Frequency Domain Prediction of Conducted EMI in Power Converters with. front-end Three-phase Diode-bridge

Size: px
Start display at page:

Download "Frequency Domain Prediction of Conducted EMI in Power Converters with. front-end Three-phase Diode-bridge"

Transcription

1 Frequency Domain Prediction of Conducted EMI in Power Converters with front-end Junsheng Wei, Dieter Gerling Universitaet der Bundeswehr Muenchen Neubiberg, Germany Marek Galek Siemens Corporate Technology Munich, Germany Keywords: EMC/EMI, Three-phase System, Diode, Simulation Abstract This paper investigates the frequency domain prediction of conducted EMI within power converters supplied by front-end three-phase diode-bridge. Noise source, noise propagation path and noise receiver are identified. Difficulty due to the presence of diode-bridge is analyzed and a method is proposed and verified by measurement to take the variation of propagation path into account while still enable the simulation to be carried out in frequency domain. 1. Introduction Conducted EMI has been important concern during the design phase of power converters since certain limits are defined by international standards committee to ensure that the emission will not endanger other equipment in the vicinity. In order to adopt measures as early as possible in the design phase and preserve the possibility of optimally solving the EMI problem, prediction of the EMI performance of power converter is desired. Even though there exists behavioral modeling of the conducted EMI [1], to consider the EMI problem and test certain measures in the design phase, physical modeling is preferred. With the parameters extractions based on numerical methods [2] or measurement [3], the system can be simulated in time domain (TD) [2] or frequency domain (FD) [4] [5]. It is observed that the time required for TD simulation is still too long for optimization purpose and therefore the possibility to carry out the prediction in FD should be investigated. FD prediction has been investigated in literature for different types of converters. However, none of them deals with converters with three-phase diode-bridge as front-end while this type of converters plays also important role as they are widely applied in industry application due to the high power characteristic. As discussed in [6], the presence of three-phase diode-bridge implies time varying propagation path and could lead to difficulty in identifying noise appearing at the line impedance stabilization network (LISN), especially with the effects of different detector types. This paper is therefore dedicated to discuss the identification of noise source, noise propagation and noise receiver for FD simulation on a power electronics circuit which consists of three-phase diode-bridge as front-end and a boost converter to emulate constant load for power factor correction. EPE'13 ECCE Europe ISBN: and P.1

2 This paper is organized as following: in second chapter the analysis and identification of noise source, noise propagation path and noise receiver are carried out by investigating the typical measurement environment for conducted EMI; in third chapter, based on the analysis the modeling for separate parts are proposed, especially the propagation path is modeled with a novel method to take into account its characteristic and describe it in frequency domain; latter in forth chapter validation of used method is made by comparing predicted and measured results; at the end conclusions are given in last chapter. 2. Identification of components according to EMI mechanism To carry out prediction, especially based on frequency domain simulation, the noise source, noise propagation path and noise receiver must be firstly identified. With knowledge of different components in these parts, the final spectrum shown can be calculated as Eq. 1 in frequency domain. Here U represents the spectrum of voltage at receiver and S represents the spectrum of noise source while T represents the transfer function of propagation path. U ( f ) S( f ) T ( f ) = Eq. 1 The definition of components according to EMI mechanism can be done by analyzing the conducted EMI measurement environment as Fig. 1 shows. According to CISPR [7], the conducted EMI measurement consists of test receiver, line impedance stabilization network (LISN), device under test (DUT), load and ground plane. The EMI noise is generated by the DUT and more specifically by the high speed switching of semiconductors. Propagation path as indicated in mechanism in Fig. 1 includes inductive and capacitive paths and both provide channels for transferring EMI noise to the receiver. The LISN is typical device used to provide stable grid side impedance at different frequencies and it can also be considered as part of propagation path. The noise receiver is the test receiver, which has different detector functions implemented inside and senses the voltage in LISN. Fig. 1 Conducted EMI test environment and EMI mechanism 3. Modeling of three-phase power converter with diode-bridge as front-end Regarding the investigated object as shown in Fig. 2, there are two types of semiconductors inside: diode and MOSFET. The switching speed of MOSFET is much faster than that of diode since MOSFET is controlled by gate voltage while diode changes its state only according to the voltage across it, which is rather smooth. The main source of noise caused by the switching of the MOSFET EPE'13 ECCE Europe ISBN: and P.2

3 can be modeled by an equivalent voltage source representing the voltage across drain and source of the device. Therefore, if the noise source is identified as the MOSFET and by extracting it from the circuit, the remain part can be considered as propagation path which consists of boost inductor, boost diode, rectifier diode-bridge, output capacitor, output resistor, LISN as well as associated parasitic elements such as stray inductance due to PCB and stray capacitance from each part to earth. EMI receiver is the device to record noise level and should be modeled to represent detector effects. Fig. 2 Converter circuit with front-end three-phase diode-bridge 3.1 Modeling of noise source and receiver The voltage across drain and source points of MOSFET changes between voltages on the two DC buses. Trapezoidal waveform is a well-known practice to represent this voltage and together with the parasitic components like parasitic inductance of copper connection and output capacitance of the MOSFET, ringing is observed which influences the conducted EMI level in high frequency range [4]. With information about gate circuit and datasheet of MOSFET, the slope rate of trapezoidal waveform can be calculated. An illustration of trapezoidal waveform and the induced ringing due to parasitic parameters can be seen in Fig. 3. With trapezoidal waveform for the equivalent source an assumption of perfect filtering with the output capacitors is made. In order to take into account the imperfection of output capacitors, an additional noise source using the current source which has the current form as at inductor is fed into the output stage and the resulting current in the output capacitors is then coupled back to the input stage. Fig. 3 Modeling of noise source with trapezoidal waveform (left: without ringing; right: with ringing) In a standard EMI test environment, LISN and EMI receiver are used. They can be modeled with equivalent circuit in the propagation path and signal processing in, e.g. Matlab. The equivalent circuit of LISN is set according to definition in CISPR [7], see Fig. 4. Signal processing to emulate the detector procedure in EMI receiver is shown in Fig. 5 [8]. EPE'13 ECCE Europe ISBN: and P.3

4 Fig. 4 Equivalent circuit of LISN 3.2 Modeling of propagation path Fig. 5 Signal processing procedure to emulate detector effects Concerning the propagation path, the main difficulty is imposed by the existence of semiconductors in the circuit. The semiconductors introduce both nonlinearity and time-variation. The MOSFET has been replaced by the equivalent noise source and what has more influences on the propagation path is now the diode-bridge. For three-phase diode-bridge, depending on whether the diode is conducting or blocking, there are 12 different possibilities of conduction patterns as illustrated in Fig. 6. These possibilities appear in different spans in the time frame. Considering that for taking the detectors effects into account as explained with Fig. 7, the time domain information is also required. Therefore this variation can not be simply ignored. Fig. 6 Variation of conduction pattern caused by three-phase diode-bridge EPE'13 ECCE Europe ISBN: and P.4

5 Fig. 7 Different detector effects on signal Since FD simulation is, from its essence, only suitable for linear time invariant (LTI) system, method should be used to take the variation into account while enable the simulation to be carried out in FD with consideration of detector effects. As discussed in [9], approximations can be made so that the combined simulation in time and frequency domain approximates the real response of system. Such approximations introduce additional errors and the result is a compromise of simulation speed and accuracy. In order to include the characteristic accurately and enable real frequency domain simulation, in the following a new method is proposed. Firstly, the performance of diode is actually non-linear and the junction capacitance depends on the reverse voltage across. To enforce linearity, the diode is approximated as forward resistance when conducting and a constant capacitance when blocking. To model the time varying characteristic of propagation path, the system is reconstructed as in Fig. 8. It means that the response of time varying system is actually the sum of set of time invariant systems. Therefore, in time domain, the response can be calculated as Eq. 2 while transformed into frequency domain, Eq. 3 can be obtained. Np Fig. 8 Structure of time varying system represented by time invariant system Np Eq. 2 yt () = y () t = G{ ut ()} b() t p p p p= 0 p= 0 Np Np Eq. 3 Ys () = Y() s= [( G() s Us () B()] s p p p p= 0 p= 0 4. Validation of frequency domain prediction With the model described above, the spectrum received at the LISN is calculated. Fast Fourier transformation is used then to get time domain waveform and effects of detectors can be applied to get the output as would be shown on EMI receiver. Simulation result using this method is shown for peak detector together with simulation result from time domain simulation and measurement for EPE'13 ECCE Europe ISBN: and P.5

6 comparison in Fig. 9. A comparison of results with average detector between FD, TD simulation and measurement is provided in Fig. 10. These comparisons confirm the effectiveness of the used method. Compared to the TD simulation, in high frequency range the accuracy of FD simulation is significantly improved. This is because of the use of complex cable model in FD simulation, which is not possible to implement in TD simulation otherwise extreme long simulation time and convergence problem may occur. As an important advantage of FD simulation, the simulation time has been reduced drastically compared to that of TD simulation. The TD simulation time is in the order of several hours for the system because of the small time step used and lots of parasitic components inside the simulation model. The FD simulation time is about 20 minutes. The short simulation time of FD simulation makes it suitable to be used for test of possible measures to improve EMI performance. Fig. 9 Peak detector results of FD (top), TD (middle) simulation and measurement (bottom) EPE'13 ECCE Europe ISBN: and P.6

7 Frequency Domain Prediction of Conducted EMI in Power Converters with front-end Fig. 10 Average detector results of FD (top), TD (middle) simulation and measurement (bottom) 5. Conclusion Prediction of conducted EMI in power converters during developing process necessitates effective methodology. Due to the long simulation time required by TD simulation, attention is turned to FD simulation. This paper has presented the method to simulate conducted EMI accurately, based on analysis and identification of noise source, noise propagation path and noise receiver. A novel approach has been used to model the propagation path in FD by considering it as a linear-time-varying system and thus the variation brought by diode-bridge is taken into account. The method is applied for a test object consisting of three-phase diode-bridge and boost converter. Comparisons of conducted EMI levels using peak and average detector between FD simulation, TD simulation and measurement EPE'13 ECCE Europe ISBN: and P.7

8 validate the effectiveness of used method. The used method, compared to existing methods, helps to improve the accuracy of FD simulation. The fast simulation speed of FD simulation makes it also suitable to be used in developing process for optimization purpose. References [1] L. Qian, W. Fei, and D. Boroyevich, "Modular-Terminal-Behavioral (MTB) Model for Characterizing Switching Module Conducted EMI Generation in Converter Systems," Power Electronics, IEEE Transactions on, vol. 21, pp , [2] J. Wei and D. Gerling, "Prediction of Conducted EMI in Power Converters Using Numerical Methods," presented at the 15th International Power Electronics and Motion Control Conference, EPE-PEMC 2012 ECCE Europe, Novi Sad, Serbia, [3] Y. Liyu, L. Bing, D. Wei, L. Zhiguo, X. Ming, F. C. Lee, and W. G. Odendaal, "Modeling and characterization of a 1 KW CCM PFC converter for conducted EMI prediction," in Applied Power Electronics Conference and Exposition, APEC '04. Nineteenth Annual IEEE, 2004, pp vol.2. [4] L. Jih-Sheng, H. Xudong, E. Pepa, C. Shaotang, and T. W. Nehl, "Inverter EMI modeling and simulation methodologies," Industrial Electronics, IEEE Transactions on, vol. 53, pp , [5] W. J. E. Hoene, M. Michel, H. Reichl, "Evaluation and Prediction of Conducted Electromagnetic Interference Generated by High Power Density Inverters," in the EPE 2001, Graz, Austria, [6] W. Shen, F. Wang, and D. Boroyevich, "Conducted EMI characteristic and its implications to filter design in 3-phase diode front-end converters," in Industry Applications Conference, th IAS Annual Meeting. Conference Record of the 2004 IEEE, 2004, pp vol.3. [7] "CISPR 16-1: Specification for radio disturbance and immunity measuring apparatus and methods," [8] "Spectrum Analysis Basics," Application Note, Agilent Technologies. [9] J. Wei, D. Gerling, and M. Galek, "Prediction of Conducted EMI in Power Converter with front-end in Frequency Domain," in the PCIM Europe, Nuernberg, EPE'13 ECCE Europe ISBN: and P.8

Prediction of Conducted EMI in Power Converters Using Numerical Methods

Prediction of Conducted EMI in Power Converters Using Numerical Methods 15th International Power Electronics and Motion Control Conference, EPE-PEMC 2012 ECCE Europe, Novi Sad, Serbia Prediction of Conducted EMI in Power Converters Using Numerical Methods Junsheng Wei 1, Dieter

More information

S-Parameters Characterization and Sequence Model of Three-phase EMI Filter

S-Parameters Characterization and Sequence Model of Three-phase EMI Filter S-Parameters Characterization and Sequence Model of Three-phase EM Filter Junsheng Wei, Dieter Gerling nstitute of Electrical Drives and Actuators Universitaet der Bundeswehr Muenchen Neubiberg, Germany

More information

About the High-Frequency Interferences produced in Systems including PWM and AC Motors

About the High-Frequency Interferences produced in Systems including PWM and AC Motors About the High-Frequency Interferences produced in Systems including PWM and AC Motors ELEONORA DARIE Electrotechnical Department Technical University of Civil Engineering B-dul Pache Protopopescu 66,

More information

Mitigation of Common mode Noise for PFC Boost Converter by Balancing Technique

Mitigation of Common mode Noise for PFC Boost Converter by Balancing Technique Mitigation of Common mode Noise for PFC Boost Converter by Balancing Technique Nasir *, Jon Cobb *Faculty of Science and Technology, Bournemouth University, Poole, UK, nasir@bournemouth.ac.uk, Faculty

More information

Better understanding EMI generation of power converters

Better understanding EMI generation of power converters Better understanding EMI generation of power converters Piotr Musznicki 1 Jean-Luc Schanen 2 Pierre Granjon 3 Piotr Chrzan 1 senior member IEEE 1. Politechnika Gdanska, Wydział Electrotechniki i Automatyki

More information

EMI Noise Prediction for Electronic Ballasts

EMI Noise Prediction for Electronic Ballasts EMI Noise Prediction for Electronic Ballasts Florian Giezendanner*, Jürgen Biela*, Johann Walter Kolar*, Stefan Zudrell-Koch** *Power Electronic Systems Laboratory, ETH Zurich, Zurich, Switzerland **TridonicAtco

More information

Design of EMI Filters for DC-DC converter

Design of EMI Filters for DC-DC converter Design of EMI Filters for DC-DC converter J. L. Kotny*, T. Duquesne**, N. Idir** Univ. Lille Nord de France, F-59000 Lille, France * USTL, F-59650 Villeneuve d Ascq, France ** USTL, L2EP, F-59650 Villeneuve

More information

CHAPTER 2 EQUIVALENT CIRCUIT MODELING OF CONDUCTED EMI BASED ON NOISE SOURCES AND IMPEDANCES

CHAPTER 2 EQUIVALENT CIRCUIT MODELING OF CONDUCTED EMI BASED ON NOISE SOURCES AND IMPEDANCES 29 CHAPTER 2 EQUIVALENT CIRCUIT MODELING OF CONDUCTED EMI BASED ON NOISE SOURCES AND IMPEDANCES A simple equivalent circuit modeling approach to describe Conducted EMI coupling system for the SPC is described

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

EMI Model of an AC/AC Power Converter

EMI Model of an AC/AC Power Converter EMI Model of an AC/AC Power Converter Jordi Espina, Josep Balcells, Antoni Arias, Carlos Ortega 2 and Nestor Berbel ) Universitat Politècnica de Catalunya, 2) Escola Universitària Salesiana de Sarrià Electronic

More information

The Causes and Impact of EMI in Power Systems; Part 1. Chris Swartz

The Causes and Impact of EMI in Power Systems; Part 1. Chris Swartz The Causes and Impact of EMI in Power Systems; Part Chris Swartz Agenda Welcome and thank you for attending. Today I hope I can provide a overall better understanding of the origin of conducted EMI in

More information

T + T /13/$ IEEE 236. the inverter s input impedances on the attenuation of a firstorder

T + T /13/$ IEEE 236. the inverter s input impedances on the attenuation of a firstorder Emulation of Conducted Emissions of an Automotive Inverter for Filter Development in HV Networks M. Reuter *, T. Friedl, S. Tenbohlen, W. Köhler Institute of Power Transmission and High Voltage Technology

More information

Application of Random PWM Technique for Reducing EMI

Application of Random PWM Technique for Reducing EMI International Research Journal of Applied and Basic Sciences 2013 Available online at www.irjabs.com ISSN 2251-838X / Vol, 6 (9): 1237-1242 Science Explorer Publications Application of Random PWM Technique

More information

Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches

Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches Angel Marinov 1 1 Technical University of Varna, Studentska street 1, Varna,

More information

Fig. 4. Modeling structure of the evaluation system. rating is tri-phase 400V rms and 10 kw. B. Composition of a main circuit Main circuit composition

Fig. 4. Modeling structure of the evaluation system. rating is tri-phase 400V rms and 10 kw. B. Composition of a main circuit Main circuit composition EMI prediction method for SiC inverter by the modeling of structure and the accurate model of power device Sari Maekawa, Junichi Tsuda, Atsuhiko Kuzumaki, Shuhei Matsumoto, Hiroshi Mochikawa TOSHIBA CORPORATION

More information

A Novel Measurement System for the Common-Mode- and Differential-Mode-Conducted Electromagnetic Interference

A Novel Measurement System for the Common-Mode- and Differential-Mode-Conducted Electromagnetic Interference Progress In Electromagnetics Research Letters, Vol. 48, 75 81, 014 A Novel Measurement System for the Common-Mode- and Differential-Mode-Conducted Electromagnetic Interference Qiang Feng *, Cheng Liao,

More information

ELECTROMAGNETIC interference (EMI) filters have

ELECTROMAGNETIC interference (EMI) filters have IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 2, FEBRUARY 2008 949 Effects of X Capacitors on EMI Filter Effectiveness Hung-I Hsieh, Student Member, IEEE, Jhong-Shu Li, and Dan Chen, Fellow,

More information

Efficient HF Modeling and Model Parameterization of Induction Machines for Time and Frequency Domain Simulations

Efficient HF Modeling and Model Parameterization of Induction Machines for Time and Frequency Domain Simulations Efficient HF Modeling and Model Parameterization of Induction Machines for Time and Frequency Domain Simulations M. Schinkel, S. Weber, S. Guttowski, W. John Fraunhofer IZM, Dept.ASE Gustav-Meyer-Allee

More information

ENERGY CABLE MODELING UNDER POWER ELECTRONIC CONVERTER CONSTRAINTS

ENERGY CABLE MODELING UNDER POWER ELECTRONIC CONVERTER CONSTRAINTS ENERGY CABLE MODELING UNDER POWER ELECTRONIC CONVERTER CONSTRAINTS Yannick WEENS, USTL - L2EP, (France), yannick.weens@ed-univ-lille1.fr Nadir IDIR, USTL - L2EP, (France), nadir.idir@univ-lille1.fr Jean

More information

Parallel Resonance Effect on Conducted Cm Current in Ac/Dc Power Supply

Parallel Resonance Effect on Conducted Cm Current in Ac/Dc Power Supply International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 6 ǁ June. 2013 ǁ PP.31-35 Parallel Resonance Effect on Conducted Cm Current in Ac/Dc

More information

Conducted EMI Issues in a 600-W Single-Phase Boost PFC Design

Conducted EMI Issues in a 600-W Single-Phase Boost PFC Design 578 IEEE TRANSACTIONS ON INDUSTRY APPLICATION, VOL. 36, NO. 2, MARCH/APRIL 2000 Conducted EMI Issues in a 600-W Single-Phase Boost PFC Design Leopoldo Rossetto, Member, IEEE, Simone Buso, Member, IEEE,

More information

High Frequency Isolated Series Parallel Resonant Converter

High Frequency Isolated Series Parallel Resonant Converter Indian Journal of Science and Technology, Vol 8(15), DOI: 10.17485/ijst/2015/v8i15/52311, July 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 High Frequency Isolated Series Parallel Resonant Converter

More information

Resonance Analysis Focusing on Stray Inductance and Capacitance of Laminated Bus Bars

Resonance Analysis Focusing on Stray Inductance and Capacitance of Laminated Bus Bars IEEJ Journal of Industry Applications Vol.5 No.6 pp.407 42 DOI: 0.54/ieejjia.5.407 Paper Resonance Analysis Focusing on Stray Inductance and Capacitance of Laminated Bus Bars Akihiro Hino Member, Keiji

More information

Triple Pulse Tester - Efficient Power Loss Characterization of Power Modules

Triple Pulse Tester - Efficient Power Loss Characterization of Power Modules Triple Pulse Tester - Efficient Power Loss Characterization of Power Modules Ionut Trintis 1, Thomas Poulsen 1, Szymon Beczkowski 1, Stig Munk-Nielsen 1, Bjørn Rannestad 2 1 Department of Energy Technology

More information

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India Design and Development of Single Phase Bridgeless Three Stage Interleaved Boost Converter with Fuzzy Logic Control System M.Pradeep kumar 1, M.Ramesh kannan 2 1 Student Department of EEE (M.E-PED), 2 Assitant

More information

Investigation of Parasitic Turn-ON in Silicon IGBT and Silicon Carbide MOSFET Devices: A Technology Evaluation. Acknowledgements. Keywords.

Investigation of Parasitic Turn-ON in Silicon IGBT and Silicon Carbide MOSFET Devices: A Technology Evaluation. Acknowledgements. Keywords. Investigation of Parasitic Turn-ON in Silicon IGBT and Silicon Carbide MOSFET Devices: A Technology Evaluation Saeed Jahdi, Olayiwola Alatise, Jose Ortiz-Gonzalez, Peter Gammon, Li Ran and Phil Mawby School

More information

OWING to high efficiency and wide range of voltage

OWING to high efficiency and wide range of voltage 488 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 59, NO. 2, APRIL 207 Novel Hybrid Analytical/Numerical Conducted EMI Model of a Flyback Converter Weichang Cheng, Zhi Huang, Shen Xu, and Weifeng

More information

EMI-Simulation of a SiC based DCDC-Converter in a CISPR25 component test setup

EMI-Simulation of a SiC based DCDC-Converter in a CISPR25 component test setup EMI-Simulation of a SiC based DCDC-Converter in a CISPR25 component test setup P. Hillenbrand, J. Hansen - Introduction & EMI models overview - Transient simulation of commutation cell - AC simulation

More information

A Novel Approach for EMI Design of Power Electronics

A Novel Approach for EMI Design of Power Electronics A Novel Approach for EMI Design of Power Electronics Bernd Stube 1 Bernd Schroeder 1 Eckart Hoene 2 Andre Lissner 2 1 Mentor Graphics Corporation, System Design Division, Berlin, Germany {Bernd_Stube,

More information

Frequency Domain EMI-Simulation and Resonance

Frequency Domain EMI-Simulation and Resonance Frequency Domain EMI-Simulation and Resonance Analysis of a DCDC-Converter P. Hillenbrand *, M. Böttcher, S. Tenbohlen Institute of Power Transmission and High Voltage Technology (IEH), University of Stuttgart

More information

PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER

PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER 1 PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER Prasanna kumar N. & Dileep sagar N. prasukumar@gmail.com & dileepsagar.n@gmail.com RGMCET, NANDYAL CONTENTS I. ABSTRACT -03- II. INTRODUCTION

More information

Extremely Rugged MOSFET Technology with Ultra-low R DS(on) Specified for A Broad Range of E AR Conditions

Extremely Rugged MOSFET Technology with Ultra-low R DS(on) Specified for A Broad Range of E AR Conditions Extremely Rugged MOSFET Technology with Ultra-low R DS(on) Specified for A Broad Range of E AR Conditions ABSTRACT Anthony F. J. Murray, Tim McDonald, Harold Davis 1, Joe Cao 1, Kyle Spring 1 International

More information

Conducted EMI Simulation of Switched Mode Power Supply

Conducted EMI Simulation of Switched Mode Power Supply Conducted EMI Simulation of Switched Mode Power Supply Hongyu Li #1, David Pommerenke #2, Weifeng Pan #3, Shuai Xu *4, Huasheng Ren *5, Fantao Meng *6, Xinghai Zhang *7 # EMC Laboratory, Missouri University

More information

Volume optimization of a 30 kw boost PFC converter focusing on the CM/DM EMI filter design

Volume optimization of a 30 kw boost PFC converter focusing on the CM/DM EMI filter design Volume optimization of a 30 kw boost PFC converter focusing on the CM/DM EMI filter design J. Wyss, J. Biela Power Electronic Systems Laboratory, ETH Zürich Physikstrasse 3, 8092 Zürich, Switzerland This

More information

DC/DC Converter. Conducted Emission. CST COMPUTER SIMULATION TECHNOLOGY

DC/DC Converter. Conducted Emission. CST COMPUTER SIMULATION TECHNOLOGY DC/DC Converter Conducted Emission Introduction 3D Model EDA Layout Simulation Modifications N GOALS MET? Y In modern electronic applications a majority of devices utilizes switched AC/DC or DC/DC converters

More information

Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters

Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(2), pp. 313-323 (2017) DOI 10.1515/aee-2017-0023 Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters MARCIN WALCZAK Department

More information

Modeling Power Converters using Hard Switched Silicon Carbide MOSFETs and Schottky Barrier Diodes

Modeling Power Converters using Hard Switched Silicon Carbide MOSFETs and Schottky Barrier Diodes Modeling Power Converters using Hard Switched Silicon Carbide MOSFETs and Schottky Barrier Diodes Petros Alexakis, Olayiwola Alatise, Li Ran and Phillip Mawby School of Engineering, University of Warwick

More information

A High Voltage Gain DC-DC Boost Converter for PV Cells

A High Voltage Gain DC-DC Boost Converter for PV Cells Global Science and Technology Journal Vol. 3. No. 1. March 2015 Issue. Pp. 64 76 A High Voltage Gain DC-DC Boost Converter for PV Cells Md. Al Muzahid*, Md. Fahmi Reza Ansari**, K. M. A. Salam*** and Hasan

More information

EMI Filter Design of a Three-Phase Buck-Type PWM Rectifier for Aircraft Applications.

EMI Filter Design of a Three-Phase Buck-Type PWM Rectifier for Aircraft Applications. TÉCNICAS DE CONVERSIÓN DE POTENCIA 85 EMI Filter Design of a Three-Phase Buck-Type PWM Rectifier for Aircraft Applications. Marcelo Silva, Nico Hensgens, Jesús Oliver, Pedro Alou, Óscar García, and José

More information

Maximum Power Extraction from A Small Wind Turbine Using 4-phase Interleaved Boost Converter

Maximum Power Extraction from A Small Wind Turbine Using 4-phase Interleaved Boost Converter Maximum Power Extraction from A Small Wind Turbine Using 4-phase Interleaved Boost Converter Liqin Ni Email: liqin.ni@huskers.unl.edu Dean J. Patterson Email: patterson@ieee.org Jerry L. Hudgins Email:

More information

A Novel Concept in Integrating PFC and DC/DC Converters *

A Novel Concept in Integrating PFC and DC/DC Converters * A Novel Concept in Integrating PFC and DC/DC Converters * Pit-Leong Wong and Fred C. Lee Center for Power Electronics Systems The Bradley Department of Electrical and Computer Engineering Virginia Polytechnic

More information

Driving of a GaN Enhancement Mode HEMT Transistor with Zener Diode Protection for High Efficiency and Low EMI

Driving of a GaN Enhancement Mode HEMT Transistor with Zener Diode Protection for High Efficiency and Low EMI Driving of a GaN Enhancement Mode HEMT Transistor with Zener Diode Protection for High Efficiency and Low EMI O. C. Spro 1, S. Basu 2, I. Abuishmais 3, O.-M. Midtgård 1 and T. Undeland 1 1 Norwegian University

More information

Low-inductive inverter concept by 200 A / 1200 V half bridge in an EasyPACK 2B following strip-line design

Low-inductive inverter concept by 200 A / 1200 V half bridge in an EasyPACK 2B following strip-line design Low-inductive inverter concept by 200 A / 1200 V half bridge in an EasyPACK 2B following strip-line design Dr. Christian R. Müller and Dr. Reinhold Bayerer, Infineon Technologies AG, Max-Planck- Straße

More information

Published in: Proceedings of the th European Conference on Power Electronics and Applications (EPE'15-ECCE Europe)

Published in: Proceedings of the th European Conference on Power Electronics and Applications (EPE'15-ECCE Europe) Aalborg Universitet Switching speed limitations of high power IGBT modules Incau, Bogdan Ioan; Trintis, Ionut; Munk-Nielsen, Stig Published in: Proceedings of the 215 17th European Conference on Power

More information

Designers Series XII. Switching Power Magazine. Copyright 2005

Designers Series XII. Switching Power Magazine. Copyright 2005 Designers Series XII n this issue, and previous issues of SPM, we cover the latest technologies in exotic high-density power. Most power supplies in the commercial world, however, are built with the bread-and-butter

More information

Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost Regulator

Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost Regulator International Journal of Automation and Power Engineering, 2012, 1: 124-128 - 124 - Published Online August 2012 www.ijape.org Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost

More information

SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis

SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis Helong Li, Stig Munk-Nielsen, Szymon Bęczkowski, Xiongfei Wang Department of Energy Technology

More information

THERE are two popular control modes in power factor correction

THERE are two popular control modes in power factor correction 3150 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 7, JULY 2012 DM EMI Noise Prediction for Constant On-Time, Critical Mode Power Factor Correction Converters Zijian Wang, Shuo Wang, Senior Member,

More information

PCB layout guidelines. From the IGBT team at IR September 2012

PCB layout guidelines. From the IGBT team at IR September 2012 PCB layout guidelines From the IGBT team at IR September 2012 1 PCB layout and parasitics Parasitics (unwanted L, R, C) have much influence on switching waveforms and losses. The IGBT itself has its own

More information

Power Electronics. Exercise: Circuit Feedback

Power Electronics. Exercise: Circuit Feedback Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Prof Dr-Ing Ralph Kennel Aricsstr 21 Email: eat@eitumde Tel: +49 (0)89 289-28358 D-80333 München Internet:

More information

Grounding Effect on Common Mode Interference of Coal Mine Inverter

Grounding Effect on Common Mode Interference of Coal Mine Inverter 202 International Conference on Computer Technology and Science (ICCTS202) IPCSIT vol. 47 (202) (202) IACSIT Press, Singapore Grounding Effect on Common Mode Interference of Coal Mine Inverter SUN Ji-ping,

More information

EMI estimation for DC/AC hard switching converter using Wiener filter

EMI estimation for DC/AC hard switching converter using Wiener filter Author manuscript, published in "1th IEEE International Conference on Power Electronics and Motion Control (PEMC 6), Portoroz : Slovenia (6)" EMI estimation for DC/AC hard switching converter using Wiener

More information

TRENCHSTOP 5 boosts efficiency in Home Appliance, Solar and Welding Applications

TRENCHSTOP 5 boosts efficiency in Home Appliance, Solar and Welding Applications TRENCHSTOP 5 boosts efficiency in Home Appliance, Solar and Welding Applications Davide Chiola - Senior Mgr IGBT Application Engineering Mark Thomas Product Marketing Mgr Discrete IGBT Infineon Technologies

More information

Improving conducted EMI forecasting with accurate layout modeling

Improving conducted EMI forecasting with accurate layout modeling Improving conducted EMI forecasting with accurate layout modeling M. Lionet*, R. Prades*, X. Brunotte*,Y. Le Floch*, E. Clavel**, J.L. Schanen**, J.M. Guichon** *CEDRAT, 15 chemin de Malacher - F- 38246

More information

Determination of EMI of PWM fed Three Phase Induction Motor. Ankur Srivastava

Determination of EMI of PWM fed Three Phase Induction Motor. Ankur Srivastava Abstract International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Impact Factor: 3.45 (SJIF-2015), e-issn: 2455-2584 Volume 3, Issue 05, May-2017 Determination of EMI of

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Induction motor drives with squirrel cage type machines have been the workhorse in industry for variable-speed applications in wide power range that covers from fractional

More information

A Bi-directional Z-source Inverter for Electric Vehicles

A Bi-directional Z-source Inverter for Electric Vehicles A Bi-directional Z-source Inverter for Electric Vehicles Makoto Yamanaka and Hirotaka Koizumi Tokyo University of Science 1-14-6 Kudankita, Chiyoda-ku Tokyo 102-0073 Japan Email: hosukenigou@ieee.org littlespring@ieee.org

More information

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES.

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES. POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES. 1 RAJENDRA PANDAY, 2 C.VEERESH,ANIL KUMAR CHAUDHARY 1, 2 Mandsaur Institute of Techno;ogy,Mandsaur,

More information

VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR

VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR 1002 VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR NIKITA SINGH 1 ELECTRONICS DESIGN AND TECHNOLOGY, M.TECH NATIONAL INSTITUTE OF ELECTRONICS AND INFORMATION TECHNOLOGY

More information

A Voltage Quadruple DC-DC Converter with PFC

A Voltage Quadruple DC-DC Converter with PFC A Voltage Quadruple DC-DC Converter with PFC Cicy Mary Mathew, Kiran Boby, Bindu Elias P.G. Scholar, cicymary@gmail.com, +91-8289817553 Abstract A two inductor, interleaved power factor corrected converter

More information

Electromagnetic Compatibility

Electromagnetic Compatibility Electromagnetic Compatibility Introduction to EMC International Standards Measurement Setups Emissions Applications for Switch-Mode Power Supplies Filters 1 What is EMC? A system is electromagnetic compatible

More information

Power loss reduction in electronic inverters trough IGBT-MOSFET combination

Power loss reduction in electronic inverters trough IGBT-MOSFET combination Procedia Earth and Planetary Science 1 (2009) 1539 1543 Procedia Earth and Planetary Science www.elsevier.com/locate/procedia The 6 th International Conference on Mining Science & Technology Power loss

More information

Modeling and Characterization of a PFC Converter in the. Medium and High Frequency Ranges for Predicting the. Conducted EMI

Modeling and Characterization of a PFC Converter in the. Medium and High Frequency Ranges for Predicting the. Conducted EMI Modeling and Characterization of a PFC Converter in the Medium and High Frequency Ranges for Predicting the Conducted EMI Liyu Yang Thesis submitted to the Faculty of the Virginia Polytechnic Institute

More information

Modeling of an EMC Test-bench for Conducted Emissions in Solid State Applications

Modeling of an EMC Test-bench for Conducted Emissions in Solid State Applications Modeling of an EMC Test-bench for Conducted Emissions in Solid State Applications A.Micallef, C.Spiteri Staines and M.Apap Department of Industrial Electrical Power Conversion University of Malta Malta

More information

Reconstruction of Current Distribution and Termination Impedances of PCB-Traces by Magnetic Near-Field Data and Transmission-Line Theory

Reconstruction of Current Distribution and Termination Impedances of PCB-Traces by Magnetic Near-Field Data and Transmission-Line Theory Reconstruction of Current Distribution and Termination Impedances of PCB-Traces by Magnetic Near-Field Data and Transmission-Line Theory Robert Nowak, Stephan Frei TU Dortmund University Dortmund, Germany

More information

Influence of Termination Impedance on conducted Emissions in Automotive High Voltage Networks

Influence of Termination Impedance on conducted Emissions in Automotive High Voltage Networks Influence of Termination Impedance on conducted Emissions in Automotive High Voltage Networks M. Reuter *, S. Tenbohlen, W. Koehler Institute of Power Transmission and High Voltage Technology (IEH), University

More information

The Parallel Loaded Resonant Converter for the Application of DC to DC Energy Conversions

The Parallel Loaded Resonant Converter for the Application of DC to DC Energy Conversions Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

Reduction of Stray Inductance in Power Electronic Modules Using Basic Switching Cells

Reduction of Stray Inductance in Power Electronic Modules Using Basic Switching Cells Reduction of Stray Inductance in Power Electronic Modules Using Basic Switching Cells Shengnan Li 1 Student Member, IEEE Fred Wang 1 Fellow, IEEE Leon M. Tolbert 1 Senior Member, IEEE Fang Zheng Peng 2

More information

MODERN switching power converters require many features

MODERN switching power converters require many features IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 87 A Parallel-Connected Single Phase Power Factor Correction Approach With Improved Efficiency Sangsun Kim, Member, IEEE, and Prasad

More information

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE KARTIK TAMVADA Department of E.E.E, V.S.Lakshmi Engineering College for Women, Kakinada, Andhra Pradesh,

More information

SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER

SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Adam KRUPA* SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER In order to utilize energy from low voltage

More information

Modelling electromagnetic field coupling from an ESD gun to an IC

Modelling electromagnetic field coupling from an ESD gun to an IC Modelling electromagnetic field coupling from an ESD gun to an IC Ji Zhang #1, Daryl G Beetner #2, Richard Moseley *3, Scott Herrin *4 and David Pommerenke #5 # EMC Laboratory, Missouri University of Science

More information

Simulation of a novel ZVT technique based boost PFC converter with EMI filter

Simulation of a novel ZVT technique based boost PFC converter with EMI filter ISSN 1746-7233, England, UK World Journal of Modelling and Simulation Vol. 4 (2008) No. 1, pp. 49-56 Simulation of a novel ZVT technique based boost PFC converter with EMI filter P. Ram Mohan 1 1,, M.

More information

Characterization of Conducted Electromagnetic Interference (EMI) Generated by Switch Mode Power Supply (SMPS)

Characterization of Conducted Electromagnetic Interference (EMI) Generated by Switch Mode Power Supply (SMPS) Revue des Sciences et de la Technologie - RST- Volume 5 N 1 / janvier 2014 Characterization of Conducted Electromagnetic Interference (EMI) Generated by Switch Mode Power Supply (SMPS) M. Miloudi*, A.

More information

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 4 Ver. III (Jul. Aug. 2016), PP 01-06 www.iosrjournals.org A Unique SEPIC converter

More information

Impact of module parasitics on the performance of fastswitching

Impact of module parasitics on the performance of fastswitching Impact of module parasitics on the performance of fastswitching devices Christian R. Müller and Stefan Buschhorn, Infineon Technologies AG, Max-Planck-Str. 5, 59581 Warstein, Germany Abstract The interplay

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

AN-5077 Design Considerations for High Power Module (HPM)

AN-5077 Design Considerations for High Power Module (HPM) www.fairchildsemi.com AN-5077 Design Considerations for High Power Module (HPM) Abstract Fairchild s High Power Module (HPM) solution offers higher reliability, efficiency, and power density to improve

More information

Research Paper ELECTROMAGNETIC INTERFERENCE REDUCTION IN CUK CONVERTER USING MODIFIED PWM TECHNIQUES

Research Paper ELECTROMAGNETIC INTERFERENCE REDUCTION IN CUK CONVERTER USING MODIFIED PWM TECHNIQUES Research Paper ELECTROMAGNETIC INTERFERENCE REDUCTION IN CUK CONVERTER USING MODIFIED PWM TECHNIQUES *1 Dr. Sivaraman P and 2 Prem P Address for Correspondence Department of Electrical and Electronics

More information

Optimizing Low Side Gate Resistance for Damping Phase Node Ringing of Synchronous Buck Converter

Optimizing Low Side Gate Resistance for Damping Phase Node Ringing of Synchronous Buck Converter Optimizing Low Side Gate esistance for Damping Phase Node inging of Synchronous Buck Converter Zhiyang Chen Automotive & Power Group ON Semiconductor Phoenix AZ USA Isauro Amaro Automotive & Power Group

More information

Soft Switching of IGBTs in Lagging Lag of ZVT Phase Shift DC/DC

Soft Switching of IGBTs in Lagging Lag of ZVT Phase Shift DC/DC Soft Switching of IGBs in agging ag of ZV Phase Shift DC/DC Converter Sandra Zeljkovic, omas Reiter Infineon echnologies AG Am Campeon 1-1 Neubiberg, Germany E-Mail: Sandra.Zeljkovic@infineon.com UR: http://www.infineon.com

More information

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications WHITE PAPER High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1.1 Background and Motivation In the field of power electronics, there is a trend for pushing up switching frequencies of switched-mode power supplies to reduce volume and weight.

More information

AUXILIARY POWER SUPPLIES IN LOW POWER INVERTERS FOR THREE PHASE TESLA S INDUCTION MOTORS

AUXILIARY POWER SUPPLIES IN LOW POWER INVERTERS FOR THREE PHASE TESLA S INDUCTION MOTORS AUXILIARY POWER SUPPLIES IN LOW POWER INVERTERS FOR THREE PHASE TESLA S INDUCTION MOTORS Petar J. Grbovic Schneider Toshiba Inverter Europe, R&D 33 Rue Andre Blanchet, 71 Pacy-Sur-Eure, France petar.grbovic@fr.schneiderelectric.com

More information

Electromagnetic Interference Generated from Fast Switching Power Electronic Devices

Electromagnetic Interference Generated from Fast Switching Power Electronic Devices Electromagnetic Interference Generated from Fast Switching Power Electronic Devices K. M. Muttaqi Integral Energy Power Quality and Reliability Centre School of Electrical, Computer and Telecommunication

More information

466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY A Single-Switch Flyback-Current-Fed DC DC Converter

466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY A Single-Switch Flyback-Current-Fed DC DC Converter 466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY 1998 A Single-Switch Flyback-Current-Fed DC DC Converter Peter Mantovanelli Barbosa, Member, IEEE, and Ivo Barbi, Senior Member, IEEE Abstract

More information

Effect of driver to gate coupling circuits on EMI produced by SiC MOSFETS

Effect of driver to gate coupling circuits on EMI produced by SiC MOSFETS Effect of driver to gate coupling circuits on EMI produced by SiC MOSFETS J. Balcells, P. Bogónez-Franco Electronics Department Universitat Politècnica de Catalunya 08222 Terrassa, Spain josep.balcells@upc.edu

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 13 CHAPTER 2 LITERATURE REVIEW 2.1 INTRODUCTION This section outlines the major works reported so far in the electromagnetic interference noise Generation, Suppression techniques and the EMI filter circuits.

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Lecture -1 Introduction to DC-DC converter Good day to all of you, we

More information

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Thomas Mathew.T PG Student, St. Joseph s College of Engineering, C.Naresh, M.E.(P.hd) Associate Professor, St.

More information

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL Journal of Engineering Science and Technology Vol. 10, No. 4 (2015) 420-433 School of Engineering, Taylor s University PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT

More information

IEEE-PEMC 2018 TUTORIAL PROPOSAL

IEEE-PEMC 2018 TUTORIAL PROPOSAL IEEE-PEMC 2018 TUTORIAL PROPOSAL 1. TUTORIAL TITLE: Rectification Harmonics in Motor Drives: Modeling and Control 2. TUTORIAL ABSTRACT In modern industrial motor drive applications, low-cost, simple-structure,

More information

New Modeling of EMI Simulation in Flyback Converters

New Modeling of EMI Simulation in Flyback Converters International Research Journal of Applied and Basic Sciences 213 Available online at www.irjabs.com ISSN 2251-838X / Vol, 4 (9): 2575-2581 Science Explorer Publications New Modeling of EMI Simulation in

More information

e-issn: p-issn:

e-issn: p-issn: Available online at www.ijiere.com International Journal of Innovative and Emerging Research in Engineering e-issn: 2394-3343 p-issn: 2394-5494 PFC Boost Topology Using Average Current Control Method Gemlawala

More information

7. EMV Fachtagung. EMV-gerechtes Filterdesign. 23. April 2009, TU-Graz. Dr. Gunter Winkler (TU Graz) Dr. Bernd Deutschmann (Infineon Technologies AG)

7. EMV Fachtagung. EMV-gerechtes Filterdesign. 23. April 2009, TU-Graz. Dr. Gunter Winkler (TU Graz) Dr. Bernd Deutschmann (Infineon Technologies AG) 7. EMV Fachtagung 23. April 2009, TU-Graz EMV-gerechtes Filterdesign Dr. Gunter Winkler (TU Graz) Dr. Bernd Deutschmann (Infineon Technologies AG) Page 1 Agenda Filter design basics Filter Attenuation

More information

RC-D Fast : RC-Drives IGBT optimized for high switching frequency

RC-D Fast : RC-Drives IGBT optimized for high switching frequency RC-D Fast : RC-Drives IGBT optimized for high switching frequency Application Note Application Engineering IGBT July 2012, Mitja Rebec Power Management 1 Discretes Published by Infineon Technologies AG

More information

DSP-BASED CURRENT SHARING OF AVERAGE CURRENT CONTROLLED TWO-CELL INTERLEAVED BOOST POWER FACTOR CORRECTION CONVERTER

DSP-BASED CURRENT SHARING OF AVERAGE CURRENT CONTROLLED TWO-CELL INTERLEAVED BOOST POWER FACTOR CORRECTION CONVERTER DSP-BASED CURRENT SHARING OF AVERAGE CURRENT CONTROLLED TWO-CELL INTERLEAVED BOOST POWER FACTOR CORRECTION CONVERTER P.R.Hujband 1, Dr. B.E.Kushare 2 1 Department of Electrical Engineering, K.K.W.I.E.E.R,

More information

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER M. Mohamed Razeeth # and K. Kasirajan * # PG Research Scholar, Power Electronics and Drives, Einstein College of Engineering, Tirunelveli, India

More information