# WEEK 7 REVIEW. Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.1)

Size: px
Start display at page:

Download "WEEK 7 REVIEW. Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.1)"

Transcription

1 WEEK 7 REVIEW Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.) Definition of Probability (7.2) WEEK 8-7.3, 7.4 and Test Review

2 THE MULTIPLICATION PRINCIPLE At a pasta diner there is a choice of 4 different pastas and 3 different sauces. How many dinners can be made? Use a TREE DIAGRAM to organize the choices and outcomes We find 2 different dinners and 2 = 4 3. What if there were 5 different meats to choose from? We need the MULTIPLICATION PRINCIPLE: Suppose a task T can be completed n ways, a task T 2 can be completed n 2 ways,... and a task T r can be completed n r ways. The number outcomes from making these r choices is the product n n 2...n r So there would be 4 3 5=60possible dinners with the additonal choice of 5 meats. Example - How many different computer addresses are possible if the first three spots have letters and the last four spots have digits? We have 26 ways to complete the task of choosing a letter for each of the letter places and 0 ways to complete the task of choosing a digit for each of the four digit places. In all = 75, 760, 000 Example - How many different 4-digit access codes can be made if the first digit cannot be a 0 or a and no repeats are allowed? The first spot has 8 choices available. Now one digit is removed from our possible digit list since we cannot have repeats, but now the 0 and are available and so the next spot has 9 choices, then 8 then 7, = 4032 Example - How many different 2 scoop ice cream cones are possible if there are 3 flavors to choose from? 3 choices for the first scoop and 3 choices for the second scoop = 3 3 = 96 different two scoop cones. 2

3 PERMUTATIONS A common application of the multiplication principle is to choose elements from a finite set and arrange them in a certain way. How many ways can 8 different books be arranged on a bookshelf? We have 8 choices available for the first spot on the shelf. Choose a book out and place it on the shelf. Now we have 7 left to choose from for the second spot, etc =8!=40,320 We find 8! (on the calculator, enter 8, then MATH button. Go to the PRB menu. Enter 4 or scroll down to the! sign. Then enter again for the answer) ButthisisalsocalledaPERMUTATION,P(8, 8), the permutation of 8 things taken 8 at a time. What if we arranged only 3 of the books? How many ways to do this? = 336 = 8! 5! = 8! (8 3)! This is a permutation of 8 things taken 3 at a time, or P (8, 3). You can find these on your calculator as 8nP r3. (enter 8 on the home screen. hit the MATH button then choose the PRB menu. enter 2 or scroll down to npr and enter. then hit 3 then enter again) The general formula for the permutation of n things taken r at a time is P (n, r) = n! (n r)! If some of the objects being arranged are the same, then we have to find those permutations that look different, DISTINGUISHABLE PERMUTATIONS. Say we have a total of 6 marbles. 3 of them are blue, 2 of them are green and is red. How many different distinguishable permutations are there? The formula for the number of distinguishable permutations of N items where n items are of type and n 2 items are of type 2 and n r items are of type r is N! n!n 2!...n r! So in our example we would have 6! 3!2!! =60 3

4 COMBINATIONS We often only want a group or subset of items from a finite set, not an arrangement. When the order of the objects doesn t matter, it is a COMBINATION. Say we wanted to choose 3 of 8 books to lend to a friend. The order they are chosen won t matter, just if the books are chosen to be in the group or not. We start by finding the number of ways to arrange the 3 of 8 books and then divide by the number of ways the 3 books can be arranged among themselves (as they are all still in the same group). We have ! =56=C(8, 3) = P (8, 3) 3! = 8 3 In general, the COMBINATION of n things taken r at at time is n n! C(n, r) = = r (n r)!r! Example - A researcher has 2 plants. 5 of them are wheat, 4 are corn and 3 are rye plants. A sample of 3 plants in chosen. a) How many different samples of 3 plants are there? We have 2 plants and we pick a group of 3 to be our sample, 2 C(2, 3) = =2nCr3 = b) How many different samples have 2 wheat plants? We will choose 2 from the 5 wheats and the remaining from the 7 that are not wheat: 5 7 C(5, 2) C(7, ) = 2 =(5nCr2) (7nCr)=0 7=70 4

5 c) How many different samples will have one of each kind? 5 C(5, ) C(4, ) C(3, ) = 4 3 =(5nCr) (4nCr) (3nCr) = 5 4 3=60 d) How many samples will have at least one corn? First find which samples will satisfy our at least statement: corn and 2 not corn + 2 corn and not corn + 3 corn and 0 not corn Now work out how many ways to make each sample and then add them all up: corn and 2 not corn is C(4, ) C(8, 2) = 4 8 =(4nCr) (8nCr2) = 4 28 = corn and not corn is C(4, 2) C(8, ) = =(4nCr2) (8nCr)=6 8=48 3 corn and not corn is C(4, 3) C(8, 0) = =(4nCr3) (8nCr0) = 4 =4 0 So we will have ways to choose a sample with at least one corn = 64 An alternative way to solve this problem is to realize that in any sample of 3 plants we can have 3C, 0C c or 2C, C c or C, 2C c or 0C, 3C c. So we can find the number of ways to choose without restrictions (220) and subract our one missing case, 0C, 3C c, ( ( 4 8 C(4, 0) C(8, 3) = =(4nCr0) (8nCr3) = 56 = 56 0) 3) And so find the number of ways to have at least one corn is = 64, same as calculating the three cases that work. This is is a useful technique for at least one type problems. 5

6 Example - How many ways can a hand of 5 cards have three cards of the same suit? Example - In a bag of 0 apples there are 3 bad, apples. How many ways can a sample of 4 be chosen? How many ways in which a) None are rotten? b) is rotten? c) 2 are rotten? d) 3 are rotten? e) 4 are rotten? Example - A minivan can hold 7 passengers. An adult must sit in one of the two front seats and anyone can sit in the rear 5 seats. A group of 4 adults and 3 children are to be seated in the van. How many different seating arrangements are possible? Example - How many different two item pizzas are possible if there are 8 different toppings and doubles are allowed? Example - You have a class of 20 children, 0 boys and 0 girls. How many ways can the children be seated in a row if boys and girls must alternate? Example - You take a mutiple choice test with 3 questions and each question has 5 possible answers. How many ways can the test be answered? 6

7 Experiments, Sample Spaces and Events An EXPERIMENT is any activity with an observable result. Tossing a coin, rolling a die or choosing a card are all considered experiments. An OUTCOME (or SAMPLE POINT) is the result of a the experiment. The set of all possible outcomes or sample points of an experiment is called the SAMPLE SPACE. Flip a coin, S = {H, T} Roll a 6-sided die, S = {, 2, 3, 4, 5, 6} Choose a card and note the suit, S = {,,, } = {C, S, D, H}. We always want our sample space to be UNIFORM. That is, each of the outcomes in the sample space has an equally likely chance of happening. In our sample spaces for the coin we assumed it was a fair coin and then the two outcomes will have the same chance of happening. Example - You have a cup with the scrabble tiles W, X, Y, Z in it. You choose one tile at random. What is the sample space? Is it uniform? Example - You have a cup with the tiles A, A, B, C. You choose one at random. What is the sample space? Is it uniform? Example - From a bin of 6 apples (4 red and 2 green) a sample of 2 is chosen. What is the sample space? Is it uniform? 7

8 An EVENT is a subset of the sample space. Example: List all events possible when a coin is tossed. (event that the coin is a head AND a tail) {H} (event that the coin is a head) {T } (event that the coin is a tail) {H, T} (event that the coin is a head OR a tail) So there are 4 events from our sample space of 2 outcomes! Example - a bag has one red, one blue and one green marble. A single marble is chosen from the bag. a) What is the sample space? b) What events are possible? Example - A coin is tossed and the side noted and a card is drawn and the color noted. a) What is the sample space? b) What events are possible? 8

9 Definition of Probability To find the theoretical probability of an event occuring we must first find a UNIFORM SAMPLE SPACE (the outcomes are all equally likely). If there are n outcomes in the sample space, they will each have a probability of /n of occuring. The outcomes are MUTUALLY EXCLUSIVE - that is, only one can occur during the experiment. We want to arrange the outcomes (also called simple events) in a probability distribution table: outcome probability {s } /n {s } /n.. {s } /n We say P ({s })=P(s )=P =/n Probability distribution tables have the following properties:. 0 P (s i ) 2. P (s )+P(s 2 ) P (s n )= 3. P ({s i s j })=P(s i )+P(s j ),i j Example - A card is chosen from a standard 52 card deck and the suit is noted. Find the probability distribution table for this experiment: outcome probability /4 /4 /4 /4 What is the probability that the card is red ( OR )? P (red) =/4+/4=2/4 Example - a family has two children. Find a probability distribution table for the number of girls in the family. Example - From a bin of 6 apples (4 red and 2 green) a sample of 2 is chosen. What is the probability distribution table for the number of green apples in the sample? 9

10 The empirical probability of an outcome is determined by the relative frequency it occurs. You can find the relative frequency by doing an experiment. Example - A survey was done of students for how many earrings they are wearing. The following results were found: no. of earrings no. of students relative frequency /345 = /345 = /345 = /345 = /345 =.06 5ormore 5 5/345 =.04 total 345 So we can find the probability that a person has 3 or more earrings on as P (x >3) = P (3) + P (4) + P (5 or more) =30/ / /345 =.9 0

### Probability Rules. 2) The probability, P, of any event ranges from which of the following?

Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,

### ACTIVITY 6.7 Selecting and Rearranging Things

ACTIVITY 6.7 SELECTING AND REARRANGING THINGS 757 OBJECTIVES ACTIVITY 6.7 Selecting and Rearranging Things 1. Determine the number of permutations. 2. Determine the number of combinations. 3. Recognize

### 7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

### Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

### 4.1 Sample Spaces and Events

4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

### Chapter 5 - Elementary Probability Theory

Chapter 5 - Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling

### Unit 19 Probability Review

. What is sample space? All possible outcomes Unit 9 Probability Review 9. I can use the Fundamental Counting Principle to count the number of ways an event can happen. 2. What is the difference between

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) 1 6

Math 300 Exam 4 Review (Chapter 11) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Give the probability that the spinner shown would land on

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Statistics Homework Ch 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability

### Name: 1. Match the word with the definition (1 point each - no partial credit!)

Chapter 12 Exam Name: Answer the questions in the spaces provided. If you run out of room, show your work on a separate paper clearly numbered and attached to this exam. SHOW ALL YOUR WORK!!! Remember

### Probability, Permutations, & Combinations LESSON 11.1

Probability, Permutations, & Combinations LESSON 11.1 Objective Define probability Use the counting principle Know the difference between combination and permutation Find probability Probability PROBABILITY:

### Section Introduction to Sets

Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

### Section The Multiplication Principle and Permutations

Section 2.1 - The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different

### Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39

CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting - Permutation and Combination 39 2.5

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Math 1324 Test 3 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Insert " " or " " in the blank to make the statement true. 1) {18, 27, 32}

### Unit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)

Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,

### Probability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College

Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical

### Counting and Probability Math 2320

Counting and Probability Math 2320 For a finite set A, the number of elements of A is denoted by A. We have two important rules for counting. 1. Union rule: Let A and B be two finite sets. Then A B = A

### CHAPTER 8 Additional Probability Topics

CHAPTER 8 Additional Probability Topics 8.1. Conditional Probability Conditional probability arises in probability experiments when the person performing the experiment is given some extra information

### Exam III Review Problems

c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous Week-in-Reviews

### Independent Events. If we were to flip a coin, each time we flip that coin the chance of it landing on heads or tails will always remain the same.

Independent Events Independent events are events that you can do repeated trials and each trial doesn t have an effect on the outcome of the next trial. If we were to flip a coin, each time we flip that

### STATISTICAL COUNTING TECHNIQUES

STATISTICAL COUNTING TECHNIQUES I. Counting Principle The counting principle states that if there are n 1 ways of performing the first experiment, n 2 ways of performing the second experiment, n 3 ways

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Mathematical Ideas Chapter 2 Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) In one town, 2% of all voters are Democrats. If two voters

### Counting Methods and Probability

CHAPTER Counting Methods and Probability Many good basketball players can make 90% of their free throws. However, the likelihood of a player making several free throws in a row will be less than 90%. You

### Chapter 1: Sets and Probability

Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping

### INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results

### Unit 14 Probability. Target 3 Calculate the probability of independent and dependent events (compound) AND/THEN statements

Target 1 Calculate the probability of an event Unit 14 Probability Target 2 Calculate a sample space 14.2a Tree Diagrams, Factorials, and Permutations 14.2b Combinations Target 3 Calculate the probability

### FALL 2012 MATH 1324 REVIEW EXAM 4

FALL 01 MATH 134 REVIEW EXAM 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write the sample space for the given experiment. 1) An ordinary die

### Nwheatleyschaller s The Next Step...Conditional Probability

CK-12 FOUNDATION Nwheatleyschaller s The Next Step...Conditional Probability Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) Meery To access a customizable version of

### MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - FALL DR. DAVID BRIDGE

MATH 2053 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - FALL 2009 - DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the

### What is the probability Jordan will pick a red marble out of the bag and land on the red section when spinning the spinner?

Name: Class: Date: Question #1 Jordan has a bag of marbles and a spinner. The bag of marbles has 10 marbles in it, 6 of which are red. The spinner is divided into 4 equal sections: blue, green, red, and

### 1. For which of the following sets does the mean equal the median?

1. For which of the following sets does the mean equal the median? I. {1, 2, 3, 4, 5} II. {3, 9, 6, 15, 12} III. {13, 7, 1, 11, 9, 19} A. I only B. I and II C. I and III D. I, II, and III E. None of the

### Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY

Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY 1. Jack and Jill do not like washing dishes. They decide to use a random method to select whose turn it is. They put some red and blue

### Section 7.2 Definition of Probability

Section 7.2 Definition of Probability Question: Suppose we have an experiment that consists of flipping a fair 2-sided coin and observing if the coin lands on heads or tails? From section 7.1 weshouldknowthatthereare

### Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E.

Probability and Statistics Chapter 3 Notes Section 3-1 I. Probability Experiments. A. When weather forecasters say There is a 90% chance of rain tomorrow, or a doctor says There is a 35% chance of a successful

### Theory of Probability - Brett Bernstein

Theory of Probability - Brett Bernstein Lecture 3 Finishing Basic Probability Review Exercises 1. Model flipping two fair coins using a sample space and a probability measure. Compute the probability of

### Math 1 Unit 4 Mid-Unit Review Chances of Winning

Math 1 Unit 4 Mid-Unit Review Chances of Winning Name My child studied for the Unit 4 Mid-Unit Test. I am aware that tests are worth 40% of my child s grade. Parent Signature MM1D1 a. Apply the addition

### Dependence. Math Circle. October 15, 2016

Dependence Math Circle October 15, 2016 1 Warm up games 1. Flip a coin and take it if the side of coin facing the table is a head. Otherwise, you will need to pay one. Will you play the game? Why? 2. If

### NAME DATE PERIOD. Study Guide and Intervention

9-1 Section Title The probability of a simple event is a ratio that compares the number of favorable outcomes to the number of possible outcomes. Outcomes occur at random if each outcome occurs by chance.

### Probability: introduction

May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an

### Chapter 13 Test Review

1. The tree diagrams below show the sample space of choosing a cushion cover or a bedspread in silk or in cotton in red, orange, or green. Write the number of possible outcomes. A 6 B 10 C 12 D 4 Find

### Unit 11 Probability. Round 1 Round 2 Round 3 Round 4

Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.

### November 6, Chapter 8: Probability: The Mathematics of Chance

Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

### Finite Mathematics MAT 141: Chapter 8 Notes

Finite Mathematics MAT 4: Chapter 8 Notes Counting Principles; More David J. Gisch The Multiplication Principle; Permutations Multiplication Principle Multiplication Principle You can think of the multiplication

### A Probability Work Sheet

A Probability Work Sheet October 19, 2006 Introduction: Rolling a Die Suppose Geoff is given a fair six-sided die, which he rolls. What are the chances he rolls a six? In order to solve this problem, we

### Math 7, Unit 5: Probability - NOTES

Math 7, Unit 5: Probability - NOTES NVACS 7. SP.C.5 - Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers

### Introduction. Firstly however we must look at the Fundamental Principle of Counting (sometimes referred to as the multiplication rule) which states:

Worksheet 4.11 Counting Section 1 Introduction When looking at situations involving counting it is often not practical to count things individually. Instead techniques have been developed to help us count

### CS 237: Probability in Computing

CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 5: o Independence reviewed; Bayes' Rule o Counting principles and combinatorics; o Counting considered

### STAT 430/510 Probability Lecture 1: Counting-1

STAT 430/510 Probability Lecture 1: Counting-1 Pengyuan (Penelope) Wang May 22, 2011 Introduction In the early days, probability was associated with games of chance, such as gambling. Probability is describing

### PROBABILITY. Example 1 The probability of choosing a heart from a deck of cards is given by

Classical Definition of Probability PROBABILITY Probability is the measure of how likely an event is. An experiment is a situation involving chance or probability that leads to results called outcomes.

### Probability and Counting Techniques

Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

### Applied Statistics I

Applied Statistics I Liang Zhang Department of Mathematics, University of Utah June 12, 2008 Liang Zhang (UofU) Applied Statistics I June 12, 2008 1 / 29 In Probability, our main focus is to determine

### Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37

Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete

### Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

### 10-1. Combinations. Vocabulary. Lesson. Mental Math. able to compute the number of subsets of size r.

Chapter 10 Lesson 10-1 Combinations BIG IDEA With a set of n elements, it is often useful to be able to compute the number of subsets of size r Vocabulary combination number of combinations of n things

### Math 166: Topics in Contemporary Mathematics II

Math 166: Topics in Contemporary Mathematics II Xin Ma Texas A&M University September 30, 2017 Xin Ma (TAMU) Math 166 September 30, 2017 1 / 11 Last Time Factorials For any natural number n, we define

### I. WHAT IS PROBABILITY?

C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

### Name: Class: Date: ID: A

Class: Date: Chapter 0 review. A lunch menu consists of different kinds of sandwiches, different kinds of soup, and 6 different drinks. How many choices are there for ordering a sandwich, a bowl of soup,

### 1. A factory manufactures plastic bottles of 4 different sizes, 3 different colors, and 2 different shapes. How many different bottles are possible?

Unit 8 Quiz Review Short Answer 1. A factory manufactures plastic bottles of 4 different sizes, 3 different colors, and 2 different shapes. How many different bottles are possible? 2. A pizza corner offers

### CHAPTER 7 Probability

CHAPTER 7 Probability 7.1. Sets A set is a well-defined collection of distinct objects. Welldefined means that we can determine whether an object is an element of a set or not. Distinct means that we can

### Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results:

Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results: Outcome Frequency 1 8 2 8 3 12 4 7 5 15 8 7 8 8 13 9 9 10 12 (a) What is the experimental probability

### A 21.0% B 34.3% C 49.0% D 70.0%

. For a certain kind of plant, 70% of the seeds that are planted grow into a flower. If Jenna planted 3 seeds, what is the probability that all of them grow into flowers? A 2.0% B 34.3% C 49.0% D 70.0%

### Raise your hand if you rode a bus within the past month. Record the number of raised hands.

166 CHAPTER 3 PROBABILITY TOPICS Raise your hand if you rode a bus within the past month. Record the number of raised hands. Raise your hand if you answered "yes" to BOTH of the first two questions. Record

### Independent Events B R Y

. Independent Events Lesson Objectives Understand independent events. Use the multiplication rule and the addition rule of probability to solve problems with independent events. Vocabulary independent

### Permutations. and. Combinations

Permutations and Combinations Fundamental Counting Principle Fundamental Counting Principle states that if an event has m possible outcomes and another independent event has n possible outcomes, then there

### Section : Combinations and Permutations

Section 11.1-11.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words

### The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following:

CS 70 Discrete Mathematics for CS Fall 2004 Rao Lecture 14 Introduction to Probability The next several lectures will be concerned with probability theory. We will aim to make sense of statements such

### Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability?

Name:Date:_/_/ Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability? 1. Finding the probability that Jeffrey will get an odd number

### Instructions: Choose the best answer and shade the corresponding space on the answer sheet provide. Be sure to include your name and student numbers.

Math 3201 Unit 3 Probability Assignment 1 Unit Assignment Name: Part 1 Selected Response: Instructions: Choose the best answer and shade the corresponding space on the answer sheet provide. Be sure to

### Homework #1-19: Use the Counting Principle to answer the following questions.

Section 4.3: Tree Diagrams and the Counting Principle Homework #1-19: Use the Counting Principle to answer the following questions. 1) If two dates are selected at random from the 365 days of the year

### More Probability: Poker Hands and some issues in Counting

More Probability: Poker Hands and some issues in Counting Data From Thursday Everybody flipped a pair of coins and recorded how many times they got two heads, two tails, or one of each. We saw that the

### ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists Session 4 Probability Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education School of Continuing

### Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Before we can move from descriptive statistics to inferential statistics, we need to have some understanding of probability: Ch4: Probability and Counting Rules

### The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

### Basic Probability. Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers

Basic Probability Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers (a) List the elements of!. (b) (i) Draw a Venn diagram to show

### Axiomatic Probability

Axiomatic Probability The objective of probability is to assign to each event A a number P(A), called the probability of the event A, which will give a precise measure of the chance thtat A will occur.

### Name: Class: Date: Probability/Counting Multiple Choice Pre-Test

Name: _ lass: _ ate: Probability/ounting Multiple hoice Pre-Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1 The dartboard has 8 sections of equal area.

### STATISTICS and PROBABILITY GRADE 6

Kansas City Area Teachers of Mathematics 2016 KCATM Math Competition STATISTICS and PROBABILITY GRADE 6 INSTRUCTIONS Do not open this booklet until instructed to do so. Time limit: 20 minutes You may use

### Probability. Probabilty Impossibe Unlikely Equally Likely Likely Certain

PROBABILITY Probability The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0

### Date Period State if each scenario involves a permutation or a combination. Then find the number of possibilities. ncr or npr

Algebra 2 G h2y0cic pk_ultta` LSeoxfftrwFaPrXeq qlolkco.p E nalltls jroifgvhztdso mrxeosbe^ravyeddt. Ultimate Probability Name Date Period State if each scenario involves a permutation or a combination.

### Counting and Probability

0838 ch0_p639-693 0//007 0:3 PM Page 633 CHAPTER 0 Counting and Probability The design below is like a seed puff of a dandelion just before it is dispersed by the wind. The design shows the outcomes from

### Mutually Exclusive Events Algebra 1

Name: Mutually Exclusive Events Algebra 1 Date: Mutually exclusive events are two events which have no outcomes in common. The probability that these two events would occur at the same time is zero. Exercise

### Probability. Ms. Weinstein Probability & Statistics

Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

### Study Guide Probability SOL s 6.16, 7.9, & 7.10

Study Guide Probability SOL s 6.16, 7.9, & 7.10 What do I need to know for the upcoming assessment? Find the probability of simple events; Determine if compound events are independent or dependent; Find

### CISC 1400 Discrete Structures

CISC 1400 Discrete Structures Chapter 6 Counting CISC1400 Yanjun Li 1 1 New York Lottery New York Mega-million Jackpot Pick 5 numbers from 1 56, plus a mega ball number from 1 46, you could win biggest

### Probability Essential Math 12 Mr. Morin

Probability Essential Math 12 Mr. Morin Name: Slot: Introduction Probability and Odds Single Event Probability and Odds Two and Multiple Event Experimental and Theoretical Probability Expected Value (Expected

### Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability

Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability Lesson Practice Problems Lesson 1: Predicting to Win (Finding Theoretical Probabilities) 1-3 Lesson 2: Choosing Marbles

### Fundamentals of Probability

Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

### Exam 2 Review (Sections Covered: 3.1, 3.3, , 7.1) 1. Write a system of linear inequalities that describes the shaded region.

Exam 2 Review (Sections Covered: 3.1, 3.3, 6.1-6.4, 7.1) 1. Write a system of linear inequalities that describes the shaded region. 5x + 2y 30 x + 2y 12 x 0 y 0 2. Write a system of linear inequalities

### Find the probability of an event by using the definition of probability

LESSON 10-1 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event

### pre-hs Probability Based on the table, which bill has an experimental probability of next? A) \$10 B) \$15 C) \$1 D) \$20

1. Peter picks one bill at a time from a bag and replaces it. He repeats this process 100 times and records the results in the table. Based on the table, which bill has an experimental probability of next?

### Chapter 13 April Vacation Packet

Name: _ Date: Chapter 13 April Vacation Packet Class: _ 1. In a batch of 390 water purifiers, 12 were found to be defective. What is the probability that a water purifier chosen at random will be defective?

### 4.3 Rules of Probability

4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:

### MATH 1115, Mathematics for Commerce WINTER 2011 Toby Kenney Homework Sheet 6 Model Solutions

MATH, Mathematics for Commerce WINTER 0 Toby Kenney Homework Sheet Model Solutions. A company has two machines for producing a product. The first machine produces defective products % of the time. The

### Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

### Outcomes: The outcomes of this experiment are yellow, blue, red and green.

(Adapted from http://www.mathgoodies.com/) 1. Sample Space The sample space of an experiment is the set of all possible outcomes of that experiment. The sum of the probabilities of the distinct outcomes