# Homework #1-19: Use the Counting Principle to answer the following questions.

Size: px
Start display at page:

Transcription

1 Section 4.3: Tree Diagrams and the Counting Principle Homework #1-19: Use the Counting Principle to answer the following questions. 1) If two dates are selected at random from the 365 days of the year and are listed in the order they were selected. a) Use the counting principle to determine the number of possible outcomes if the dates are selected with replacement. b) Use the counting principle to determine the number of possible outcomes if the dates are selected without replacement. 2) Two dates are selected at random from the month of May and listed in the order they were selected. a) Use the counting principle to determine the number of possible outcomes if the dates are selected with replacement. b) Use the counting principle to determine the number of possible outcomes if the dates are selected without replacement.

2 3) Joe has 5 shirts, 3 pairs of pants and 4 pairs of shoes. He needs to make an outfit containing one of each item. How many different outfits are possible? (We assume that one different item makes a different outfit) 4) Shannon is going to purchase a new car. The car has 5 exterior color choices, 2 interior color packages and 2 engine options. How many different cars are possible? 5) A television remote has buttons for the digits 0 9. If you press two buttons, how many numbers are possible if a) The same button may be pressed twice? b) The same button may not be pressed twice? 6) A safe s lock has a three number combination. The numbers on the safe lock are How many combinations are possible if no number may be used more than once? 7) A movie theater sells 3 sizes of popcorn (small, medium, and large) with 3 choices of toppings (no butter, butter, extra butter). How many possible ways can a bag of popcorn be purchased?

3 8) Girls' ice skates come with the following options: Colors: white, beige, pink, yellow, blue Sizes: 4, 5, 6, 7, 8 Extras: tassels, striped laces, bells Assuming that all skates are sold with ONE extra, how many possible arrangements exist? 9) A state issues license plates consisting of letters and numbers. There are 26 letters and the letters may be repeated. There are 10 digits and the digits may be repeated. How many possible license plates can be issued with two letters followed by three numbers? 10) An ice cream shop offers 31 flavors. You order a double-scoop cone. In how many different ways can the clerk put the ice cream on the cone if you wanted two different flavors? 11) Burger Queen offers 4 types of burgers, 5 types of beverages, and 3 types of desserts. If a meal consists of 1 burger, one beverage and one dessert, how many possible meals can be chosen? 12) Elizabeth is choosing silverware with which to eat dinner. There are 3 knives and 2 forks to choose from. How many different silverware sets can Elizabeth choose?

4 13) Reid is ordering a birthday cake for a friend. There are 5 cake flavors and 4 frosting flavors to choose from. How many different cakes can Reid order? 14) If car license plates consists 3 letters followed by 3 numbers, how many license plates are possible if there are no restrictions? 15) Answer question 14 but assume the license plates must be of the form 2 letters followed by 4 numbers and there are no other restrictions. 16) The standard New York state license plate has three letters followed by four digits. How many different license plates are possible if the digits can t be repeated and letters can be repeated? 17) The standard New York state license plate has three letters followed by four digits. How many different license plates are possible if neither the digits nor the letters can be repeated?

5 18) Students at a small college are assigned student identification numbers. The IDs are made up of five digits. If the digits can be repeated, how many identification numbers are possible? 19) You are assigned a computer generated 4-digit password to access your new voice mail account. If the digits can be repeated, how many passwords are possible? #20 30: Counting principle problems with sample space construction and probability questions. 20) A couple plans to have three children. a) Determine the number of points in the sample space of the possible arrangements of boys and girls. b) Construct a tree diagram and list the sample space. Find the probability the couple has: c) Two girls d) At least one girl e) A girl then two boys

6 21) A couple plans to have two children. a) Determine the number of points in the sample space of the possible arrangements of boys and girls. b) Construct a tree diagram and list the sample space. Find the probability the couple has: c) Two girls d) At least one girl e) A girl then a boy 22) Answer each part of question 21, but assume the family plans to have 4 children.

7 23) A coin is tossed three times and a sequence of heads and tails is recorded. a) Determine the number of points in the sample space b) Construct a tree diagram and list the sample space Find the probability that: c) No heads are tossed d) Exactly one head is tossed e) Three heads are tossed 24) Answer each part of question 23 but assume a coin is tossed two times.

8 25) Two six sided dice are rolled and the number on each face is recorded. a) Determine the number of points in the sample space b) Construct a tree diagram and list the sample space c) Find the probability that a double is rolled (both dice have the same number) d) Find the probability that a sum of 7 is rolled e) Find the probability a sum of 2 is rolled f) Are you as likely to roll a sum of 2 as you are of rolling a sum or 7

9 26) Answer each part of question 25 but assume the first dice is a 5 sided dice and the second dice is a four sided dice. 27) A coin is flipped then a 6 sided dice is rolled. a) Determine the number of points in the sample space b) Construct a tree diagram and list the sample space c) Find the probability that a head is flipped and an even number is rolled d) Find the probability that a tail is flipped and a number less than 3 is rolled 28) Answer question 27 but assume that a coin is flipped and a 5 sided dice is rolled.

10 29) A coin is flipped then a number is picked out of a hat containing the numbers 1,2 and 3. a) Determine the number of points in the sample space b) Construct a tree diagram and list the sample space c) Find the probability that a head is flipped and an even number is selected d) Find the probability that a tail is flipped and a number less than 3 is selected 30) Answer question 29 but assume that a coin is flipped and a number is picked out of a hat containing the numbers 1,2,3 and 4.

11 Answers: 1a) 365*365 = 133,225 ways 1b) 365*364 = ways 3) 5*3*4 = 60 outfits 5a) 10*10 = 100 5b) 10*9 = 90 7) 3*3 = 9 9) 26*26*10*10*10 = 676,000 11) 4*5*3=60 13) 5*4 = 20 15) 26*26*10*10*10*10= 6,760,000 17) 26*25*24*10*9*8*7 = 78,624,000 19) 10*10*10*10=10,000 21a) 2*2 = 4 21b) {BB BG GB GG} 21c) ¼ 21d) ¾ 21e) ¼ 23a) 2*2*2 = 8 23a) {HHH HHT HTH HTT THH THT TTH TTT} 23c) 1/8 23d) 3/8 23e) 1/8 25a) 6*6 = 36 25b) (1,1) sum 2 (1,2) sum 3 (1,3) sum 4 (1,4) sum 5 (1,5) sum 6 (1,6) sum 7 (2,1) sum 3 (2,2) sum 4 (2,3) sum 5 (2,4) sum 6 (2,5) sum 7 (2,6) sum 8 (3,1) sum 4 (3,2) sum 5 (3,3) sum 6 (3,4) sum 7 (3,5) sum 8 (3,6) sum 9 (4,1) sum 5 (4,2) sum 6 (4,3) sum 7 (4,4) sum 8 (4,5) sum 9 (4,6) sum 10 (5,1) sum 6 (5,2) sum 7 (5,3) sum 8 (5,4) sum 9 (5,5) sum 10 (5,6) sum 11 (6,1) sum 7 (6,2) sum 8 (6,3) sum 9 (6,4) sum 10 (6,5) sum 11 (6,6) sum 12 25c) 6/36 = 1/6 25d) 6/36 = 1/6 25e) 1/36 25f) no 7 is more likely 27a) 2*6 = 12 27b) {H1 H2 H3 H4 H5 H6 T1 T2 T3 T4 T5 T6} 27c) 3/12 = ¼ 27d) 2/12 = 1/6 29a) 2*3 = 6 29b) {H1 H2 H3 T1 T2 T3} 29c) 1/6 29d) 2/6=1/3

### Math 146 Statistics for the Health Sciences Additional Exercises on Chapter 3

Math 46 Statistics for the Health Sciences Additional Exercises on Chapter 3 Student Name: Find the indicated probability. ) If you flip a coin three times, the possible outcomes are HHH HHT HTH HTT THH

### The tree diagram and list show the possible outcomes for the types of cookies Maya made. Peppermint Caramel Peppermint Caramel Peppermint Caramel

Compound Probabilities using Multiplication and Simulation Lesson 4.5 Maya was making sugar cookies. She decorated them with one of two types of frosting (white or pink), one of three types of sprinkles

### STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes

STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes Pengyuan (Penelope) Wang May 25, 2011 Review We have discussed counting techniques in Chapter 1. (Principle

### CS 361: Probability & Statistics

January 31, 2018 CS 361: Probability & Statistics Probability Probability theory Probability Reasoning about uncertain situations with formal models Allows us to compute probabilities Experiments will

### Use a tree diagram to find the number of possible outcomes. 2. How many outcomes are there altogether? 2.

Use a tree diagram to find the number of possible outcomes. 1. A pouch contains a blue chip and a red chip. A second pouch contains two blue chips and a red chip. A chip is picked from each pouch. The

### \\\v?i. EXERCISES Activity a. Determine the complement of event A in the roll-a-die experiment.

ACTIVITY 6.2 CHOICES 719 11. a. Determine the complement of event A in the roll-a-die experiment. b. Describe what portion of the Venn diagram above represents the complement of A. SUMMARY Activity 6.2

### Probability of Independent and Dependent Events

706 Practice A Probability of In and ependent Events ecide whether each set of events is or. Explain your answer.. A student spins a spinner and rolls a number cube.. A student picks a raffle ticket from

### EECS 203 Spring 2016 Lecture 15 Page 1 of 6

EECS 203 Spring 2016 Lecture 15 Page 1 of 6 Counting We ve been working on counting for the last two lectures. We re going to continue on counting and probability for about 1.5 more lectures (including

### Lesson 10: Using Simulation to Estimate a Probability

Lesson 10: Using Simulation to Estimate a Probability Classwork In previous lessons, you estimated probabilities of events by collecting data empirically or by establishing a theoretical probability model.

### Grade 6 Math Circles Fall Oct 14/15 Probability

1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014 - Oct 14/15 Probability Probability is the likelihood of an event occurring.

### Name. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.

Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided

### Chapter 8: Probability: The Mathematics of Chance

Chapter 8: Probability: The Mathematics of Chance Free-Response 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is

### Grade 6 Math Circles Winter February 10/11 Counting

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles Winter 2015 - February 10/11 Counting What is Counting? When you think of the word

### Fdaytalk.com. Outcomes is probable results related to an experiment

EXPERIMENT: Experiment is Definite/Countable probable results Example: Tossing a coin Throwing a dice OUTCOMES: Outcomes is probable results related to an experiment Example: H, T Coin 1, 2, 3, 4, 5, 6

### Probability Assignment

Name Probability Assignment Student # Hr 1. An experiment consists of spinning the spinner one time. a. How many possible outcomes are there? b. List the sample space for the experiment. c. Determine the

### In how many ways can the letters of SEA be arranged? In how many ways can the letters of SEE be arranged?

-Pick up Quiz Review Handout by door -Turn to Packet p. 5-6 In how many ways can the letters of SEA be arranged? In how many ways can the letters of SEE be arranged? - Take Out Yesterday s Notes we ll

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More 9.-9.3 Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. ) In how many ways can you answer the questions on

### Exercise Class XI Chapter 16 Probability Maths

Exercise 16.1 Question 1: Describe the sample space for the indicated experiment: A coin is tossed three times. A coin has two faces: head (H) and tail (T). When a coin is tossed three times, the total

### FALL 2012 MATH 1324 REVIEW EXAM 4

FALL 01 MATH 134 REVIEW EXAM 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write the sample space for the given experiment. 1) An ordinary die

### UNIT 4 APPLICATIONS OF PROBABILITY Lesson 1: Events. Instruction. Guided Practice Example 1

Guided Practice Example 1 Bobbi tosses a coin 3 times. What is the probability that she gets exactly 2 heads? Write your answer as a fraction, as a decimal, and as a percent. Sample space = {HHH, HHT,

### Chapter 4: Introduction to Probability

MTH 243 Chapter 4: Introduction to Probability Suppose that we found that one of our pieces of data was unusual. For example suppose our pack of M&M s only had 30 and that was 3.1 standard deviations below

### STOR 155 Introductory Statistics. Lecture 10: Randomness and Probability Model

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STOR 155 Introductory Statistics Lecture 10: Randomness and Probability Model 10/6/09 Lecture 10 1 The Monty Hall Problem Let s Make A Deal: a game show

### heads 1/2 1/6 roll a die sum on 2 dice 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 1, 2, 3, 4, 5, 6 heads tails 3/36 = 1/12 toss a coin trial: an occurrence

trial: an occurrence roll a die toss a coin sum on 2 dice sample space: all the things that could happen in each trial 1, 2, 3, 4, 5, 6 heads tails 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 example of an outcome:

### Lesson 17.1 Assignment

Lesson 17.1 Assignment Name Date Is It Better to Guess? Using Models for Probability Charlie got a new board game. 1. The game came with the spinner shown. 6 7 9 2 3 4 a. List the sample space for using

### 3. Three colors of cars that are I n red, blue and white color is driven sim ultaneously. Draw a tree diagram to represent the possible outcom es.

Topic : Tree Diagram s- Worksheet 1 1. A dice num bered 1 to 4 is rolled and 1 coins tossed. Draw a tree diagram to represent the possible 2. Draw a tree diagram to represent total outcom es for flipping

### Solving Problems by Searching

Solving Problems by Searching 1 Terminology State State Space Goal Action Cost State Change Function Problem-Solving Agent State-Space Search 2 Formal State-Space Model Problem = (S, s, A, f, g, c) S =

### Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY

Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY 1. Jack and Jill do not like washing dishes. They decide to use a random method to select whose turn it is. They put some red and blue

### Page 1 of 22. Website: Mobile:

Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.

### Math 1116 Probability Lecture Monday Wednesday 10:10 11:30

Math 1116 Probability Lecture Monday Wednesday 10:10 11:30 Course Web Page http://www.math.ohio state.edu/~maharry/ Chapter 15 Chances, Probabilities and Odds Objectives To describe an appropriate sample

### Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1

Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

### Unit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers?

Math 7 Unit 6: Probability Summative Assessment Name Date Knowledge and Understanding 1. Explain the difference between theoretical and experimental probability. 2. The probability of a given event can

### Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Week 6 Lecture Notes Discrete Probability Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. Introduction and

### Unit 14 Probability. Target 3 Calculate the probability of independent and dependent events (compound) AND/THEN statements

Target 1 Calculate the probability of an event Unit 14 Probability Target 2 Calculate a sample space 14.2a Tree Diagrams, Factorials, and Permutations 14.2b Combinations Target 3 Calculate the probability

### STAT 155 Introductory Statistics. Lecture 11: Randomness and Probability Model

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 11: Randomness and Probability Model 10/5/06 Lecture 11 1 The Monty Hall Problem Let s Make A Deal: a game show

### Name: Class: Date: Probability/Counting Multiple Choice Pre-Test

Name: _ lass: _ ate: Probability/ounting Multiple hoice Pre-Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1 The dartboard has 8 sections of equal area.

### XXII Probability. 4. The odds of being accepted in Mathematics at McGill University are 3 to 8. Find the probability of being accepted.

MATHEMATICS 20-BNJ-05 Topics in Mathematics Martin Huard Winter 204 XXII Probability. Find the sample space S along with n S. a) The face cards are removed from a regular deck and then card is selected

### 2. Heather tosses a coin and then rolls a number cube labeled 1 through 6. Which set represents S, the sample space for this experiment?

1. Jane flipped a coin and rolled a number cube with sides labeled 1 through 6. What is the probability the coin will show heads and the number cube will show the number 4? A B C D 1 6 1 8 1 10 1 12 2.

### Diamond ( ) (Black coloured) (Black coloured) (Red coloured) ILLUSTRATIVE EXAMPLES

CHAPTER 15 PROBABILITY Points to Remember : 1. In the experimental approach to probability, we find the probability of the occurence of an event by actually performing the experiment a number of times

### A 21.0% B 34.3% C 49.0% D 70.0%

. For a certain kind of plant, 70% of the seeds that are planted grow into a flower. If Jenna planted 3 seeds, what is the probability that all of them grow into flowers? A 2.0% B 34.3% C 49.0% D 70.0%

### = = 0.1%. On the other hand, if there are three winning tickets, then the probability of winning one of these winning tickets must be 3 (1)

MA 5 Lecture - Binomial Probabilities Wednesday, April 25, 202. Objectives: Introduce combinations and Pascal s triangle. The Fibonacci sequence had a number pattern that we could analyze in different

### Class XII Chapter 13 Probability Maths. Exercise 13.1

Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

### Unit 11 Probability. Round 1 Round 2 Round 3 Round 4

Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.

### TJP TOP TIPS FOR IGCSE STATS & PROBABILITY

TJP TOP TIPS FOR IGCSE STATS & PROBABILITY Dr T J Price, 2011 First, some important words; know what they mean (get someone to test you): Mean the sum of the data values divided by the number of items.

### Name: Spring P. Walston/A. Moore. Topic worksheet # assigned #completed Teacher s Signature Tree Diagrams FCP

Name: Spring 2016 P. Walston/A. Moore Topic worksheet # assigned #completed Teacher s Signature Tree Diagrams 1-0 13 FCP 1-1 16 Combinations/ Permutations Factorials 1-2 22 1-3 20 Intro to Probability

### Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay

QuestionofDay Question of the Day There are 31 educators from the state of Nebraska currently enrolled in Experimentation, Conjecture, and Reasoning. What is the probability that two participants in our

### COMPOUND PROBABILITIES USING LISTS, TREE DIAGRAMS AND TABLES

OMOUN OBBILITIES USING LISTS, TEE IGMS N TBLES LESSON 2-G EXLOE! Each trimester in E a student will play one sport. For first trimester the possible sports are soccer, tennis or golf. For second trimester

### Finite Mathematics MAT 141: Chapter 8 Notes

Finite Mathematics MAT 4: Chapter 8 Notes Counting Principles; More David J. Gisch The Multiplication Principle; Permutations Multiplication Principle Multiplication Principle You can think of the multiplication

### Counting methods (Part 4): More combinations

April 13, 2009 Counting methods (Part 4): More combinations page 1 Counting methods (Part 4): More combinations Recap of last lesson: The combination number n C r is the answer to this counting question:

### WEEK 7 REVIEW. Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.1)

WEEK 7 REVIEW Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.) Definition of Probability (7.2) WEEK 8-7.3, 7.4 and Test Review THE MULTIPLICATION

### Probability Exercise 2

Probability Exercise 2 1 Question 9 A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will

### MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #1 - SPRING DR. DAVID BRIDGE

MATH 205 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM # - SPRING 2006 - DR. DAVID BRIDGE TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Tell whether the statement is

### Chapter 13 Test Review

1. The tree diagrams below show the sample space of choosing a cushion cover or a bedspread in silk or in cotton in red, orange, or green. Write the number of possible outcomes. A 6 B 10 C 12 D 4 Find

### b. 2 ; the probability of choosing a white d. P(white) 25, or a a. Since the probability of choosing a

Applications. a. P(green) =, P(yellow) = 2, or 2, P(red) = 2 ; three of the four blocks are not red. d. 2. a. P(green) = 2 25, P(purple) = 6 25, P(orange) = 2 25, P(yellow) = 5 25, or 5 2 6 2 5 25 25 25

### Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability

Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability Student Name: Find the indicated probability. 1) If you flip a coin three times, the possible outcomes are HHH

### Probability. Dr. Zhang Fordham Univ.

Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!

### Tail. Tail. Head. Tail. Head. Head. Tree diagrams (foundation) 2 nd throw. 1 st throw. P (tail and tail) = P (head and tail) or a tail.

When you flip a coin, you might either get a head or a tail. The probability of getting a tail is one chance out of the two possible outcomes. So P (tail) = Complete the tree diagram showing the coin being

### 4.1 Sample Spaces and Events

4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

### Chapter 10 Practice Test Probability

Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its

### 3. a. P(white) =, or. b. ; the probability of choosing a white block. d. P(white) =, or. 4. a. = 1 b. 0 c. = 0

Answers Investigation ACE Assignment Choices Problem. Core, 6 Other Connections, Extensions Problem. Core 6 Other Connections 7 ; unassigned choices from previous problems Problem. Core 7 9 Other Connections

### e. Are the probabilities you found in parts (a)-(f) experimental probabilities or theoretical probabilities? Explain.

1. Josh is playing golf. He has 3 white golf balls, 4 yellow golf balls, and 1 red golf ball in his golf bag. At the first hole, he randomly draws a ball from his bag. a. What is the probability he draws

### 1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2)

Math 1090 Test 2 Review Worksheet Ch5 and Ch 6 Name Use the following distribution to answer the question. 1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) 3) Estimate

### CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events

CHAPTER 2 PROBABILITY 2.1 Sample Space A probability model consists of the sample space and the way to assign probabilities. Sample space & sample point The sample space S, is the set of all possible outcomes

### 7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

### Chance and Probability

G Student Book Name Series G Contents Topic Chance and probability (pp. ) probability scale using samples to predict probability tree diagrams chance experiments using tables location, location apply lucky

### RANDOM EXPERIMENTS AND EVENTS

Random Experiments and Events 18 RANDOM EXPERIMENTS AND EVENTS In day-to-day life we see that before commencement of a cricket match two captains go for a toss. Tossing of a coin is an activity and getting

### CCM6+7+ Unit 11 ~ Page 1. Name Teacher: Townsend ESTIMATED ASSESSMENT DATES:

CCM6+7+ Unit 11 ~ Page 1 CCM6+7+ UNIT 11 PROBABILITY Name Teacher: Townsend ESTIMATED ASSESSMENT DATES: Unit 11 Vocabulary List 2 Simple Event Probability 3-7 Expected Outcomes Making Predictions 8-9 Theoretical

### A counting problem is a problem in which we want to count the number of objects in a collection or the number of ways something occurs or can be

A counting problem is a problem in which we want to count the number of objects in a collection or the number of ways something occurs or can be done. At a local restaurant, for a fixed price one can buy

### STATISTICS and PROBABILITY GRADE 6

Kansas City Area Teachers of Mathematics 2016 KCATM Math Competition STATISTICS and PROBABILITY GRADE 6 INSTRUCTIONS Do not open this booklet until instructed to do so. Time limit: 20 minutes You may use

### Probability. Ms. Weinstein Probability & Statistics

Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

### Use this information to answer the following questions.

1 Lisa drew a token out of the bag, recorded the result, and then put the token back into the bag. She did this 30 times and recorded the results in a bar graph. Use this information to answer the following

### Algebra I Notes Unit One: Real Number System

Syllabus Objectives: 1.1 The student will organize statistical data through the use of matrices (with and without technology). 1.2 The student will perform addition, subtraction, and scalar multiplication

### 2. How many different three-member teams can be formed from six students?

KCATM 2011 Probability & Statistics 1. A fair coin is thrown in the air four times. If the coin lands with the head up on the first three tosses, what is the probability that the coin will land with the

### Chapter 1: Sets and Probability

Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping

### MATH 1324 (Finite Mathematics or Business Math I) Lecture Notes Author / Copyright: Kevin Pinegar

MATH 1324 Module 4 Notes: Sets, Counting and Probability 4.2 Basic Counting Techniques: Addition and Multiplication Principles What is probability? In layman s terms it is the act of assigning numerical

### Mini-Unit. Data & Statistics. Investigation 1: Correlations and Probability in Data

Mini-Unit Data & Statistics Investigation 1: Correlations and Probability in Data I can Measure Variation in Data and Strength of Association in Two-Variable Data Lesson 3: Probability Probability is a

### Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability?

Name:Date:_/_/ Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability? 1. Finding the probability that Jeffrey will get an odd number

### a) 2, 4, 8, 14, 22, b) 1, 5, 6, 10, 11, c) 3, 9, 21, 39, 63, d) 3, 0, 6, 15, 27, e) 3, 8, 13, 18, 23,

Pre-alculus Midterm Exam Review Name:. Which of the following is an arithmetic sequence?,, 8,,, b),, 6, 0,, c), 9,, 9, 6, d), 0, 6,, 7, e), 8,, 8,,. What is a rule for the nth term of the arithmetic sequence

### Skills we've learned. Skills we need. 7 3 Independent and Dependent Events. March 17, Alg2 Notes 7.3.notebook

7 3 Independent and Dependent Events Skills we've learned 1. In a box of 25 switches, 3 are defective. What is the probability of randomly selecting a switch that is not defective? 2. There are 12 E s

### Unit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)

Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,

### Theoretical Probability of Compound Events. ESSENTIAL QUESTION How do you find the probability of a compound event? 7.SP.3.8, 7.SP.3.8a, 7.SP.3.

LESSON 13.2 Theoretical Probability of Compound Events 7.SP.3.8 Find probabilities of compound events using organized lists, tables, tree diagrams,. 7.SP.3.8a, 7.SP.3.8b ESSENTIAL QUESTION How do you find

### A. 15 B. 24 C. 45 D. 54

A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative

### Bell Work. Warm-Up Exercises. Two six-sided dice are rolled. Find the probability of each sum or 7

Warm-Up Exercises Two six-sided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? Warm-Up Notes Exercises

### Counting techniques and more complex experiments (pp ) Counting techniques determining the number of outcomes for an experiment

Counting techniques and more complex experiments (pp. 618 626) In our introduction to probability, we looked at examples of simple experiments. These examples had small sample spaces and were easy to evaluate.

### 6. In how many different ways can you answer 10 multiple-choice questions if each question has five choices?

Pre-Calculus Section 4.1 Multiplication, Addition, and Complement 1. Evaluate each of the following: a. 5! b. 6! c. 7! d. 0! 2. Evaluate each of the following: a. 10! b. 20! 9! 18! 3. In how many different

### Probability and Counting Techniques

Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

### Ch Counting Technique

Learning Intentions: h. 10.4 ounting Technique Use a tree diagram to represent possible paths or choices. Learn the definitions of & notations for permutations & combinations, & distinguish between them.

### Probability of Compound Events

Lesson 33A Probability of Compound Events Name: Prerequisite: Describe Sample Space Study the example showing how to describe the sample space for an experiment. Then solve problems 1 8. Example Marcus

### Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

### MATH STUDENT BOOK. 8th Grade Unit 10

MATH STUDENT BOOK 8th Grade Unit 10 Math 810 Probability Introduction 3 1. Outcomes 5 Tree Diagrams and the Counting Principle 5 Permutations 12 Combinations 17 Mixed Review of Outcomes 22 SELF TEST 1:

### Probability, Permutations, & Combinations LESSON 11.1

Probability, Permutations, & Combinations LESSON 11.1 Objective Define probability Use the counting principle Know the difference between combination and permutation Find probability Probability PROBABILITY:

### If a regular six-sided die is rolled, the possible outcomes can be listed as {1, 2, 3, 4, 5, 6} there are 6 outcomes.

Section 11.1: The Counting Principle 1. Combinatorics is the study of counting the different outcomes of some task. For example If a coin is flipped, the side facing upward will be a head or a tail the

### Algebra 1B notes and problems May 14, 2009 Independent events page 1

May 14, 009 Independent events page 1 Independent events In the last lesson we were finding the probability that a 1st event happens and a nd event happens by multiplying two probabilities For all the

### What is the probability Jordan will pick a red marble out of the bag and land on the red section when spinning the spinner?

Name: Class: Date: Question #1 Jordan has a bag of marbles and a spinner. The bag of marbles has 10 marbles in it, 6 of which are red. The spinner is divided into 4 equal sections: blue, green, red, and

### Introduction. Firstly however we must look at the Fundamental Principle of Counting (sometimes referred to as the multiplication rule) which states:

Worksheet 4.11 Counting Section 1 Introduction When looking at situations involving counting it is often not practical to count things individually. Instead techniques have been developed to help us count

### Counting Learning Outcomes

1 Counting Learning Outcomes List all possible outcomes of an experiment or event. Use systematic listing. Use two-way tables. Use tree diagrams. Solve problems using the fundamental principle of counting.

### Math 3201 Notes Chapter 2: Counting Methods

Learning oals: See p. 63 text. Math 30 Notes Chapter : Counting Methods. Counting Principles ( classes) Outcomes:. Define the sample space. P. 66. Find the sample space by drawing a graphic organizer such

### Counting and Probability

0838 ch0_p639-693 0//007 0:3 PM Page 633 CHAPTER 0 Counting and Probability The design below is like a seed puff of a dandelion just before it is dispersed by the wind. The design shows the outcomes from