EMC for Printed Circuit Boards

Size: px
Start display at page:

Download "EMC for Printed Circuit Boards"

Transcription

1 9 Bracken View, Brocton Stafford, Staffs, UK tel: +44 (0) fax +44 (0) web: EMC for Printed Circuit Boards Basic and Advanced Design and Layout Techniques Keith Armstrong First published February 2007 Perfect bound (with titled spine): ISBN Spiral bound (lays flat): ISBN To order, visit: Overview, and complete list of contents This book is for electronic circuit designers, as well as for PCB designers themselves, and has full-colour figures throughout. All application areas are covered, from household appliances, commercial, industrial and medical equipment, through automotive to aerospace and military. The techniques it describes help you to Improve signal integrity (SI), signal/noise ratio (S/N), especially in mixed technologies Comply with EMC Directive, FCC, etc. with the lowest cost of manufacture Reduce the number of iterations of hardware and software to reduce time-to-market whilst also reducing financial risks Improve the reception range of co-located wireless voice or data communications (GSM, PCS, GPRS, EDGE, CDMA2000, UMTS, Bluetooth, Wi-Fi, UWB, etc.) Improve GPS or Galileo reception when using co-located antennas Save cost, size and weight by reducing (or eliminating) shielding/filtering of the overall enclosure Improve reliability, reduce warranty costs without adding significantly to cost of manufacture Use very high-speed devices, high-power digital signal processing (DSP), latest IC technologies (90 or 65nm), and/or latest packaging technologies (chip scale, flip-chip, micro-bga, etc.) Its eight chapters cover 1) Saving time and cost overall 2) Segregation and interface suppression 3) PCB-chassis bonding 4) Reference planes for 0V and power 5) Decoupling, including buried capacitance technology 6) Transmission lines (and any traces carrying high-speed signals or noise) 7) Routing and layer stacking, including microvia technology 8) A number of miscellaneous issues (heatsinks, in-circuit testing, etc.) This book describes the techniques, and when they are appropriate, in practical engineering language. It does not describe why they work in great detail, and only uses a few simple maths formulas where they are practically useful. However, these techniques are very well proven in practice and the reasons why they work are well understood. The many web-based references lead to detailed explanations and mathematical foundations. It is difficult for textbooks to keep up to date with PCB technology and EMC techniques, which is why most of the references are conference papers and articles written during the last few years. Although the subject is EMC, many of the techniques are essential for achieving good SI or S/N and such issues are often discussed especially in the few areas where EMC and SI requirements could conflict. Page 1 of 6

2 Complete list of contents Introduction 6 Chapter 1 Saving Time and Cost Overall Reasons for using these EMC techniques Development reducing costs and getting to market on time Reducing unit manufacturing costs Enabling wireless datacommunications Enabling the use of the latest ICs and IC packages Easier compliance for high-power DSP Improving the immunity of analogue circuits What do we mean by high speed Electronic trends, and their implications for PCBs Shrinking silicon Shrinking packaging Shrinking supply voltages PCBs are becoming as important as hardware and software EMC testing trends Frequency, velocity and wavelength Designing to reduce project risk Guidelines, maths formulae, and field solvers Virtual design Experimental verification Responsibility for EMC EMC-competent QA, change control, cost-reduction Compromises 19 Chapter 2 Segregation and Interface Suppression The Basics of Segregation and Interface Suppression Segregating the Inside World from the Outside World Segregation inside the Inside World Implementing segregation on a PCB Interface suppression Implementing interface suppression on a PCB The synergy of shielding and filtering PCB-level shielding Reasons for shielding on the PCB Overview of shielding at PCB level Types of PCB shielding-can Attaching shielding-cans to PCBs PCB shielding-can materials Apertures and gaps in shielding-cans Waveguide-below-cutoff methods Near field effects on shielding Cavity resonances Interconnections and shielding Combining PCB shielding with filtering Combining shielding with heatsinking Environmental issues PCB-level filtering Reasons for filtering on the PCB Overview of PCB filtering High-performance filtering requires a good quality RF reference Design of single-stage low-power and signal PCB filters Power filtering on PCBs Filtering for shielded connectors Placement of off-board interconnections 39 Chapter 3 PCB-to-Chassis Bonding 41 Page 2 of 6

3 3.1 Introduction to PCB-to-chassis bonding What do we mean by chassis? What do we mean by bonding? Hybrid bonding Ground loops and religion Why bond PCB 0V planes to chassis anyway? Reduced transfer impedance Better control of common-mode leakage Benefits of closer spacing between a PCB and its chassis The highest frequency of concern Controlling resonances in the PCB-chassis cavity Why and how the cavity resonates Wavelength rules Increasing the number of bonds to increase resonant frequencies What if we can t use enough bonds? Spreading the resonances more widely to reduce peak amplitude Designing resonances to miss problem frequencies Being clever with capacitors Using resistors to dampen cavity resonances Using absorber to dampen cavity resonances Reducing the impedance of capacitive bonds Using shielding techniques Using fully shielded PCB assemblies Daughter and mezzanine boards 52 Chapter 4 Reference Planes for 0V and Power Introduction to Reference Planes Design issues for reference planes Plane dimensions Dealing with gaps and holes in planes Cross-hatching and copper fills Connecting devices to planes Thermal breaks Device placement Fills and meshes Resonances in the 0V plane Cavity resonances in plane pairs Reducing the edge-fired emissions from plane pairs Locating via holes for aggressive signals or power When traces change layers Component-side planes for DC/DC converters and clocks Splitting a 0V plane is not generally a good idea any more When traces must cross a 0V or power plane split Advantages of High Density Interconnect (HDI), build-up and microvia PCB technologies The totally shielded PCB assembly 68 Chapter 5 Decoupling, including Buried Capacitance Technology Introduction to decoupling Decoupling with discrete capacitors Which circuit locations need decaps? The benefits of decaps in ICs and MCMs How much decoupling capacitance to use? Types of decaps Layouts that reduce the size of the current loop Series resonances in decaps Using ferrites in decoupling Splitting the decap into two Using multiple decaps in parallel Other ways to reduce decap ESL Decoupling with 0V/Power plane pairs Introduction to the decoupling benefits of 0V/Power plane pairs The distributed capacitance of a 0V/Power plane pair PCB 0V and power routing with 0V/Power plane pairs 82 Page 3 of 6

4 5.3.4 Location of decaps Defeating parallel decap resonances when using 0V/Power plane pairs Cavity resonances in 0V/Power plane pairs Bonding planes with decaps to increase resonant frequencies Power plane islands fed by π filters Damping cavity resonance peaks The spreading inductance of planes The 20-H rule Taking advantage of decap series resonances Decap walls Other 0V/Power plane pair techniques to reduce emissions The buried capacitance technique Field solvers for power bus impedance simulations 89 Chapter 6 Transmission lines (and any traces carrying high-speed signals or noises) Matched transmission lines on PCBs Introduction Propagation velocity, V and characteristic impedance, Z The effects of impedance discontinuities The effects of keeping Z0 constant Time Domain Reflectometry (TDR) When to use matched transmission lines Increasing importance of matched transmission lines for modern products It is the real rise/fall times that matter Noises and immunity should also be taken into account Calculating the waveforms at each end of a trace Examples of two common types of transmission lines Coplanar transmission lines The effects of capacitive loading The need for PCB test traces The relationship between rise/fall-time and frequency Terminating transmission lines A range of termination methods Difficulties with drivers Compromises in line matching ICs with smart terminators Bi-directional terminations Non-linear termination techniques Equalising terminations Location of terminations at the ends of transmission-lines Transmission line routing constraints General routing guidelines A transmission line exiting a product via a cable Interconnections between PCBs inside a product Changing plane layers within one PCB Crossing plane breaks or gaps within one PCB Avoid sharp corners in traces Linking return current planes with vias or decaps Effects of via stubs Effects of routing around via fields Other effects of the PCB stack-up and routing Some issues with microstrip Differential matched transmission lines Introduction to differential signalling CM and DM characteristic impedances in differential lines Exiting PCBs, or crossing plane splits with differential lines Controlling imbalance in differential signalling Routing asymmetry Choosing a dielectric Effects of woven substrates (like FR4 and G-10) Other types of PCB dielectrics Matched-impedance connectors Shielded PCB transmission lines Channelised striplines Creating fully shielded transmission lines inside a PCB 124 Page 4 of 6

5 6.8 Miscellaneous related issues Impedance matching, transforming and AC coupling A safety margin is a good idea Filtering CM chokes Replacing parallel busses with serial The lossiness of FR4 and copper Problems with coated microstrip The effects of bond-wires and leads Simulators and solvers help design matched transmission lines Some useful sources of further information on PCB transmission lines 128 Chapter 7 Routing and Layer Stacking, including Microvia Technology Routing and layer stacking techniques, and microvia technology Routing Stack-ups The benefits of closer trace-plane spacing The benefits of closer component-plane spacing Copper balancing Single-layer PCBs Two-layer PCBs Four-layer PCB stack-ups Six layer PCBs Eight layer PCBs PCBs with more than eight layers Number of PCB layers and cost-effective design in real-life Shielding power planes with different voltages EMC issues with copper balancing using area fills or cross-hatches HDI PCB technology What is HDI? The EMC benefits of HDI HDI suppliers and costs HDI PCD design issues More information on HDI Current capacity of traces Handling surge and transient currents Maximum continuous DC and low frequency current handling Voltage drops in the PCB s power distribution Handling continuous RF currents A note on accuracy Transient and surge voltage capacity of layouts Trace-trace and trace-metal spacing The EMC and safety problems caused by compliance with the RoHS directive 143 Chapter 8 A Number of Miscellaneous Final Issues Power supply connections to PCBs Low-K dielectrics Chip-scale packages (CSPs) Chip-on-board (COB) Heatsinks on PCBs EMC effects of heat sinks Heat sink RF resonances Bonding heatsinks to a PCB plane Combining shielding with heatsinking Other heatsink techniques that may help Heatsinks for power devices Package resonances Eliminate the test pads for bed-of-nails or flying probe testing Unused I/O pins Crystals and oscillators IC tricks 155 Page 5 of 6

6 8.11 Location of terminations at the ends of transmission-lines Electromagnetic Band Gap (EBG) Some final PCB design issues Beware board manufacturers changing layouts or stack-ups Future-proofing the EMC design Marking EMC design features or critical parts on the design drawings A quality-controlled procedure for EMC design 158 References 159 Glossary of Terms and Abbreviations 165 Author, Keith Armstrong s biography 166 Page 6 of 6

Webinar: Suppressing BGAs and/or multiple DC rails Keith Armstrong. 1of 5

Webinar: Suppressing BGAs and/or multiple DC rails Keith Armstrong. 1of 5 1of 5 Suppressing ICs with BGA packages and multiple DC rails Some Intel Core i5 BGA packages CEng, EurIng, FIET, Senior MIEEE, ACGI Presenter Contact Info email: keith.armstrong@cherryclough.com website:

More information

Chapter 16 PCB Layout and Stackup

Chapter 16 PCB Layout and Stackup Chapter 16 PCB Layout and Stackup Electromagnetic Compatibility Engineering by Henry W. Ott Foreword The PCB represents the physical implementation of the schematic. The proper design and layout of a printed

More information

Design Techniques for EMC

Design Techniques for EMC Design Techniques for EMC Part 5 Printed Circuit Board (PCB) Design and Layout By Eur Ing Keith Armstrong C.Eng MIEE MIEEE, Cherry Clough Consultants This is the fifth in a series of six articles on basic

More information

10 Safety earthing/grounding does not help EMC at RF

10 Safety earthing/grounding does not help EMC at RF 1of 6 series Webinar #3 of 3, August 28, 2013 Grounding, Immunity, Overviews of Emissions and Immunity, and Crosstalk Contents of Webinar #3 Topics 1 through 9 were covered by the previous two webinars

More information

EMI. Chris Herrick. Applications Engineer

EMI. Chris Herrick. Applications Engineer Fundamentals of EMI Chris Herrick Ansoft Applications Engineer Three Basic Elements of EMC Conduction Coupling process EMI source Emission Space & Field Conductive Capacitive Inductive Radiative Low, Middle

More information

Advanced PCB Design and Layout for EMC Part 8 - A number of miscellaneous final issues

Advanced PCB Design and Layout for EMC Part 8 - A number of miscellaneous final issues Page 1 of 27 Advanced PCB Design and Layout for EMC Part 8 - A number of miscellaneous final issues By Eur Ing Keith Armstrong C.Eng MIEE MIEEE, Cherry Clough Consultants This is the last in a series of

More information

Relationship Between Signal Integrity and EMC

Relationship Between Signal Integrity and EMC Relationship Between Signal Integrity and EMC Presented by Hasnain Syed Solectron USA, Inc. RTP, North Carolina Email: HasnainSyed@solectron.com 06/05/2007 Hasnain Syed 1 What is Signal Integrity (SI)?

More information

Top Ten EMC Problems

Top Ten EMC Problems Top Ten EMC Problems presented by: Kenneth Wyatt Sr. EMC Consultant EMC & RF Design, Troubleshooting, Consulting & Training 10 Northern Boulevard, Suite 1 Amherst, New Hampshire 03031 +1 603 578 1842 www.silent-solutions.com

More information

Analogue circuit design for RF immunity

Analogue circuit design for RF immunity Analogue circuit design for RF immunity By EurIng Keith Armstrong, C.Eng, FIET, SMIEEE, www.cherryclough.com First published in The EMC Journal, Issue 84, September 2009, pp 28-32, www.theemcjournal.com

More information

The number of layers The number and types of planes (power and/or ground) The ordering or sequence of the layers The spacing between the layers

The number of layers The number and types of planes (power and/or ground) The ordering or sequence of the layers The spacing between the layers PCB Layer Stackup PCB layer stackup (the ordering of the layers and the layer spacing) is an important factor in determining the EMC performance of a product. The following four factors are important with

More information

Design Considerations for Highly Integrated 3D SiP for Mobile Applications

Design Considerations for Highly Integrated 3D SiP for Mobile Applications Design Considerations for Highly Integrated 3D SiP for Mobile Applications FDIP, CA October 26, 2008 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr Contents I. Market and future direction

More information

EMC Design Guidelines C4ISR EQUIPMENT & SYSTEMS

EMC Design Guidelines C4ISR EQUIPMENT & SYSTEMS EMC Design Guidelines C4ISR EQUIPMENT & SYSTEMS 1.1. SHIELDING Enclosed structure (equipment box or chassis in outside RF environment) should provide at least 100 db of RF shielding at 1 MHz, 40 db at

More information

Introduction to Electromagnetic Compatibility

Introduction to Electromagnetic Compatibility Introduction to Electromagnetic Compatibility Second Edition CLAYTON R. PAUL Department of Electrical and Computer Engineering, School of Engineering, Mercer University, Macon, Georgia and Emeritus Professor

More information

PCB Design Techniques for the SI and EMC of Gb/s Differential Transmission Lines

PCB Design Techniques for the SI and EMC of Gb/s Differential Transmission Lines Abstract PCB Design Techniques for the SI and EMC of Gb/s Differential Transmission Lines By EurIng Keith Armstrong, C.Eng, MIET, MIEEE, www.cherryclough.com Differential transmission lines are becoming

More information

11 Myths of EMI/EMC ORBEL.COM. Exploring common misconceptions and clarifying them. MYTH #1: EMI/EMC is black magic.

11 Myths of EMI/EMC ORBEL.COM. Exploring common misconceptions and clarifying them. MYTH #1: EMI/EMC is black magic. 11 Myths of EMI/EMC Exploring common misconceptions and clarifying them By Ed Nakauchi, Technical Consultant, Orbel Corporation What is a myth? A myth is defined as a popular belief or tradition that has

More information

EMC Simulation of Consumer Electronic Devices

EMC Simulation of Consumer Electronic Devices of Consumer Electronic Devices By Andreas Barchanski Describing a workflow for the EMC simulation of a wireless router, using techniques that can be applied to a wide range of consumer electronic devices.

More information

Chapter 12 Digital Circuit Radiation. Electromagnetic Compatibility Engineering. by Henry W. Ott

Chapter 12 Digital Circuit Radiation. Electromagnetic Compatibility Engineering. by Henry W. Ott Chapter 12 Digital Circuit Radiation Electromagnetic Compatibility Engineering by Henry W. Ott Forward Emission control should be treated as a design problem from the start, it should receive the necessary

More information

Advanced PCB design and layout for EMC Part 6 - Transmission lines - 1st Part

Advanced PCB design and layout for EMC Part 6 - Transmission lines - 1st Part Page 1 of 26 Advanced PCB design and layout for EMC Part 6 - Transmission lines - 1st Part By Eur Ing Keith Armstrong C.Eng MIEE MIEEE, Cherry Clough Consultants This is the sixth in a series of eight

More information

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction.

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. D. A. Weston EMC Consulting Inc 22-3-2010 These are some of the commonly held beliefs about EMC which are

More information

MC-1010 Hardware Design Guide

MC-1010 Hardware Design Guide MC-1010 Hardware Design Guide Version 1.0 Date: 2013/12/31 1 General Rules for Design-in In order to obtain good GPS performances, there are some rules which require attentions for using MC-1010 GPS module.

More information

1 Introduction. Webinar sponsored by: Cost-effective uses of close-field probing. Contents

1 Introduction. Webinar sponsored by: Cost-effective uses of close-field probing. Contents 1of 8 Close-field probing series Webinar #1 of 2, Cost-effective uses of close-field probing in every project stage: emissions, immunity and much more Webinar sponsored by: Keith Armstrong CEng, EurIng,

More information

DL-150 The Ten Habits of Highly Successful Designers. or Design for Speed: A Designer s Survival Guide to Signal Integrity

DL-150 The Ten Habits of Highly Successful Designers. or Design for Speed: A Designer s Survival Guide to Signal Integrity Slide -1 Ten Habits of Highly Successful Board Designers or Design for Speed: A Designer s Survival Guide to Signal Integrity with Dr. Eric Bogatin, Signal Integrity Evangelist, Bogatin Enterprises, www.bethesignal.com

More information

PHY DESIGN RECOMMENDATIONS FOR PCB LAYOUT

PHY DESIGN RECOMMENDATIONS FOR PCB LAYOUT PHY DESIGN RECOMMENDATIONS FOR PCB LAYOUT Ron Raybarman s-raybarman1@ti ti.com Texas Instruments Topics of discussion: 1. Specific for 1394 - (Not generic PCB layout) Etch lengths Termination Network Skew

More information

2. Design Recommendations when Using EZRadioPRO RF ICs

2. Design Recommendations when Using EZRadioPRO RF ICs EZRADIOPRO LAYOUT DESIGN GUIDE 1. Introduction The purpose of this application note is to help users design EZRadioPRO PCBs using design practices that allow for good RF performance. This application note

More information

Heat sink. Insulator. µp Package. Heatsink is shown with parasitic coupling.

Heat sink. Insulator. µp Package. Heatsink is shown with parasitic coupling. X2Y Heatsink EMI Reduction Solution Summary Many OEM s have EMI problems caused by fast switching gates of IC devices. For end products sold to consumers, products must meet FCC Class B regulations for

More information

MC-1612 Hardware Design Guide

MC-1612 Hardware Design Guide LOCOSYS Technology Inc. MC-1612 Hardware Design Guide Version 1.0 Date: 2013/09/17 LOCOSYS Technology Inc. 1 General Rules for Design-in In order to obtain good GPS performances, there are some rules which

More information

Design for Guaranteed EMC Compliance

Design for Guaranteed EMC Compliance Clemson Vehicular Electronics Laboratory Reliable Automotive Electronics Automotive EMC Workshop April 29, 2013 Design for Guaranteed EMC Compliance Todd Hubing Clemson University EMC Requirements and

More information

PCB Design Guidelines for GPS chipset designs. Section 1. Section 2. Section 3. Section 4. Section 5

PCB Design Guidelines for GPS chipset designs. Section 1. Section 2. Section 3. Section 4. Section 5 PCB Design Guidelines for GPS chipset designs The main sections of this white paper are laid out follows: Section 1 Introduction Section 2 RF Design Issues Section 3 Sirf Receiver layout guidelines Section

More information

Designing Your EMI Filter

Designing Your EMI Filter The Engineer s Guide to Designing Your EMI Filter TABLE OF CONTENTS Introduction Filter Classifications Why Do We Need EMI Filters Filter Configurations 2 2 3 3 How to Determine Which Configuration to

More information

Advanced Topics in EMC Design. Issue 1: The ground plane to split or not to split?

Advanced Topics in EMC Design. Issue 1: The ground plane to split or not to split? NEEDS 2006 workshop Advanced Topics in EMC Design Tim Williams Elmac Services C o n s u l t a n c y a n d t r a i n i n g i n e l e c t r o m a g n e t i c c o m p a t i b i l i t y e-mail timw@elmac.co.uk

More information

DesignCon Control of Electromagnetic Radiation from Integrated Circuit Heat sinks. Cristian Tudor, Fidus Systems Inc.

DesignCon Control of Electromagnetic Radiation from Integrated Circuit Heat sinks. Cristian Tudor, Fidus Systems Inc. DesignCon 2009 Control of Electromagnetic Radiation from Integrated Circuit Heat sinks Cristian Tudor, Fidus Systems Inc. Cristian.Tudor@fidus.ca Syed. A. Bokhari, Fidus Systems Inc. Syed.Bokhari@fidus.ca

More information

EMC cases study. Antonio Ciccomancini Scogna, CST of America CST COMPUTER SIMULATION TECHNOLOGY

EMC cases study. Antonio Ciccomancini Scogna, CST of America CST COMPUTER SIMULATION TECHNOLOGY EMC cases study Antonio Ciccomancini Scogna, CST of America antonio.ciccomancini@cst.com Introduction Legal Compliance with EMC Standards without compliance products can not be released to the market Failure

More information

Advanced Transmission Lines. Transmission Line 1

Advanced Transmission Lines. Transmission Line 1 Advanced Transmission Lines Transmission Line 1 Transmission Line 2 1. Transmission Line Theory :series resistance per unit length in. :series inductance per unit length in. :shunt conductance per unit

More information

High-Speed PCB Design und EMV Minimierung

High-Speed PCB Design und EMV Minimierung TRAINING Bei dem hier beschriebenen Training handelt es sich um ein Cadence Standard Training. Sie erhalten eine Dokumentation in englischer Sprache. Die Trainingssprache ist deutsch, falls nicht anders

More information

Decoupling capacitor placement

Decoupling capacitor placement Decoupling capacitor placement Covered in this topic: Introduction Which locations need decoupling caps? IC decoupling Capacitor lumped model How to maximize the effectiveness of a decoupling cap Parallel

More information

Designing for Electromagnetic Interference (EMI) Compliance

Designing for Electromagnetic Interference (EMI) Compliance Designing for Electromagnetic Interference (EMI) Compliance Application Note by Tim Raper and Steve Knauber This application note describes how to integrate any microprocessor or microcontroller into an

More information

!"#$"%&' ()#*+,-+.&/0(

!#$%&' ()#*+,-+.&/0( !"#$"%&' ()#*+,-+.&/0( Multi Chip Modules (MCM) or Multi chip packaging Industry s first MCM from IBM. Generally MCMs are horizontal or two-dimensional modules. Defined as a single unit containing two

More information

High Speed Digital Systems Require Advanced Probing Techniques for Logic Analyzer Debug

High Speed Digital Systems Require Advanced Probing Techniques for Logic Analyzer Debug JEDEX 2003 Memory Futures (Track 2) High Speed Digital Systems Require Advanced Probing Techniques for Logic Analyzer Debug Brock J. LaMeres Agilent Technologies Abstract Digital systems are turning out

More information

PCB Design Guidelines for Reduced EMI

PCB Design Guidelines for Reduced EMI PCB Design Guidelines for Reduced EMI Guided By: Prof. Ruchi Gajjar Prepared By: Shukla Jay (13MECE17) Outline Power Distribution for Two-Layer Boards Gridding Power Traces on Two-Layer Boards Ferrite

More information

Intel 82566/82562V Layout Checklist (version 1.0)

Intel 82566/82562V Layout Checklist (version 1.0) Intel 82566/82562V Layout Checklist (version 1.0) Project Name Fab Revision Date Designer Intel Contact SECTION CHECK ITEMS REMARKS DONE General Ethernet Controller Obtain the most recent product documentation

More information

PI3HDMIxxx 4-Layer PCB Layout Guideline for HDMI Products

PI3HDMIxxx 4-Layer PCB Layout Guideline for HDMI Products PI3HDMIxxx 4-Layer PCB Layout Guideline for HDMI Products Introduction The differential trace impedance of HDMI is specified at 100Ω±15% in Test ID 8-8 in HDMI Compliance Test Specification Rev.1.2a and

More information

Advanced PCB design and layout for EMC - Part 5 Decoupling, including buried capacitance technology

Advanced PCB design and layout for EMC - Part 5 Decoupling, including buried capacitance technology Page 1 of 19 Advanced PCB design and layout for EMC - Part 5 Decoupling, including buried capacitance technology By Eur Ing Keith Armstrong C.Eng MIEE MIEEE, Cherry Clough Consultants This is the fifth

More information

Texas Instruments DisplayPort Design Guide

Texas Instruments DisplayPort Design Guide Texas Instruments DisplayPort Design Guide April 2009 1 High Speed Interface Applications Introduction This application note presents design guidelines, helping users of Texas Instruments DisplayPort devices

More information

High Speed Clock Distribution Design Techniques for CDC 509/516/2509/2510/2516

High Speed Clock Distribution Design Techniques for CDC 509/516/2509/2510/2516 High Speed Clock Distribution Design Techniques for CDC 509/516/2509/2510/2516 APPLICATION REPORT: SLMA003A Boyd Barrie Bus Solutions Mixed Signals DSP Solutions September 1998 IMPORTANT NOTICE Texas Instruments

More information

Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems. A Design Methodology

Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems. A Design Methodology Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems A Design Methodology The Challenges of High Speed Digital Clock Design In high speed applications, the faster the signal moves through

More information

Sectional Design Standard for High Density Interconnect (HDI) Printed Boards

Sectional Design Standard for High Density Interconnect (HDI) Printed Boards IPC-2226 ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES Sectional Design Standard for High Density Interconnect (HDI) Printed Boards Developed by the HDI Design Subcommittee (D-41) of the HDI Committee

More information

Predicting and Controlling Common Mode Noise from High Speed Differential Signals

Predicting and Controlling Common Mode Noise from High Speed Differential Signals Predicting and Controlling Common Mode Noise from High Speed Differential Signals Bruce Archambeault, Ph.D. IEEE Fellow, inarte Certified Master EMC Design Engineer, Missouri University of Science & Technology

More information

Design Techniques for EMC

Design Techniques for EMC Design Techniques for EMC Part 5 Printed Circuit Board (PCB) Design and Layout Originally published in the EMC Compliance Journal in 2006-9, and available from http://www.compliance-club.com/keitharmstrong.aspx

More information

DL-150 The Ten Habits of Highly Successful Designers. or Design for Speed: A Designer s Survival Guide to Signal Integrity

DL-150 The Ten Habits of Highly Successful Designers. or Design for Speed: A Designer s Survival Guide to Signal Integrity Slide -1 Ten Habits of Highly Successful Board Designers or Design for Speed: A Designer s Survival Guide to Signal Integrity with Dr. Eric Bogatin, Signal Integrity Evangelist, Bogatin Enterprises, www.bethesignal.com

More information

BASIS OF ELECTROMAGNETIC COMPATIBILITY OF INTEGRATED CIRCUIT Chapter VI - MODELLING PCB INTERCONNECTS Corrections of exercises

BASIS OF ELECTROMAGNETIC COMPATIBILITY OF INTEGRATED CIRCUIT Chapter VI - MODELLING PCB INTERCONNECTS Corrections of exercises BASIS OF ELECTROMAGNETIC COMPATIBILITY OF INTEGRATED CIRCUIT Chapter VI - MODELLING PCB INTERCONNECTS Corrections of exercises I. EXERCISE NO 1 - Spot the PCB design errors Spot the six design errors in

More information

DEPARTMENT FOR CONTINUING EDUCATION

DEPARTMENT FOR CONTINUING EDUCATION DEPARTMENT FOR CONTINUING EDUCATION Reduce EMI Emissions for FREE! by Bruce Archambeault, Ph.D. (reprinted with permission from Bruce Archambeault) Bruce Archambeault presents two courses during the University

More information

Hardware Design Considerations for MKW41Z/31Z/21Z BLE and IEEE Device

Hardware Design Considerations for MKW41Z/31Z/21Z BLE and IEEE Device NXP Semiconductors Document Number: AN5377 Application Note Rev. 2, Hardware Design Considerations for MKW41Z/31Z/21Z BLE and IEEE 802.15.4 Device 1. Introduction This application note describes Printed

More information

Design Fundamentals by A. Ciccomancini Scogna, PhD Suppression of Simultaneous Switching Noise in Power and Ground Plane Pairs

Design Fundamentals by A. Ciccomancini Scogna, PhD Suppression of Simultaneous Switching Noise in Power and Ground Plane Pairs Design Fundamentals by A. Ciccomancini Scogna, PhD Suppression of Simultaneous Switching Noise in Power and Ground Plane Pairs Photographer: Janpietruszka Agency: Dreamstime.com 36 Conformity JUNE 2007

More information

ANSYS CPS SOLUTION FOR SIGNAL AND POWER INTEGRITY

ANSYS CPS SOLUTION FOR SIGNAL AND POWER INTEGRITY ANSYS CPS SOLUTION FOR SIGNAL AND POWER INTEGRITY Rémy FERNANDES Lead Application Engineer ANSYS 1 2018 ANSYS, Inc. February 2, 2018 ANSYS ANSYS - Engineering simulation software leader Our industry reach

More information

Design Guide for High-Speed Controlled Impedance Circuit Boards

Design Guide for High-Speed Controlled Impedance Circuit Boards IPC-2141A ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES Design Guide for High-Speed Controlled Impedance Circuit Boards Developed by the IPC Controlled Impedance Task Group (D-21c) of the High Speed/High

More information

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction.

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. D. A. Weston EMC Consulting Inc 15-3-2013 1) First topic an introduction These are some of the commonly

More information

Class-D Audio Power Amplifiers: PCB Layout For Audio Quality, EMC & Thermal Success (Home Entertainment Devices)

Class-D Audio Power Amplifiers: PCB Layout For Audio Quality, EMC & Thermal Success (Home Entertainment Devices) Class-D Audio Power Amplifiers: PCB Layout For Audio Quality, EMC & Thermal Success (Home Entertainment Devices) Stephen Crump http://e2e.ti.com Audio Power Amplifier Applications Audio and Imaging Products

More information

Microcircuit Electrical Issues

Microcircuit Electrical Issues Microcircuit Electrical Issues Distortion The frequency at which transmitted power has dropped to 50 percent of the injected power is called the "3 db" point and is used to define the bandwidth of the

More information

PI3DPX1207B Layout Guideline. Table of Contents. 1 Layout Design Guideline Power and GROUND High-speed Signal Routing...

PI3DPX1207B Layout Guideline. Table of Contents. 1 Layout Design Guideline Power and GROUND High-speed Signal Routing... PI3DPX1207B Layout Guideline Table of Contents 1 Layout Design Guideline... 2 1.1 Power and GROUND... 2 1.2 High-speed Signal Routing... 3 2 PI3DPX1207B EVB layout... 8 3 Related Reference... 8 Page 1

More information

Frequently Asked EMC Questions (and Answers)

Frequently Asked EMC Questions (and Answers) Frequently Asked EMC Questions (and Answers) Elya B. Joffe President Elect IEEE EMC Society e-mail: eb.joffe@ieee.org December 2, 2006 1 I think I know what the problem is 2 Top 10 EMC Questions 10, 9

More information

The Ground Myth IEEE. Bruce Archambeault, Ph.D. IBM Distinguished Engineer, IEEE Fellow 18 November 2008

The Ground Myth IEEE. Bruce Archambeault, Ph.D. IBM Distinguished Engineer, IEEE Fellow 18 November 2008 The Ground Myth Bruce Archambeault, Ph.D. IBM Distinguished Engineer, IEEE Fellow barch@us.ibm.com 18 November 2008 IEEE Introduction Electromagnetics can be scary Universities LOVE messy math EM is not

More information

Signal Integrity, Part 1 of 3

Signal Integrity, Part 1 of 3 by Barry Olney feature column BEYOND DESIGN Signal Integrity, Part 1 of 3 As system performance increases, the PCB designer s challenges become more complex. The impact of lower core voltages, high frequencies

More information

Understanding the Unintended Antenna Behavior of a Product

Understanding the Unintended Antenna Behavior of a Product Understanding the Unintended Antenna Behavior of a Product Colin E. Brench Southwest Research Institute Electromagnetic Compatibility Research and Testing colin.brench@swri.org Radiating System Source

More information

FPGA World Conference Stockholm 08 September John Steinar Johnsen -Josse- Senior Technical Advisor

FPGA World Conference Stockholm 08 September John Steinar Johnsen -Josse- Senior Technical Advisor FPGA World Conference Stockholm 08 September 2015 John Steinar Johnsen -Josse- Senior Technical Advisor Agenda FPGA World Conference Stockholm 08 September 2015 - IPC 4101C Materials - Routing out from

More information

HT32 Series Crystal Oscillator, ADC Design Note and PCB Layout Guide

HT32 Series Crystal Oscillator, ADC Design Note and PCB Layout Guide HT32 Series rystal Oscillator, AD Design Note and PB Layout Guide HT32 Series rystal Oscillator, AD Design Note and PB Layout Guide D/N:AN0301E Introduction This application note provides some hardware

More information

A VIEW OF ELECTROMAGNETIC LIFE ABOVE 100 MHz

A VIEW OF ELECTROMAGNETIC LIFE ABOVE 100 MHz A VIEW OF ELECTROMAGNETIC LIFE ABOVE 100 MHz An Experimentalist's Intuitive Approach Lothar O. (Bud) Hoeft, PhD Consultant, Electromagnetic Effects 5012 San Pedro Ct., NE Albuquerque, NM 87109-2515 (505)

More information

Investigation of Electromagnetic Field Coupling from DC-DC Buck Converters to Automobile AM/FM Antennas

Investigation of Electromagnetic Field Coupling from DC-DC Buck Converters to Automobile AM/FM Antennas CST North American Automotive Workshop Investigation of Electromagnetic Field Coupling from DC-DC Buck Converters to Automobile AM/FM Antennas Patrick DeRoy, CST of America, Framingham, Massachusetts,

More information

Freescale Semiconductor, I

Freescale Semiconductor, I Order this document by /D Noise Reduction Techniques for Microcontroller-Based Systems By Imad Kobeissi Introduction With today s advancements in semiconductor technology and the push toward faster microcontroller

More information

EMI Filters Demystified. By William R. Bill Limburg February 21, 2018 Phoenix Chapter, IEEE EMC Society

EMI Filters Demystified. By William R. Bill Limburg February 21, 2018 Phoenix Chapter, IEEE EMC Society EMI Filters Demystified By William R. Bill Limburg February 21, 2018 Phoenix Chapter, IEEE EMC Society An EMI Filter Defined An EMI filter is a network designed to prevent unwanted electrical conducted

More information

White paper. High speed and RF PCB routing : Best practises and recommandations

White paper. High speed and RF PCB routing : Best practises and recommandations ALCIOM 5, Parvis Robert Schuman 92370 CHAVILLE - FRANCE Tel/Fax : 01 47 09 30 51 contact@alciom.com www.alciom.com Projet : White paper DOCUMENT : High speed and RF PCB routing : Best practises and recommandations

More information

Plane Crazy, Part 2 BEYOND DESIGN. by Barry Olney

Plane Crazy, Part 2 BEYOND DESIGN. by Barry Olney by Barry Olney column BEYOND DESIGN Plane Crazy, Part 2 In my recent four-part series on stackup planning, I described the best configurations for various stackup requirements. But I did not have the opportunity

More information

EMC & Wireless Device Requirements and Compliance Design Seminar

EMC & Wireless Device Requirements and Compliance Design Seminar EMC & Wireless Device Requirements and Compliance Design Seminar Learn how to reduce the time and cost of product compliance Get in-depth training on: Wireless and digital device approvals process Current

More information

Modeling and Simulation of Powertrains for Electric and Hybrid Vehicles

Modeling and Simulation of Powertrains for Electric and Hybrid Vehicles Modeling and Simulation of Powertrains for Electric and Hybrid Vehicles Dr. Marco KLINGLER PSA Peugeot Citroën Vélizy-Villacoublay, FRANCE marco.klingler@mpsa.com FR-AM-5 Background The automotive context

More information

Choosing and using filters

Choosing and using filters Page 1 of 8 Choosing and using filters By Eur Ing Keith Armstrong CEng MIEE MIEEE How does a designer select which filter to use for which application? This article aims to help him or her make these decisions.

More information

High-Speed PCB Design Considerations

High-Speed PCB Design Considerations December 2006 Introduction High-Speed PCB Design Considerations Technical Note TN1033 The backplane is the physical interconnection where typically all electrical modules of a system converge. Complex

More information

Controlled Impedance Test

Controlled Impedance Test Controlled Impedance Test by MARTYN GAUDION The increasing requirement for controlled impedance PCBs is well documented. As more designs require fast data rates, and shrinking dies on new silicon mean

More information

EMI/EMC of Entire Automotive Vehicles and Critical PCB s. Makoto Suzuki Ansoft Corporation

EMI/EMC of Entire Automotive Vehicles and Critical PCB s. Makoto Suzuki Ansoft Corporation EMI/EMC of Entire Automotive Vehicles and Critical PCB s Makoto Suzuki Ansoft Corporation WT10_SI EMI/EMC of Entire Automotive Vehicles and Critical PCB s Akira Ohta, Toru Watanabe, Benson Wei Makoto Suzuki

More information

Electromagnetic Compatibility Engineering. Henry W. Ott Henry Ott Consultants

Electromagnetic Compatibility Engineering. Henry W. Ott Henry Ott Consultants Electromagnetic Compatibility Engineering Henry W. Ott Henry Ott Consultants Electromagnetic Compatibility Engineering Electromagnetic Compatibility Engineering Henry W. Ott Henry Ott Consultants Copyright

More information

Electromagnetic Compatibility Engineering

Electromagnetic Compatibility Engineering Electromagnetic Compatibility Engineering Electromagnetic Compatibility Engineering Henry W. Ott Henry Ott Consultants Copyright r 2009 by John Wiley & Sons, Inc. All rights reserved. Published by John

More information

Facility Grounding & Bonding Based on the EMC/PI/SI Model for a High Speed PCB/Cabinet

Facility Grounding & Bonding Based on the EMC/PI/SI Model for a High Speed PCB/Cabinet Facility Grounding & Bonding Based on the EMC/PI/SI Model for a High Speed PCB/Cabinet and: SILICON LABS AN203 PRINTED CIRCUIT BOARD DESIGN NOTES www.silabs.com William Bush (wbush@ieee.org) Industry Consultant

More information

BIRD 74 - recap. April 7, Minor revisions Jan. 22, 2009

BIRD 74 - recap. April 7, Minor revisions Jan. 22, 2009 BIRD 74 - recap April 7, 2003 Minor revisions Jan. 22, 2009 Please direct comments, questions to the author listed below: Guy de Burgh, EM Integrity mail to: gdeburgh@nc.rr.com (919) 457-6050 Copyright

More information

Understanding, measuring, and reducing output noise in DC/DC switching regulators

Understanding, measuring, and reducing output noise in DC/DC switching regulators Understanding, measuring, and reducing output noise in DC/DC switching regulators Practical tips for output noise reduction Katelyn Wiggenhorn, Applications Engineer, Buck Switching Regulators Robert Blattner,

More information

Todd H. Hubing Michelin Professor of Vehicular Electronics Clemson University

Todd H. Hubing Michelin Professor of Vehicular Electronics Clemson University Essential New Tools for EMC Diagnostics and Testing Todd H. Hubing Michelin Professor of Vehicular Electronics Clemson University Where is Clemson University? Clemson, South Carolina, USA Santa Clara Valley

More information

150Hz to 1MHz magnetic field coupling to a typical shielded cable above a ground plane configuration

150Hz to 1MHz magnetic field coupling to a typical shielded cable above a ground plane configuration 150Hz to 1MHz magnetic field coupling to a typical shielded cable above a ground plane configuration D. A. Weston Lowfreqcablecoupling.doc 7-9-2005 The data and information contained within this report

More information

1. TABLE OF FIGURES APPLICATION NOTE OVERVIEW EMI...5

1. TABLE OF FIGURES APPLICATION NOTE OVERVIEW EMI...5 APPLICATION NOTE 8.7 Rev 1.0 General Guidelines for Reduced Electromagnetic Interference utilizing the SMSC LAN83C175 EPIC 10/100 Mbps Ethernet Controller and Physical Layer Devices By Thomas Greene and

More information

6 Measuring radiated and conducted RF emissions

6 Measuring radiated and conducted RF emissions 1of 9 Close-field probing series Webinar #2 of 2, March 26, 2014 in every project stage: emissions, immunity and much more Keith Armstrong CEng, EurIng, FIET, Senior MIEEE, ACGI Presenter Contact Info

More information

MINIMIZING EMI EFFECTS DURING PCB LAYOUT OF Z8/Z8PLUS CIRCUITS

MINIMIZING EMI EFFECTS DURING PCB LAYOUT OF Z8/Z8PLUS CIRCUITS APPLICATION NOTE MINIMIZING EMI EFFECTS DURING PCB LAYOUT OF Z8/Z8PLUS CIRCUITS INTRODUCTION The Z8/Z8Plus families have redefined ease-of-use by being the simplest 8-bit microcontrollers to program. Combined

More information

HOW SMALL PCB DESIGN TEAMS CAN SOLVE HIGH-SPEED DESIGN CHALLENGES WITH DESIGN RULE CHECKING MENTOR GRAPHICS

HOW SMALL PCB DESIGN TEAMS CAN SOLVE HIGH-SPEED DESIGN CHALLENGES WITH DESIGN RULE CHECKING MENTOR GRAPHICS HOW SMALL PCB DESIGN TEAMS CAN SOLVE HIGH-SPEED DESIGN CHALLENGES WITH DESIGN RULE CHECKING MENTOR GRAPHICS H I G H S P E E D D E S I G N W H I T E P A P E R w w w. p a d s. c o m INTRODUCTION Coping with

More information

Demystifying Vias in High-Speed PCB Design

Demystifying Vias in High-Speed PCB Design Demystifying Vias in High-Speed PCB Design Keysight HSD Seminar Mastering SI & PI Design db(s21) E H What is Via? Vertical Interconnect Access (VIA) An electrical connection between layers to pass a signal

More information

Differential Signaling is the Opiate of the Masses

Differential Signaling is the Opiate of the Masses Differential Signaling is the Opiate of the Masses Sam Connor Distinguished Lecturer for the IEEE EMC Society 2012-13 IBM Systems & Technology Group, Research Triangle Park, NC My Background BSEE, University

More information

Comparison of IC Conducted Emission Measurement Methods

Comparison of IC Conducted Emission Measurement Methods IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 52, NO. 3, JUNE 2003 839 Comparison of IC Conducted Emission Measurement Methods Franco Fiori, Member, IEEE, and Francesco Musolino, Member, IEEE

More information

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1 Contents 1 FUNDAMENTAL CONCEPTS 1 1.1 What is Noise Coupling 1 1.2 Resistance 3 1.2.1 Resistivity and Resistance 3 1.2.2 Wire Resistance 4 1.2.3 Sheet Resistance 5 1.2.4 Skin Effect 6 1.2.5 Resistance

More information

Technical Report Printed Circuit Board Decoupling Capacitor Performance For Optimum EMC Design

Technical Report Printed Circuit Board Decoupling Capacitor Performance For Optimum EMC Design Technical Report Printed Circuit Board Decoupling Capacitor Performance For Optimum EMC Design Bruce Archambeault, Ph.D. Doug White Personal Systems Group Electromagnetic Compatibility Center of Competency

More information

X2Y versus CM Chokes and PI Filters. Content X2Y Attenuators, LLC

X2Y versus CM Chokes and PI Filters. Content X2Y Attenuators, LLC X2Y versus CM Chokes and PI Filters 1 Common Mode and EMI Most EMI compliance problems are common mode emissions. Only 10 s of uas in external cables are enough to violate EMC standards. 2 Common Mode

More information

Good RF bonding techniques for cabinets

Good RF bonding techniques for cabinets Another EMC resource from EMC Standards Good RF bonding techniques for cabinets Helping you solve your EMC problems 9 Bracken View, Brocton, Stafford ST17 0TF T:+44 (0) 1785 660247 E:info@emcstandards.co.uk

More information

Shielding effects of Coplanar Waveguide over Ground

Shielding effects of Coplanar Waveguide over Ground Shielding effects of Coplanar Waveguide over Ground By: Steve Hageman www.analoghome.com Now that we have gotten through all that design work [1], some might ask, why go to all the bother with CPWG (Coplanar

More information

8. QDR II SRAM Board Design Guidelines

8. QDR II SRAM Board Design Guidelines 8. QDR II SRAM Board Design Guidelines November 2012 EMI_DG_007-4.2 EMI_DG_007-4.2 This chapter provides guidelines for you to improve your system's signal integrity and layout guidelines to help successfully

More information

FPA Printed Circuit Board Layout Guidelines

FPA Printed Circuit Board Layout Guidelines APPLICATION NOTE AN:005 FPA Printed Circuit Board Layout Guidelines Paul Yeaman Principal Product Line Engineer VI Chip Strategic Accounts Contents Page Introduction 1 The Importance of Board Layout 1

More information

AN4819 Application note

AN4819 Application note Application note PCB design guidelines for the BlueNRG-1 device Introduction The BlueNRG1 is a very low power Bluetooth low energy (BLE) single-mode system-on-chip compliant with Bluetooth specification

More information

Flip-Chip for MM-Wave and Broadband Packaging

Flip-Chip for MM-Wave and Broadband Packaging 1 Flip-Chip for MM-Wave and Broadband Packaging Wolfgang Heinrich Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) Berlin / Germany with contributions by F. J. Schmückle Motivation Growing markets

More information