c, Ros Kiri Ing c, and Stéfan Catheline c a EISLAB, Dept. of Computer Science and

More information

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION: Theoretical Approach Why do we need ultra short technology?? INTRODUCTION: Generating ultrashort laser pulses that last a few femtoseconds is a highly active area of research that is finding applications

More information

Spectral Distance Amplitude Control for Ultrasonic Inspection of Composite Components

Spectral Distance Amplitude Control for Ultrasonic Inspection of Composite Components ECNDT 26 - Mo.2.6.4 Spectral Distance Amplitude Control for Ultrasonic Inspection of Composite Components Uwe PFEIFFER, Wolfgang HILLGER, DLR German Aerospace Center, Braunschweig, Germany Abstract. Ultrasonic

More information

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar)

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar) Frequency-Modulated Continuous-Wave Radar (FM-CW Radar) FM-CW radar (Frequency-Modulated Continuous Wave radar = FMCW radar) is a special type of radar sensor which radiates continuous transmission power

More information

PRODUCT 4.06 IMAGE MANAGEMENT

PRODUCT 4.06 IMAGE MANAGEMENT IT EDUCTRA TELEMATICS APPLICATIONS PROGRAMME Sector: Healthcare PRODUCT 4.06 IMAGE MANAGEMENT Arie HASMAN This Product Section outlines the different methods of generating and analysing images, where each

More information

REVERBERATION CHAMBER FOR EMI TESTING

REVERBERATION CHAMBER FOR EMI TESTING 1 REVERBERATION CHAMBER FOR EMI TESTING INTRODUCTION EMI Testing 1. Whether a product is intended for military, industrial, commercial or residential use, while it must perform its intended function in

More information

Principles of Modern Radar

Principles of Modern Radar Principles of Modern Radar Vol. I: Basic Principles Mark A. Richards Georgia Institute of Technology James A. Scheer Georgia Institute of Technology William A. Holm Georgia Institute of Technology PUBLiSH]J

More information

Incoherent Scatter Experiment Parameters

Incoherent Scatter Experiment Parameters Incoherent Scatter Experiment Parameters At a fundamental level, we must select Waveform type Inter-pulse period (IPP) or pulse repetition frequency (PRF) Our choices will be dictated by the desired measurement

More information

NCERT solution for Sound

NCERT solution for Sound NCERT solution for Sound 1 Question 1 How does the sound produce by a vibrating object in a medium reach your ear? When an object vibrates, it vibrates the neighboring particles of the medium. These vibrating

More information

Table 1 The wheel-set security system of China high-speed railway

Table 1 The wheel-set security system of China high-speed railway 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16352 Dynamic ultrasonic inspection technology

More information