A Primer on Human Vision: Insights and Inspiration for Computer Vision

Size: px
Start display at page:

Download "A Primer on Human Vision: Insights and Inspiration for Computer Vision"

Transcription

1 A Primer on Human Vision: Insights and Inspiration for Computer Vision Guest&Lecture:&Marius&Cătălin&Iordan&& CS&131&8&Computer&Vision:&Foundations&and&Applications& 27&October&2014

2 detection recognition segmentation! visual! understanding

3 1. The Mammalian Visual System anatomy and processing pathways from processing to perception 2. Early Computation first stages of information processing edges: a basis for representing the visual world 3. Object Recognition in the Human Visual System building invariance: pooling and transformation untangling object representations Roadmap 23

4 The Camera : Retinal Projection Mammalian Visual System anatomy and processing pathways 34

5 Neuron Mammalian Visual System anatomy and processing pathways 35

6 figure courtesy of A. Alahi Mammalian Visual System anatomy and processing pathways 36

7 From Retina to Cortex world retina (compression) LGN V1 visual cortex (expansion) Mammalian Visual System anatomy and processing pathways 7

8 From Retina to Cortex size of! representation world retina (compression) LGN V1 visual cortex (expansion) Mammalian Visual System anatomy and processing pathways 7

9 Cortex: At Least Two Dozen Visual Areas plus more: motion areas, functional regions, etc. IT IT Weiner & Grill-Spector (2012) Mammalian Visual System anatomy and processing pathways 8

10 Visual Processing vs. Perception perception involves integration and higher functions IT IT Weiner & Grill-Spector (2012) Mammalian Visual System from processing to perception 9

11 Mammalian Visual System visual processing is done in stages but it is not synonymous with perception DiCarlo & Cox (2007) Mammalian Visual System key points 10

12 2. Early Computation local information processing Early Computation 11 3

13 Retinal Projection picture is inverted, but spatial relationships are preserved Early Computation first stages of processing 12 3

14 Receptive Fields extract similar features at each position in the visual field receptive fields figure adapted from Ebner & Hameroff (2011) Early Computation first stages of processing 13 3

15 Receptive Fields extract similar features at each position in the visual field ganglion cells center-surround receptive fields figure adapted from Ebner & Hameroff (2011) Early Computation first stages of processing 14 3

16 Receptive Fields extract similar features at each position in the visual field ON ganglion cells Early Computation first stages of processing 15 3

17 Receptive Fields extract similar features at each position in the visual field ON ganglion cells Early Computation first stages of processing 15 3

18 DoG Threshold figure courtesy of A. Alahi Early Computation first stages of processing 16 3

19 From Retina to Cortex world retina (compression) LGN V1 visual cortex (expansion) Early Computation first stages of processing 17 3

20 Single Electrode Recording Early Computation first stages of processing 18 3

21 Single Electrode Recording Hubel & Wiesel (1962) Early Computation first stages of processing 19 3

22 Types of V1 cells simple cells Hubel & Wiesel (1962) Early Computation first stages of processing 20

23 Types of V1 cells simple cells Hubel & Wiesel (1962) Early Computation first stages of processing 21

24 Types of V1 cells simple cells Hubel & Wiesel (1962) Early Computation first stages of processing 21

25 Types of V1 cells complex cells Hubel & Wiesel (1962) Early Computation first stages of processing 22

26 Types of V1 cells simple and complex cells are sensitive to: center-surround (difference of gaussians!) edges (symmetrical and asymmetrical) rectangles of various elongation, visual half fields V1 also has cells that are sensitive to: motion (in fact, it s a separate processing stream!) color (groups of cells called color blobs ) other stuff Hubel & Wiesel (1962) Early Computation first stages of processing 23

27 Why Are Edges Special? image = neurons * weights? 0? 0? 0? 1? 0? 0? 0? 0? 0? 0? 0? 1? 0? 2? 0? 0 Olshausen & Field (1996) Early Computation edges: a basis for natural images 24 3

28 Why Are Edges Special? image = neurons * weights Olshausen & Field (1996) Early Computation edges: a basis for natural images 24 3

29 Why Are Edges Special? each pixel activated independently INPUT BASIS FOUND Olshausen & Field (1996) Early Computation edges: a basis for natural images 25 3

30 Why Are Edges Special? images are sums of independent gratings INPUT BASIS FOUND Olshausen & Field (1996) Early Computation edges: a basis for natural images 26 3

31 Why Are Edges Special? patches of real-world images Olshausen & Field (1996) Early Computation edges: a basis for natural images 27 3

32 Early Computation V1 cells encode edge orientation and position across visual field: simple and complex receptive fields edges are a sufficient basis for real-world images! Hubel & Wiesel (1962), Olshausen & Field (1996) Early Computation key points 28 3

33 3. Object Recognition in the Human Visual System sequential transformations Object Recognition 29 3

34 Object Recognition building invariance 30 3

35 The Flow of Information IT IT Weiner & Grill-Spector (2012) Object Recognition building invariance 31 3

36 V1 Retina Van Essen (1991) Object Recognition building invariance 32 3

37 Specialization: What and Where Pathways monkey lesion studies lesion where pathway: difficulty in spatial reasoning lesion what pathway: difficulty in object recognition Mishkin & Ungerleider 1982 Object Recognition building invariance 33 3

38 Specialization: What and Where Pathways monkey lesion studies lesion where pathway: difficulty in spatial reasoning lesion what pathway: difficulty in object recognition Mishkin & Ungerleider 1982 Object Recognition building invariance 33 3

39 Object Recognition: The What Pathway DiCarlo & Cox (2007) Object Recognition building invariance 34 3

40 Object Recognition: The What Pathway V1 IT Freeman & Simoncelli (2011), Tanaka (1997) Object Recognition building invariance 35 3

41 Object as Manifolds in High Dimensional Space DiCarlo & Cox (2007) Object Recognition untangling object representation 36 3

42 Untangling Object Manifolds DiCarlo & Cox (2007) Object Recognition untangling object representation 37 3

43 Object Recognition: A Step Towards Visual Understanding in the human visual system, invariance is built gradually across many successive transformations human and computer vision both strive to achieve invariant representations Freeman & Simoncelli (2011), DiCarlo & Cox (2007) Object Recognition key points 38 3

44 Discussion human visual invariance vs. CV features incremental invariance vs. all-at-once should we build detectors invariant to everything?

45 Mammalian Visual System visual processing is done in stages but it is not synonymous with perception DiCarlo & Cox (2007) Conclusion #1 40

46 Early Computation V1 cells encode edge orientation and position across visual field: simple and complex receptive fields edges are a sufficient basis for real-world images! Hubel & Wiesel (1962), Olshausen & Field (1996) Conclusion #2 41 3

47 Object Recognition: A Step Towards Visual Understanding in the human visual system, invariance is built gradually across many successive transformations human and computer vision both strive to achieve invariant representations Freeman & Simoncelli (2011), DiCarlo & Cox (2007) Conclusion #3 42 3

48 Mid-Quarter Feedback Forms

A Primer on Human Vision: Insights and Inspiration for Computer Vision

A Primer on Human Vision: Insights and Inspiration for Computer Vision A Primer on Human Vision: Insights and Inspiration for Computer Vision Guest Lecture: Marius Cătălin Iordan CS 131 - Computer Vision: Foundations and Applications 27 October 2014 detection recognition

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2019 1 remaining Chapter 2 stuff 2 Mach Band

More information

Lecture 5. The Visual Cortex. Cortical Visual Processing

Lecture 5. The Visual Cortex. Cortical Visual Processing Lecture 5 The Visual Cortex Cortical Visual Processing 1 Lateral Geniculate Nucleus (LGN) LGN is located in the Thalamus There are two LGN on each (lateral) side of the brain. Optic nerve fibers from eye

More information

Fundamentals of Computer Vision

Fundamentals of Computer Vision Fundamentals of Computer Vision COMP 558 Course notes for Prof. Siddiqi's class. taken by Ruslana Makovetsky (Winter 2012) What is computer vision?! Broadly speaking, it has to do with making a computer

More information

Probing sensory representations with metameric stimuli

Probing sensory representations with metameric stimuli Probing sensory representations with metameric stimuli Eero Simoncelli HHMI / New York University 1 Retina Optic Nerve LGN Optic Visual Cortex Tract Harvard Medical School. All rights reserved. This content

More information

Chapter Six Chapter Six

Chapter Six Chapter Six Chapter Six Chapter Six Vision Sight begins with Light The advantages of electromagnetic radiation (Light) as a stimulus are Electromagnetic energy is abundant, travels VERY quickly and in fairly straight

More information

Parvocellular layers (3-6) Magnocellular layers (1 & 2)

Parvocellular layers (3-6) Magnocellular layers (1 & 2) Parvocellular layers (3-6) Magnocellular layers (1 & 2) Dorsal and Ventral visual pathways Figure 4.15 The dorsal and ventral streams in the cortex originate with the magno and parvo ganglion cells and

More information

CS 534: Computer Vision

CS 534: Computer Vision CS 534: Computer Vision Spring 2004 Ahmed Elgammal Dept of Computer Science Rutgers University Human Vision - 1 Human Vision Outline How do we see: some historical theories of vision Human vision: results

More information

Maps in the Brain Introduction

Maps in the Brain Introduction Maps in the Brain Introduction 1 Overview A few words about Maps Cortical Maps: Development and (Re-)Structuring Auditory Maps Visual Maps Place Fields 2 What are Maps I Intuitive Definition: Maps are

More information

The Visual System. Computing and the Brain. Visual Illusions. Give us clues as to how the visual system works

The Visual System. Computing and the Brain. Visual Illusions. Give us clues as to how the visual system works The Visual System Computing and the Brain Visual Illusions Give us clues as to how the visual system works We see what we expect to see http://illusioncontest.neuralcorrelate.com/ Spring 2010 2 1 Visual

More information

Outline. The visual pathway. The Visual system part I. A large part of the brain is dedicated for vision

Outline. The visual pathway. The Visual system part I. A large part of the brain is dedicated for vision The Visual system part I Patrick Kanold, PhD University of Maryland College Park Outline Eye Retina LGN Visual cortex Structure Response properties Cortical processing Topographic maps large and small

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017 Eye growth regulation KL Schmid, CF Wildsoet

More information

Cortical sensory systems

Cortical sensory systems Cortical sensory systems Motorisch Somatosensorisch Sensorimotor Visuell Sensorimotor Visuell Visuell Auditorisch Olfaktorisch Auditorisch Olfaktorisch Auditorisch Mensch Katze Ratte Primary Visual Cortex

More information

Introduction to Visual Perception

Introduction to Visual Perception The Art and Science of Depiction Introduction to Visual Perception Fredo Durand and Julie Dorsey MIT- Lab for Computer Science Vision is not straightforward The complexity of the problem was completely

More information

Retina. Convergence. Early visual processing: retina & LGN. Visual Photoreptors: rods and cones. Visual Photoreptors: rods and cones.

Retina. Convergence. Early visual processing: retina & LGN. Visual Photoreptors: rods and cones. Visual Photoreptors: rods and cones. Announcements 1 st exam (next Thursday): Multiple choice (about 22), short answer and short essay don t list everything you know for the essay questions Book vs. lectures know bold terms for things that

More information

Biological Vision. Ahmed Elgammal Dept of Computer Science Rutgers University

Biological Vision. Ahmed Elgammal Dept of Computer Science Rutgers University Biological Vision Ahmed Elgammal Dept of Computer Science Rutgers University Outlines How do we see: some historical theories of vision Biological vision: theories and results from psychology and cognitive

More information

The Physiology of the Senses Lecture 3: Visual Perception of Objects

The Physiology of the Senses Lecture 3: Visual Perception of Objects The Physiology of the Senses Lecture 3: Visual Perception of Objects www.tutis.ca/senses/ Contents Objectives... 2 What is after V1?... 2 Assembling Simple Features into Objects... 4 Illusory Contours...

More information

Psych 333, Winter 2008, Instructor Boynton, Exam 1

Psych 333, Winter 2008, Instructor Boynton, Exam 1 Name: Class: Date: Psych 333, Winter 2008, Instructor Boynton, Exam 1 Multiple Choice There are 35 multiple choice questions worth one point each. Identify the letter of the choice that best completes

More information

Computer Vision. Howie Choset Introduction to Robotics

Computer Vision. Howie Choset   Introduction to Robotics Computer Vision Howie Choset http://www.cs.cmu.edu.edu/~choset Introduction to Robotics http://generalrobotics.org What is vision? What is computer vision? Edge Detection Edge Detection Interest points

More information

Vision III. How We See Things (short version) Overview of Topics. From Early Processing to Object Perception

Vision III. How We See Things (short version) Overview of Topics. From Early Processing to Object Perception Vision III From Early Processing to Object Perception Chapter 10 in Chaudhuri 1 1 Overview of Topics Beyond the retina: 2 pathways to V1 Subcortical structures (LGN & SC) Object & Face recognition Primary

More information

TSBB15 Computer Vision

TSBB15 Computer Vision TSBB15 Computer Vision Lecture 9 Biological Vision!1 Two parts 1. Systems perspective 2. Visual perception!2 Two parts 1. Systems perspective Based on Michael Land s and Dan-Eric Nilsson s work 2. Visual

More information

Lecture 4 Foundations and Cognitive Processes in Visual Perception From the Retina to the Visual Cortex

Lecture 4 Foundations and Cognitive Processes in Visual Perception From the Retina to the Visual Cortex Lecture 4 Foundations and Cognitive Processes in Visual Perception From the Retina to the Visual Cortex 1.Vision Science 2.Visual Performance 3.The Human Visual System 4.The Retina 5.The Visual Field and

More information

Chapter 2: Starting from the very beginning

Chapter 2: Starting from the very beginning BEWARE: These are preliminary notes. In the future, they will become part of a textbook on Visual Object Recognition. Chapter 2: Starting from the very beginning Visual input and natural image statistics.

More information

A Model of Feedback to the Lateral Geniculate Nucleus

A Model of Feedback to the Lateral Geniculate Nucleus A Model of Feedback to the Lateral Geniculate Nucleus Carlos D. Brody Computation and Neural Systems Program California Institute of Technology Pasadena, CA 91125 Abstract Simplified models of the lateral

More information

1/21/2019. to see : to know what is where by looking. -Aristotle. The Anatomy of Visual Pathways: Anatomy and Function are Linked

1/21/2019. to see : to know what is where by looking. -Aristotle. The Anatomy of Visual Pathways: Anatomy and Function are Linked The Laboratory for Visual Neuroplasticity Massachusetts Eye and Ear Infirmary Harvard Medical School to see : to know what is where by looking -Aristotle The Anatomy of Visual Pathways: Anatomy and Function

More information

Object Perception. 23 August PSY Object & Scene 1

Object Perception. 23 August PSY Object & Scene 1 Object Perception Perceiving an object involves many cognitive processes, including recognition (memory), attention, learning, expertise. The first step is feature extraction, the second is feature grouping

More information

Modeling cortical maps with Topographica

Modeling cortical maps with Topographica Modeling cortical maps with Topographica James A. Bednar a, Yoonsuck Choe b, Judah De Paula a, Risto Miikkulainen a, Jefferson Provost a, and Tal Tversky a a Department of Computer Sciences, The University

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Content removed due

More information

Neuromorphic Implementation of Orientation Hypercolumns. Thomas Yu Wing Choi, Paul A. Merolla, John V. Arthur, Kwabena A. Boahen, and Bertram E.

Neuromorphic Implementation of Orientation Hypercolumns. Thomas Yu Wing Choi, Paul A. Merolla, John V. Arthur, Kwabena A. Boahen, and Bertram E. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 52, NO. 6, JUNE 2005 1049 Neuromorphic Implementation of Orientation Hypercolumns Thomas Yu Wing Choi, Paul A. Merolla, John V. Arthur,

More information

258 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003

258 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003 258 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003 Genetic Design of Biologically Inspired Receptive Fields for Neural Pattern Recognition Claudio A.

More information

Neuromorphic Implementation of Orientation Hypercolumns

Neuromorphic Implementation of Orientation Hypercolumns University of Pennsylvania ScholarlyCommons Departmental Papers (BE) Department of Bioengineering June 2005 Neuromorphic Implementation of Orientation Hypercolumns Thomas Yu Wing Choi Hong Kong University

More information

Vision V Perceiving Movement

Vision V Perceiving Movement Vision V Perceiving Movement Overview of Topics Chapter 8 in Goldstein (chp. 9 in 7th ed.) Movement is tied up with all other aspects of vision (colour, depth, shape perception...) Differentiating self-motion

More information

SPATIAL VISION. ICS 280: Visual Perception. ICS 280: Visual Perception. Spatial Frequency Theory. Spatial Frequency Theory

SPATIAL VISION. ICS 280: Visual Perception. ICS 280: Visual Perception. Spatial Frequency Theory. Spatial Frequency Theory SPATIAL VISION Spatial Frequency Theory So far, we have considered, feature detection theory Recent development Spatial Frequency Theory The fundamental elements are spatial frequency elements Does not

More information

Vision V Perceiving Movement

Vision V Perceiving Movement Vision V Perceiving Movement Overview of Topics Chapter 8 in Goldstein (chp. 9 in 7th ed.) Movement is tied up with all other aspects of vision (colour, depth, shape perception...) Differentiating self-motion

More information

Color and perception Christian Miller CS Fall 2011

Color and perception Christian Miller CS Fall 2011 Color and perception Christian Miller CS 354 - Fall 2011 A slight detour We ve spent the whole class talking about how to put images on the screen What happens when we look at those images? Are there any

More information

Spectral colors. What is colour? 11/23/17. Colour Vision 1 - receptoral. Colour Vision I: The receptoral basis of colour vision

Spectral colors. What is colour? 11/23/17. Colour Vision 1 - receptoral. Colour Vision I: The receptoral basis of colour vision Colour Vision I: The receptoral basis of colour vision Colour Vision 1 - receptoral What is colour? Relating a physical attribute to sensation Principle of Trichromacy & metamers Prof. Kathy T. Mullen

More information

Neural basis of pattern vision

Neural basis of pattern vision ENCYCLOPEDIA OF COGNITIVE SCIENCE 2000 Macmillan Reference Ltd Neural basis of pattern vision Visual receptive field#visual system#binocularity#orientation selectivity#stereopsis Kiper, Daniel Daniel C.

More information

AS Psychology Activity 4

AS Psychology Activity 4 AS Psychology Activity 4 Anatomy of The Eye Light enters the eye and is brought into focus by the cornea and the lens. The fovea is the focal point it is a small depression in the retina, at the back of

More information

The eye, displays and visual effects

The eye, displays and visual effects The eye, displays and visual effects Week 2 IAT 814 Lyn Bartram Visible light and surfaces Perception is about understanding patterns of light. Visible light constitutes a very small part of the electromagnetic

More information

7Motion Perception. 7 Motion Perception. 7 Computation of Visual Motion. Chapter 7

7Motion Perception. 7 Motion Perception. 7 Computation of Visual Motion. Chapter 7 7Motion Perception Chapter 7 7 Motion Perception Computation of Visual Motion Eye Movements Using Motion Information The Man Who Couldn t See Motion 7 Computation of Visual Motion How would you build a

More information

Color. Color. Colorfull world IFT3350. Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal

Color. Color. Colorfull world IFT3350. Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal IFT3350 Victor Ostromoukhov Université de Montréal full world 2 1 in art history Mondrian 1921 The cave of Lascaux About 17000 BC Vermeer mid-xvii century 3 is one of the most effective visual attributes

More information

Outline 2/21/2013. The Retina

Outline 2/21/2013. The Retina Outline 2/21/2013 PSYC 120 General Psychology Spring 2013 Lecture 9: Sensation and Perception 2 Dr. Bart Moore bamoore@napavalley.edu Office hours Tuesdays 11:00-1:00 How we sense and perceive the world

More information

The visual and oculomotor systems. Peter H. Schiller, year The visual cortex

The visual and oculomotor systems. Peter H. Schiller, year The visual cortex The visual and oculomotor systems Peter H. Schiller, year 2006 The visual cortex V1 Anatomical Layout Monkey brain central sulcus Central Sulcus V1 Principalis principalis Arcuate Lunate lunate Figure

More information

iris pupil cornea ciliary muscles accommodation Retina Fovea blind spot

iris pupil cornea ciliary muscles accommodation Retina Fovea blind spot Chapter 6 Vision Exam 1 Anatomy of vision Primary visual cortex (striate cortex, V1) Prestriate cortex, Extrastriate cortex (Visual association coretx ) Second level association areas in the temporal and

More information

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2)

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Lecture 5 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Summary of last

More information

Achromatic and chromatic vision, rods and cones.

Achromatic and chromatic vision, rods and cones. Achromatic and chromatic vision, rods and cones. Andrew Stockman NEUR3045 Visual Neuroscience Outline Introduction Rod and cone vision Rod vision is achromatic How do we see colour with cone vision? Vision

More information

3 THE VISUAL BRAIN. No Thing to See. Copyright Worth Publishers 2013 NOT FOR REPRODUCTION

3 THE VISUAL BRAIN. No Thing to See. Copyright Worth Publishers 2013 NOT FOR REPRODUCTION 3 THE VISUAL BRAIN No Thing to See In 1988 a young woman who is known in the neurological literature as D.F. fell into a coma as a result of carbon monoxide poisoning at her home. (The gas was released

More information

Spatial coding: scaling, magnification & sampling

Spatial coding: scaling, magnification & sampling Spatial coding: scaling, magnification & sampling Snellen Chart Snellen fraction: 20/20, 20/40, etc. 100 40 20 10 Visual Axis Visual angle and MAR A B C Dots just resolvable F 20 f 40 Visual angle Minimal

More information

VISUAL NEURAL SIMULATOR

VISUAL NEURAL SIMULATOR VISUAL NEURAL SIMULATOR Tutorial for the Receptive Fields Module Copyright: Dr. Dario Ringach, 2015-02-24 Editors: Natalie Schottler & Dr. William Grisham 2 page 2 of 36 3 Introduction. The goal of this

More information

Yokohama City University lecture INTRODUCTION TO HUMAN VISION Presentation notes 7/10/14

Yokohama City University lecture INTRODUCTION TO HUMAN VISION Presentation notes 7/10/14 Yokohama City University lecture INTRODUCTION TO HUMAN VISION Presentation notes 7/10/14 1. INTRODUCTION TO HUMAN VISION Self introduction Dr. Salmon Northeastern State University, Oklahoma. USA Teach

More information

A specialized face-processing network consistent with the representational geometry of monkey face patches

A specialized face-processing network consistent with the representational geometry of monkey face patches A specialized face-processing network consistent with the representational geometry of monkey face patches Amirhossein Farzmahdi, Karim Rajaei, Masoud Ghodrati, Reza Ebrahimpour, Seyed-Mahdi Khaligh-Razavi

More information

8.2 IMAGE PROCESSING VERSUS IMAGE ANALYSIS Image processing: The collection of routines and

8.2 IMAGE PROCESSING VERSUS IMAGE ANALYSIS Image processing: The collection of routines and 8.1 INTRODUCTION In this chapter, we will study and discuss some fundamental techniques for image processing and image analysis, with a few examples of routines developed for certain purposes. 8.2 IMAGE

More information

Visual Perception. Martin Čadík. Czech Technical University in Prague, Czech Republic

Visual Perception. Martin Čadík. Czech Technical University in Prague, Czech Republic Visual Perception Martin Čadík Czech Technical University in Prague, Czech Republic Content HVS Visual Illusions, Form, Brightness Adaptation - HDRI Colour Vision Depth, Motion Image Quality Assessment

More information

Lecture 4. Opponent Colors. Hue Cancellation Experiment HUV Color Space

Lecture 4. Opponent Colors. Hue Cancellation Experiment HUV Color Space Lecture 4 Opponent Colors Hue Cancellation Experiment HUV Color Space 20 40 60 80 100 120 50 100 150 200 250 20 40 60 80 100 120 50 100 150 200 250 20 40 60 80 100 120 50 100 150 200 250 20 40 60 80 100

More information

Limulus eye: a filter cascade. Limulus 9/23/2011. Dynamic Response to Step Increase in Light Intensity

Limulus eye: a filter cascade. Limulus 9/23/2011. Dynamic Response to Step Increase in Light Intensity Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L17. Neural processing in Linear Systems 2: Spatial Filtering C. D. Hopkins Sept. 23, 2011 Limulus Limulus eye:

More information

MITOCW watch?v=awyzdtetqbe

MITOCW watch?v=awyzdtetqbe MITOCW watch?v=awyzdtetqbe The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Reverse Engineering the Human Vision System

Reverse Engineering the Human Vision System Reverse Engineering the Human Vision System Reverse Engineering the Human Vision System Biologically Inspired Computer Vision Approaches Maria Petrou Imperial College London Overview of the Human Visual

More information

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3.

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. What theories help us understand color vision? 4. Is your

More information

Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal

Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal IFT3355 Victor Ostromoukhov Université de Montréal full world 2 1 in art history Mondrian 1921 The cave of Lascaux About 17000 BC Vermeer mid-xvii century 3 is one of the most effective visual attributes

More information

Image Processing Final Test

Image Processing Final Test Image Processing 048860 Final Test Time: 100 minutes. Allowed materials: A calculator and any written/printed materials are allowed. Answer 4-6 complete questions of the following 10 questions in order

More information

Domain-Specificity versus Expertise in Face Processing

Domain-Specificity versus Expertise in Face Processing Domain-Specificity versus Expertise in Face Processing Dan O Shea and Peter Combs 18 Feb 2008 COS 598B Prof. Fei Fei Li Inferotemporal Cortex and Object Vision Keiji Tanaka Annual Review of Neuroscience,

More information

A Biological Model of Object Recognition with Feature Learning

A Biological Model of Object Recognition with Feature Learning @ MIT massachusetts institute of technology artificial intelligence laboratory A Biological Model of Object Recognition with Feature Learning Jennifer Louie AI Technical Report 23-9 June 23 CBCL Memo 227

More information

Night-time pedestrian detection via Neuromorphic approach

Night-time pedestrian detection via Neuromorphic approach Night-time pedestrian detection via Neuromorphic approach WOO JOON HAN, IL SONG HAN Graduate School for Green Transportation Korea Advanced Institute of Science and Technology 335 Gwahak-ro, Yuseong-gu,

More information

Don t twinkle, little star!

Don t twinkle, little star! Lecture 16 Ch. 6. Optical instruments (cont d) Single lens instruments Eyeglasses Magnifying glass Two lens instruments Microscope Telescope & binoculars The projector Projection lens Field lens Ch. 7,

More information

vertical horizonta fovea Figure by MIT OCW.

vertical horizonta fovea Figure by MIT OCW. Visual Prosthetics 90 5 4 3 Lunate Sulcus Central Sulcus 2 1 180 0 vertical 270 horizonta 8 7 6 5 fovea 4 3 2 1 V1 Figure by MIT OCW. Present two visual targets Present one visual target and stimulate

More information

Review, the visual and oculomotor systems

Review, the visual and oculomotor systems The visual and oculomotor systems Peter H. Schiller, year 2013 Review, the visual and oculomotor systems 1 Basic wiring of the visual system 2 Primates Image removed due to copyright restrictions. Please

More information

Thesis: Bio-Inspired Vision Model Implementation In Compressed Surveillance Videos by. Saman Poursoltan. Thesis submitted for the degree of

Thesis: Bio-Inspired Vision Model Implementation In Compressed Surveillance Videos by. Saman Poursoltan. Thesis submitted for the degree of Thesis: Bio-Inspired Vision Model Implementation In Compressed Surveillance Videos by Saman Poursoltan Thesis submitted for the degree of Doctor of Philosophy in Electrical and Electronic Engineering University

More information

VISUAL NEURAL SIMULATOR

VISUAL NEURAL SIMULATOR VISUAL NEURAL SIMULATOR Tutorial for the Receptive Fields Module Copyright: Dr. Dario Ringach, 2015-02-24 Editors: Natalie Schottler & Dr. William Grisham 2 page 2 of 38 3 Introduction. The goal of this

More information

A Biological Model of Object Recognition with Feature Learning. Jennifer Louie

A Biological Model of Object Recognition with Feature Learning. Jennifer Louie A Biological Model of Object Recognition with Feature Learning by Jennifer Louie Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for

More information

Digital Image Processing Lec 02 - Image Formation - Color Space

Digital Image Processing Lec 02 - Image Formation - Color Space DIP-AMA, Fall 2018 Digital Image Processing Lec 02 - Image Formation - Color Space Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu p.1 Outline Recap

More information

Biologically Inspired Computation

Biologically Inspired Computation Biologically Inspired Computation Deep Learning & Convolutional Neural Networks Joe Marino biologically inspired computation biological intelligence flexible capable of detecting/ executing/reasoning about

More information

Sensing and Perception

Sensing and Perception Unit D tion Exploring Robotics Spring, 2013 D.1 Why does a robot need sensors? the environment is complex the environment is dynamic enable the robot to learn about current conditions in its environment.

More information

The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes:

The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes: The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes: The iris (the pigmented part) The cornea (a clear dome

More information

Human Vision. Human Vision - Perception

Human Vision. Human Vision - Perception 1 Human Vision SPATIAL ORIENTATION IN FLIGHT 2 Limitations of the Senses Visual Sense Nonvisual Senses SPATIAL ORIENTATION IN FLIGHT 3 Limitations of the Senses Visual Sense Nonvisual Senses Sluggish source

More information

Visual System I Eye and Retina

Visual System I Eye and Retina Visual System I Eye and Retina Reading: BCP Chapter 9 www.webvision.edu The Visual System The visual system is the part of the NS which enables organisms to process visual details, as well as to perform

More information

Psy 627: Advanced Topics in Visual Perception

Psy 627: Advanced Topics in Visual Perception Psy 627: Advanced Topics in Visual Perception Fall 2015 Last update: October 10, 2015. Tu, Th: 3:00-4:15 PM, Hampton Hall of Civil Engineering (HAMP), Room: 1266. Read the assigned readings for the first

More information

Lecture 15 End Chap. 6 Optical Instruments (2 slides) Begin Chap. 7 Visual Perception

Lecture 15 End Chap. 6 Optical Instruments (2 slides) Begin Chap. 7 Visual Perception Lecture 15 End Chap. 6 Optical Instruments (2 slides) Begin Chap. 7 Visual Perception Mar. 2, 2010 Homework #6, on Ch. 6, due March 4 Read Ch. 7, skip 7.10. 1 2 35 mm slide projector Field lens is used

More information

Sunderland, NE England

Sunderland, NE England Sunderland, NE England Robert Grosseteste (1175-1253) Bishop of Lincoln Teacher of Francis Bacon Exhibit featuring color ideas of Robert Grosseteste Closes Saturday! Exactly 16 colors: (unnamed) White

More information

Large Scale Imaging of the Retina. 1. The Retina a Biological Pixel Detector 2. Probing the Retina

Large Scale Imaging of the Retina. 1. The Retina a Biological Pixel Detector 2. Probing the Retina Large Scale Imaging of the Retina 1. The Retina a Biological Pixel Detector 2. Probing the Retina understand the language used by the eye to send information about the visual world to the brain use techniques

More information

CMVision and Color Segmentation. CSE398/498 Robocup 19 Jan 05

CMVision and Color Segmentation. CSE398/498 Robocup 19 Jan 05 CMVision and Color Segmentation CSE398/498 Robocup 19 Jan 05 Announcements Please send me your time availability for working in the lab during the M-F, 8AM-8PM time period Why Color Segmentation? Computationally

More information

2 The First Steps in Vision

2 The First Steps in Vision 2 The First Steps in Vision 2 The First Steps in Vision A Little Light Physics Eyes That See light Retinal Information Processing Whistling in the Dark: Dark and Light Adaptation The Man Who Could Not

More information

Human Vision and Human-Computer Interaction. Much content from Jeff Johnson, UI Wizards, Inc.

Human Vision and Human-Computer Interaction. Much content from Jeff Johnson, UI Wizards, Inc. Human Vision and Human-Computer Interaction Much content from Jeff Johnson, UI Wizards, Inc. are these guidelines grounded in perceptual psychology and how can we apply them intelligently? Mach bands:

More information

CS510: Image Computation. Ross Beveridge Jan 16, 2018

CS510: Image Computation. Ross Beveridge Jan 16, 2018 CS510: Image Computation Ross Beveridge Jan 16, 2018 Class Goals Prepare you to do research in computer vision Provide big picture (comparison to humans) Give you experience reading papers Familiarize

More information

PERCEIVING MOVEMENT. Ways to create movement

PERCEIVING MOVEMENT. Ways to create movement PERCEIVING MOVEMENT Ways to create movement Perception More than one ways to create the sense of movement Real movement is only one of them Slide 2 Important for survival Animals become still when they

More information

Visual Rules. Why are they necessary?

Visual Rules. Why are they necessary? Visual Rules Why are they necessary? Because the image on the retina has just two dimensions, a retinal image allows countless interpretations of a visual object in three dimensions. Underspecified Poverty

More information

Structure and Measurement of the brain lecture notes

Structure and Measurement of the brain lecture notes Structure and Measurement of the brain lecture notes Marty Sereno 2009/2010!"#$%&'(&#)*%$#&+,'-&.)"/*"&.*)*-'(0&1223 Neural development and visual system Lecture 2 Topics Development Gastrulation Neural

More information

Sensation and Perception. Sensation. Sensory Receptors. Sensation. General Properties of Sensory Systems

Sensation and Perception. Sensation. Sensory Receptors. Sensation. General Properties of Sensory Systems Sensation and Perception Psychology I Sjukgymnastprogrammet May, 2012 Joel Kaplan, Ph.D. Dept of Clinical Neuroscience Karolinska Institute joel.kaplan@ki.se General Properties of Sensory Systems Sensation:

More information

Our visual system always has to compute a solid object given definite limitations in the evidence that the eye is able to obtain from the world, by

Our visual system always has to compute a solid object given definite limitations in the evidence that the eye is able to obtain from the world, by Perceptual Rules Our visual system always has to compute a solid object given definite limitations in the evidence that the eye is able to obtain from the world, by inferring a third dimension. We can

More information

Simple Measures of Visual Encoding. vs. Information Theory

Simple Measures of Visual Encoding. vs. Information Theory Simple Measures of Visual Encoding vs. Information Theory Simple Measures of Visual Encoding STIMULUS RESPONSE What does a [visual] neuron do? Tuning Curves Receptive Fields Average Firing Rate (Hz) Stimulus

More information

Brain Computer Interfaces Lecture 2: Current State of the Art in BCIs

Brain Computer Interfaces Lecture 2: Current State of the Art in BCIs Brain Computer Interfaces Lecture 2: Current State of the Art in BCIs Lars Schwabe Adaptive and Regenerative Software Systems http://ars.informatik.uni-rostock.de 2011 UNIVERSITÄT ROSTOCK FACULTY OF COMPUTER

More information

PERCEIVING MOTION CHAPTER 8

PERCEIVING MOTION CHAPTER 8 Motion 1 Perception (PSY 4204) Christine L. Ruva, Ph.D. PERCEIVING MOTION CHAPTER 8 Overview of Questions Why do some animals freeze in place when they sense danger? How do films create movement from still

More information

Invariant Object Recognition in the Visual System with Novel Views of 3D Objects

Invariant Object Recognition in the Visual System with Novel Views of 3D Objects LETTER Communicated by Marian Stewart-Bartlett Invariant Object Recognition in the Visual System with Novel Views of 3D Objects Simon M. Stringer simon.stringer@psy.ox.ac.uk Edmund T. Rolls Edmund.Rolls@psy.ox.ac.uk,

More information

Decoding Natural Signals from the Peripheral Retina

Decoding Natural Signals from the Peripheral Retina Decoding Natural Signals from the Peripheral Retina Brian C. McCann, Mary M. Hayhoe & Wilson S. Geisler Center for Perceptual Systems and Department of Psychology University of Texas at Austin, Austin

More information

Adaptive pyramid model for the Traveling Salesman Problem

Adaptive pyramid model for the Traveling Salesman Problem Adaptive pyramid model for the Traveling Salesman Problem Zygmunt Pizlo, Emil Stefanov & John Saalweachter Purdue University Yll Haxhimusa & Walter G. Kropatsch Vienna University of Technology Acknowledgment:

More information

P rcep e t p i t on n a s a s u n u c n ons n c s ious u s i nf n e f renc n e L ctur u e 4 : Recogni n t i io i n

P rcep e t p i t on n a s a s u n u c n ons n c s ious u s i nf n e f renc n e L ctur u e 4 : Recogni n t i io i n Lecture 4: Recognition and Identification Dr. Tony Lambert Reading: UoA text, Chapter 5, Sensation and Perception (especially pp. 141-151) 151) Perception as unconscious inference Hermann von Helmholtz

More information

An Engineer s Perspective on of the Retina. Steve Collins Department of Engineering Science University of Oxford

An Engineer s Perspective on of the Retina. Steve Collins Department of Engineering Science University of Oxford An Engineer s Perspective on of the Retina Steve Collins Department of Engineering Science University of Oxford Aims of the Talk To highlight that research can be: multi-disciplinary stimulated by user

More information

Chapter 73. Two-Stroke Apparent Motion. George Mather

Chapter 73. Two-Stroke Apparent Motion. George Mather Chapter 73 Two-Stroke Apparent Motion George Mather The Effect One hundred years ago, the Gestalt psychologist Max Wertheimer published the first detailed study of the apparent visual movement seen when

More information

Motion Detector Using High Level Feature Extraction

Motion Detector Using High Level Feature Extraction Motion Detector Using High Level Feature Extraction Mohd Saifulnizam Zaharin 1, Norazlin Ibrahim 2 and Tengku Azahar Tuan Dir 3 Industrial Automation Department, Universiti Kuala Lumpur Malaysia France

More information

Sensation, Part 4 Gleitman et al. (2011), Chapter 4

Sensation, Part 4 Gleitman et al. (2011), Chapter 4 Sensation, Part 4 Gleitman et al. (2011), Chapter 4 Mike D Zmura Department of Cognitive Sciences, UCI Psych 9A / Psy Beh 11A February 20, 2014 T. M. D'Zmura 1 From last time T. M. D'Zmura 2 Rod Transduction

More information

Templates and Image Pyramids

Templates and Image Pyramids Templates and Image Pyramids 09/07/17 Computational Photography Derek Hoiem, University of Illinois Why does a lower resolution image still make sense to us? What do we lose? Image: http://www.flickr.com/photos/igorms/136916757/

More information