Math 1101 Combinations Handout #17


 Laurel O’Connor’
 4 years ago
 Views:
Transcription
1 Math 1101 Combinations Handout #17 1. Compute the following: (a) C(8, 4) (b) C(17, 3) (c) C(20, 5) 2. In the lottery game Megabucks, it used to be that a person chose 6 out of 36 numbers. The order of the numbers was not important. How many different combinations were possible? 3. Now a person chooses 6 out of 42 numbers in the game Megabucks. The order of the numbers is still not important. How many different combinations are possible? 4. Because of limited funds, 5 research centers are to be chosen out of 8 suitable ones for a study on heart disease. How many choices are possible? 5. A quality control engineer will select 3 of 100 transistors for testing. How many different samples are possible? 6. A snack bar offers strawberries, blueberries, peaches and honey as toppings for ice cream. (a) In how many different ways can you choose 2 toppings? (b) In how many different ways can you choose 3 toppings? 7. A bipartisan committee of eight people is being formed. The committee must be made up of 5 Democrats and 3 Republicans. If there are 10 Democrats and 5 Republicans to choose from, in how many different ways can this committee be formed? 8. A bag contains 5 purple, 4 red and 3 yellow jelly beans; you take 3 at random. How many of the samples are possible in which the jelly beans are: (a) all purple? 1
2 (b) all yellow? (c) 2 purple and 1 yellow? (d) 2 yellow and 1 purple? (e) have at least 1 purple? 9. A box of 20 light bulbs contains 5 defective bulbs. (a) How many different samples of size 4 are possible? (b) How many of these samples contain only good bulbs? (c) How many of these samples contain exactly 1 defective bulb? (d) How many contain at least 3 good bulbs? 10. A standard deck of cards has 52 cards made of 4 suits, diamonds, hearts, clubs, and spades. There are 13 cards in each suit (ace through king). (a) How many different 5card hands are possible in a standard deck of cards? (b) How many of these 5card hands have 2 Clubs and 3 Diamonds? (c) How many of these 5card hands have all red cards? (d) How many of these 5card hands have at least 4 Hearts? 11. Suppose a woman has 8 different stock certificates, representing holdings in 8 different companies, which she plans to give to her daughters. She plans to give 3 to her oldest daughter, 3 to her middle daughter and 2 to her youngest daughter. In how many ways can she dole out the stock? 12. An artist has created 15 original paintings and she will exhibit some of them in two galleries. Four paintings will be sent to gallery A and 5 paintings to gallery B. In how many ways can this be done? 2
3 Math 1101 Counting Problems Handout #18 1. The course coordinator must visit 8 classrooms this quarter to observe the new instructors. In how many ways can she select 3 classes to visit this week? 2. A personnel director for a large corporation has hired ten new engineers. If three positions are open at the Cleveland plant, in how many ways can they be filled if (a) they are all different? (b) they are all identical? 3. Of the ten engineers hired for the corporation in #2, 6 are men and 4 are women. Five of these engineers are to be chosen to form a grievance committee. In how many ways can the committee be chosen if it must consist of 3 or more men? 4. The MASSASAUGA is a brown and white venomous snake indigenous to North America. Find the number of distinct arrangements of the letters in this word. 5. Judges at an iceskating competition with 15 contestants must award gold, silver, and bronze medals. In how many different ways can the competition end? 6. The board of directors of a large corporation contains 11 people of whom 6 are men and 5 are women. (a) If the board elects a president and a secretary, how many different election outcomes are possible? (b) If the board elects four of its members as a delegation to a convention, how many delegations are possible? (c) How many of the four member delegations contain at least 2 women? 7. An eightstore chain is ordered by bankruptcy court to go out of business by closing one store every month for the next eight months. In how many different ways can the closings be scheduled? 8. A rentacar agency receives an order from a corporation for 2 luxury cars, 3 standard cars, and 4 compact cars. In how many ways can the agency fill this order if it currently has 5 luxury cars, 6 standard cars, and 7 compact cars? 9. A high school teacher is planning to take her senior French class to France for two weeks. They will visit 5 of the following cities: Paris, Chartres, Versailles, Nice, Marseille, Avignon, Lyon, Cherbourg, Bordeaux, and Strasbourg. In how many ways can this itinerary be completed? 10. The Italian alphabet contains 21 letters of which five are vowels. How many 7letter words can be formed if letters may not be repeated, the word must begin with the letter S, and the third, fourth, and last letters must be vowels? 11. Your broker has suggested that you diversify your investments by splitting your portfolio between mutual funds, stocks, and precious metals. She suggests 5 food mutual funds, 8 stocks, and 3 precious metals. Assuming your portfolio is to contain 2 of each type of investment, how many different portfolios are possible? 3
4 Math 1101 Counting Problems Handout # letter words are formed from the letters in the word ARSENIC. (a) How many different words of this form can be made? (b) How many of these words contain no vowels? 2. The board of directors of a large corporation contains 11 people. (a) If the board elects a President, VicePresident, and a Secretary, how many different election outcomes are possible? (b) If the board elects three of its members as a delegation to a convention, how many delegations are possible? (c) If the board of directors consists of 6 men and 5 women, how many of these delegations contain 2 or more women? 3. First, second, and third prizes are to be awarded at a Science Fair in which 15 exhibits have been entered. In how many different ways can the prizes be awarded? 4. How many 4digit numbers between 5000 and 9000 can be formed using the digits 3, 4, 5, 6, 7, 8, and 9? 5. The 5member Senior Week committee is to be chosen from 4 males and 8 females. (a) How many different 5member committees are possible? (b) How many different 5member committees are possible if the committee must consist of 2 males and 3 females? (c) How many different 5member committees are possible if the committee must consist of 4 or more females? 6. How many distinct arrangements are there of the letters in the word MURDERER? 7. The 25 members of the I HATE MATH club are planning an end of quarter party. (a) How many different 4member planning committees are possible? (b) How many different 4member planning committees are possible if the club contains 15 females and 10 males and there must be 2 males and 2 females on the committee? (c) How many planning committees are possible if the committee must consist of at least 3 females? 8. A company has 7 junior executives in San Francisco, 6 in Dallas, and 9 in Chicago. It wishes to select 4 junior executives to bring to its headquarters in New York. In how many ways can this be done if: (a) 3 of the executives must come from the Chicago office? (b) at least 3 executives must come from the Chicago office? (c) 2 executives are chosen from the Chicago office and one from each of the other regional offices? 9. How many distinct arrangements of the letters in the word PEPPERONI are there? 10. In how many ways can 8 dancers be arranged in a chorus line? 11. A bipartisan committee of ten people is being formed. The committee must be made up of six Democrats and four Republicans. If there are nine Democrats and six Republicans to choose from, in how many different ways can the Committee be formed? 4
5 Math 1101 Probability Handout #20 1. A single die is rolled. Find the probabilities of the following events. (a) Rolling a 2 (b) Rolling an odd number (c) Rolling a number less than 5 (d) Rolling a number greater than 3 2. A card is drawn from a wellshuffled deck of 52 cards. Find the probability of drawing each of the following. (a) A 9 (b) The 9 of hearts (c) A heart (d) A black 9 (e) A red card (f) A face card 3. The operator of a concession stand at a park keeps track of the kinds of drinks children buy. His records show the following: What is the probability that a child will buy lemonade? DRINK NUMBER OF CHILDREN CocaCola 150 Fruit Juice 75 Lemonade The following table summarizes the responses to the question, Do you personally know anyone, living or dead, who has been infected with AIDS? What is the probability that a person in the survey YES NO TOTALS Male Female Totals ,030 (a) is a female? (b) is a male who does not know anyone infected with AIDS? 5. During practice, a basketball player shoots 3 free throws that he either hits, (H) or misses (M). (a) Draw the tree diagram. (b) List the elements in the sample space. (c) Find the probability that i. he misses the third shot. ii. makes at least one free shot. 5
6 6. The letters in the word CAR are each written on a tile and placed in a hat. An experiment consists of reaching into the hat, pulling out one tile, and noting the letter. The experiment continues until all the tiles are drawn. (a) Draw the tree diagram. (b) List the elements in the sample space S. (c) Find the probability that i. the letter A is selected second. ii. CAR is the outcome. 7. Suppose that 40 balls numbered 1 to 40 are placed in a box. After mixing, one ball is selected at random from the box. Find the probability that the number on the ball is divisible by A coin is tossed three times. (a) Draw the tree for this experiment. (b) List the elements in the sample space S. (c) What is the probability: i. exactly two heads will show up? ii. three tails will show? iii. a head will appear on the first flip? iv. at least one tail will show? 9. What is the probability you will be dealt 2 aces from a standard 52card deck? 6
Math 1070 Sample Exam 1
University of Connecticut Department of Mathematics Math 1070 Sample Exam 1 Exam 1 will cover sections 4.14.7 and 5.15.4. This sample exam is intended to be used as one of several resources to help you
More information6. In how many different ways can you answer 10 multiplechoice questions if each question has five choices?
PreCalculus Section 4.1 Multiplication, Addition, and Complement 1. Evaluate each of the following: a. 5! b. 6! c. 7! d. 0! 2. Evaluate each of the following: a. 10! b. 20! 9! 18! 3. In how many different
More informationSection The Multiplication Principle and Permutations
Section 2.1  The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different
More informationName: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11
Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value
More information4.1 Sample Spaces and Events
4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an
More informationExam 2 Review (Sections Covered: 3.1, 3.3, , 7.1) 1. Write a system of linear inequalities that describes the shaded region.
Exam 2 Review (Sections Covered: 3.1, 3.3, 6.16.4, 7.1) 1. Write a system of linear inequalities that describes the shaded region. 5x + 2y 30 x + 2y 12 x 0 y 0 2. Write a system of linear inequalities
More informationMost of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.
AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:
More information3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1. Suppose P (A) = 0.4, P (B) = 0.5. (a) If A and B are independent, what is P (A B)? What is P (A B)? (b) If A and B are disjoint,
More information1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?
1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,
More informationChapter 11: Probability and Counting Techniques
Chapter 11: Probability and Counting Techniques Diana Pell Section 11.3: Basic Concepts of Probability Definition 1. A sample space is a set of all possible outcomes of an experiment. Exercise 1. An experiment
More informationApril 10, ex) Draw a tree diagram of this situation.
April 10, 2014 121 Fundamental Counting Principle & Multiplying Probabilities 1. Outcome  the result of a single trial. 2. Sample Space  the set of all possible outcomes 3. Independent Events  when
More informationUnit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)
Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,
More informationMATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG
MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, InclusionExclusion, and Complement. (a An office building contains 7 floors and has 7 offices
More informationSection 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: nfactorial For any natural number n, n! n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
More informationConditional Probability Worksheet
Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.
More informationSection 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: nfactorial For any natural number n, n! = n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
More informationName: Class: Date: ID: A
Class: Date: Chapter 0 review. A lunch menu consists of different kinds of sandwiches, different kinds of soup, and 6 different drinks. How many choices are there for ordering a sandwich, a bowl of soup,
More informationFinite Mathematics MAT 141: Chapter 8 Notes
Finite Mathematics MAT 4: Chapter 8 Notes Counting Principles; More David J. Gisch The Multiplication Principle; Permutations Multiplication Principle Multiplication Principle You can think of the multiplication
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Statistics Homework Ch 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
More informationConditional Probability Worksheet
Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 36, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A
More information(a) Suppose you flip a coin and roll a die. Are the events obtain a head and roll a 5 dependent or independent events?
Unit 6 Probability Name: Date: Hour: Multiplication Rule of Probability By the end of this lesson, you will be able to Understand Independence Use the Multiplication Rule for independent events Independent
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Mathematical Ideas Chapter 2 Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) In one town, 2% of all voters are Democrats. If two voters
More informationMath 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability
Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability Student Name: Find the indicated probability. 1) If you flip a coin three times, the possible outcomes are HHH
More informationProbability and Counting Techniques
Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each
More information7.1 Experiments, Sample Spaces, and Events
7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment
More informationChapter 1: Sets and Probability
Chapter 1: Sets and Probability Section 1.31.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping
More informationChapterwise questions. Probability. 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail.
Probability 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail. 2. 26 cards marked with English letters A to Z (one letter on each card) are shuffled well. If one
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even
More informationSTATISTICS and PROBABILITY GRADE 6
Kansas City Area Teachers of Mathematics 2016 KCATM Math Competition STATISTICS and PROBABILITY GRADE 6 INSTRUCTIONS Do not open this booklet until instructed to do so. Time limit: 20 minutes You may use
More informationContemporary Mathematics Math 1030 Sample Exam I Chapters Time Limit: 90 Minutes No Scratch Paper Calculator Allowed: Scientific
Contemporary Mathematics Math 1030 Sample Exam I Chapters 1315 Time Limit: 90 Minutes No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the lefthand margin.
More information6) A) both; happy B) neither; not happy C) one; happy D) one; not happy
MATH 00  PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural
More informationAP Statistics Ch InClass Practice (Probability)
AP Statistics Ch 1415 InClass Practice (Probability) #1a) A batter who had failed to get a hit in seven consecutive times at bat then hits a gamewinning home run. When talking to reporters afterward,
More information3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is
More informationIndependent Events. If we were to flip a coin, each time we flip that coin the chance of it landing on heads or tails will always remain the same.
Independent Events Independent events are events that you can do repeated trials and each trial doesn t have an effect on the outcome of the next trial. If we were to flip a coin, each time we flip that
More informationCounting Methods and Probability
CHAPTER Counting Methods and Probability Many good basketball players can make 90% of their free throws. However, the likelihood of a player making several free throws in a row will be less than 90%. You
More informationIf a regular sixsided die is rolled, the possible outcomes can be listed as {1, 2, 3, 4, 5, 6} there are 6 outcomes.
Section 11.1: The Counting Principle 1. Combinatorics is the study of counting the different outcomes of some task. For example If a coin is flipped, the side facing upward will be a head or a tail the
More informationMA151 Chapter 4 Section 3 Worksheet
MA151 Chapter 4 Section 3 Worksheet 1. State which events are independent and which are dependent. a. Tossing a coin and drawing a card from a deck b. Drawing a ball from an urn, not replacing it and then
More informationMath 1070 Sample Exam 2
University of Connecticut Department of Mathematics Math 1070 Sample Exam 2 Exam 2 will cover sections 4.6, 4.7, 5.2, 5.3, 5.4, 6.1, 6.2, 6.3, 6.4, F.1, F.2, F.3 and F.4. This sample exam is intended to
More informationCompute P(X 4) = Chapter 8 Homework Problems Compiled by Joe Kahlig
141H homework problems, 10Ccopyright Joe Kahlig Chapter 8, Page 1 Chapter 8 Homework Problems Compiled by Joe Kahlig Section 8.1 1. Classify the random variable as finite discrete, infinite discrete,
More informationPROBABILITY Case of cards
WORKSHEET NO1 PROBABILITY Case of cards WORKSHEET NO2 Case of two die Case of coins WORKSHEET NO3 1) Fill in the blanks: A. The probability of an impossible event is B. The probability of a sure
More informationMTH 103 H Final Exam. 1. I study and I pass the course is an example of a. (a) conjunction (b) disjunction. (c) conditional (d) connective
MTH 103 H Final Exam Name: 1. I study and I pass the course is an example of a (a) conjunction (b) disjunction (c) conditional (d) connective 2. Which of the following is equivalent to (p q)? (a) p q (b)
More informationProbability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )
Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom
More informationThe point value of each problem is in the lefthand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly.
Introduction to Statistics Math 1040 Sample Exam II Chapters 57 4 Problem Pages 4 Formula/Table Pages Time Limit: 90 Minutes 1 No Scratch Paper Calculator Allowed: Scientific Name: The point value of
More informationFundamental Counting Principle
Lesson 88 Probability with Combinatorics HL2 Math  Santowski Fundamental Counting Principle Fundamental Counting Principle can be used determine the number of possible outcomes when there are two or more
More informationAdvanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY
Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY 1. Jack and Jill do not like washing dishes. They decide to use a random method to select whose turn it is. They put some red and blue
More informationFunctional Skills Mathematics
Functional Skills Mathematics Level Learning Resource Probability D/L. Contents Independent Events D/L. Page  Combined Events D/L. Page  9 West Nottinghamshire College D/L. Information Independent Events
More informationClassical vs. Empirical Probability Activity
Name: Date: Hour : Classical vs. Empirical Probability Activity (100 Formative Points) For this activity, you will be taking part in 5 different probability experiments: Rolling dice, drawing cards, drawing
More informationName: Class: Date: Probability/Counting Multiple Choice PreTest
Name: _ lass: _ ate: Probability/ounting Multiple hoice PreTest Multiple hoice Identify the choice that best completes the statement or answers the question. 1 The dartboard has 8 sections of equal area.
More informationMath 12 Academic Assignment 9: Probability Outcomes: B8, G1, G2, G3, G4, G7, G8
Math 12 Academic Assignment 9: Probability Outcomes: B8, G1, G2, G3, G4, G7, G8 Name: 45 1. A customer chooses 5 or 6 tapes from a bin of 40. What is the expression that gives the total number of possibilities?
More informationInstructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include your name and student ID.
Math 3201 Unit 3 Probability Test 1 Unit Test Name: Part 1 Selected Response: Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include
More information2 C. 1 D. 2 4 D. 5 3 C. 25 D. 2
Discrete Math Exam Review Name:. A bag contains oranges, grapefruits, and tangerine. A piece of fruit is chosen from the bag at random. What is the probability that a grapefruit will be chosen from the
More informationClass Examples (Ch. 3)
Class Examples (Ch. 3) 1. A study was recently done that emphasized the problem we all face with drinking and driving. Four hundred accidents that occurred on a Saturday night were analyzed. Two items
More informationUnit 9: Probability Assignments
Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose
More informationChapter 11: Probability and Counting Techniques
Chapter 11: Probability and Counting Techniques Diana Pell Section 11.1: The Fundamental Counting Principle Exercise 1. How many different twoletter words (including nonsense words) can be formed when
More informationIntermediate Math Circles November 1, 2017 Probability I
Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.
More informationIndependent and Mutually Exclusive Events
Independent and Mutually Exclusive Events By: OpenStaxCollege Independent and mutually exclusive do not mean the same thing. Independent Events Two events are independent if the following are true: P(A
More informationProbability: introduction
May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an
More informationStat210 WorkSheet#2 Chapter#2
1. When rolling a die 5 times, the number of elements of the sample space equals.(ans.=7,776) 2. If an experiment consists of throwing a die and then drawing a letter at random from the English alphabet,
More informationChapter 5 Probability
Chapter 5 Probability Math150 What s the likelihood of something occurring? Can we answer questions about probabilities using data or experiments? For instance: 1) If my parking meter expires, I will probably
More informationCHAPTER 9  COUNTING PRINCIPLES AND PROBABILITY
CHAPTER 9  COUNTING PRINCIPLES AND PROBABILITY Probability is the Probability is used in many realworld fields, such as insurance, medical research, law enforcement, and political science. Objectives:
More information19.3 Combinations and Probability
Name Class Date 19.3 Combinations and Probability Essential Question: What is the difference between a permutaion and a combination? Explore Finding the Number of Combinations A combination is a selection
More information4.3 Rules of Probability
4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:
More informationATHS FC Math Department Al Ain Remedial worksheet. Lesson 10.4 (Ellipses)
ATHS FC Math Department Al Ain Remedial worksheet Section Name ID Date Lesson Marks Lesson 10.4 (Ellipses) 10.4, 10.5, 0.4, 0.5 and 0.6 Intervention Plan Page 1 of 19 Gr 12 core c 2 = a 2 b 2 Question
More information12.1 Practice A. Name Date. In Exercises 1 and 2, find the number of possible outcomes in the sample space. Then list the possible outcomes.
Name Date 12.1 Practice A In Exercises 1 and 2, find the number of possible outcomes in the sample space. Then list the possible outcomes. 1. You flip three coins. 2. A clown has three purple balloons
More informationIntroduction. Firstly however we must look at the Fundamental Principle of Counting (sometimes referred to as the multiplication rule) which states:
Worksheet 4.11 Counting Section 1 Introduction When looking at situations involving counting it is often not practical to count things individually. Instead techniques have been developed to help us count
More informationClass XII Chapter 13 Probability Maths. Exercise 13.1
Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:
More informationChapter 13 Test Review
1. The tree diagrams below show the sample space of choosing a cushion cover or a bedspread in silk or in cotton in red, orange, or green. Write the number of possible outcomes. A 6 B 10 C 12 D 4 Find
More informationSTANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving.
Worksheet 4 th Topic : PROBABILITY TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving. BASIC COMPETENCY:
More informationCHAPTER 8 Additional Probability Topics
CHAPTER 8 Additional Probability Topics 8.1. Conditional Probability Conditional probability arises in probability experiments when the person performing the experiment is given some extra information
More informationSection 7.3 and 7.4 Probability of Independent Events
Section 7.3 and 7.4 Probability of Independent Events Grade 7 Review Two or more events are independent when one event does not affect the outcome of the other event(s). For example, flipping a coin and
More informationProbability. The Bag Model
Probability The Bag Model Imagine a bag (or box) containing balls of various kinds having various colors for example. Assume that a certain fraction p of these balls are of type A. This means N = total
More informationAlgebra II Chapter 12 Test Review
Sections: Counting Principle Permutations Combinations Probability Name Choose the letter of the term that best matches each statement or phrase. 1. An illustration used to show the total number of A.
More informationPart 1: I can express probability as a fraction, decimal, and percent
Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:
More information1) If P(E) is the probability that an event will occur, then which of the following is true? (1) 0 P(E) 1 (3) 0 P(E) 1 (2) 0 P(E) 1 (4) 0 P(E) 1
Algebra 2 Review for Unit 14 Test Name: 1) If P(E) is the probability that an event will occur, then which of the following is true? (1) 0 P(E) 1 (3) 0 P(E) 1 (2) 0 P(E) 1 (4) 0 P(E) 1 2) From a standard
More informationLC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.
A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply
More informationCompound Probability. A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events.
Probability 68B A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events. Independent Events are events in which the result of event
More informationSection : Combinations and Permutations
Section 11.111.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words
More information1. Let X be a continuous random variable such that its density function is 8 < k(x 2 +1), 0 <x<1 f(x) = 0, elsewhere.
Lebanese American University Spring 2006 Byblos Date: 3/03/2006 Duration: h 20. Let X be a continuous random variable such that its density function is 8 < k(x 2 +), 0
More informationMath 1313 Section 6.2 Definition of Probability
Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability
More informationExamples: Experiment Sample space
Intro to Probability: A cynical person once said, The only two sure things are death and taxes. This philosophy no doubt arose because so much in people s lives is affected by chance. From the time a person
More informationMath 1 Unit 4 MidUnit Review Chances of Winning
Math 1 Unit 4 MidUnit Review Chances of Winning Name My child studied for the Unit 4 MidUnit Test. I am aware that tests are worth 40% of my child s grade. Parent Signature MM1D1 a. Apply the addition
More informationName Instructor: Uli Walther
Name Instructor: Uli Walther Math 416 Fall 2016 Practice Exam Questions You are not allowed to use books or notes. Calculators are permitted. Full credit is given for complete correct solutions. Please
More informationUnit 7 Central Tendency and Probability
Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at
More informationChapter 3: PROBABILITY
Chapter 3 Math 3201 1 3.1 Exploring Probability: P(event) = Chapter 3: PROBABILITY number of outcomes favourable to the event total number of outcomes in the sample space An event is any collection of
More informationIntermediate Math Circles November 1, 2017 Probability I. Problem Set Solutions
Intermediate Math Circles November 1, 2017 Probability I Problem Set Solutions 1. Suppose we draw one card from a wellshuffled deck. Let A be the event that we get a spade, and B be the event we get an
More informationChapter 10 Practice Test Probability
Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its
More informationKS3 Levels 38. Unit 3 Probability. Homework Booklet. Complete this table indicating the homework you have been set and when it is due by.
Name: Maths Group: Tutor Set: Unit 3 Probability Homework Booklet KS3 Levels 38 Complete this table indicating the homework you have been set and when it is due by. Date Homework Due By Handed In Please
More informationFinite Math B, Chapter 8 Test Review Name
Finite Math B, Chapter 8 Test Review Name Evaluate the factorial. 1) 6! A) 720 B) 120 C) 360 D) 1440 Evaluate the permutation. 2) P( 10, 5) A) 10 B) 30,240 C) 1 D) 720 3) P( 12, 8) A) 19,958,400 B) C)
More informationMATH CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #1  SPRING DR. DAVID BRIDGE
MATH 205  CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #  SPRING 2006  DR. DAVID BRIDGE TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Tell whether the statement is
More informationAlgebra II Probability and Statistics
Slide 1 / 241 Slide 2 / 241 Algebra II Probability and Statistics 20160115 www.njctl.org Slide 3 / 241 Table of Contents click on the topic to go to that section Sets Independence and Conditional Probability
More informationMathematics 3201 Test (Unit 3) Probability FORMULAES
Mathematics 3201 Test (Unit 3) robability Name: FORMULAES ( ) A B A A B A B ( A) ( B) ( A B) ( A and B) ( A) ( B) art A : lace the letter corresponding to the correct answer to each of the following in
More informationUse Venn diagrams to determine whether the following statements are equal for all sets A and B. 2) A' B', A B Answer: not equal
Test Prep Name Let U = {q, r, s, t, u, v, w, x, y, z} A = {q, s, u, w, y} B = {q, s, y, z} C = {v, w, x, y, z} Determine the following. ) (A' C) B' {r, t, v, w, x} Use Venn diagrams to determine whether
More informationMath 227 Elementary Statistics. Bluman 5 th edition
Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical
More informationa) Find the probability that a visitor will visit Central Park or Times Square.
Name: Date: Unit 7 Review 1) A florist has 2 different vases that they use for floral arrangements. There are 3 different flowers that they can use in the vase, and 3 different colors of ribbon to tie
More informationAlgebra II. Sets. Slide 1 / 241 Slide 2 / 241. Slide 4 / 241. Slide 3 / 241. Slide 6 / 241. Slide 5 / 241. Probability and Statistics
Slide 1 / 241 Slide 2 / 241 Algebra II Probability and Statistics 20160115 www.njctl.org Slide 3 / 241 Slide 4 / 241 Table of Contents click on the topic to go to that section Sets Independence and Conditional
More information1 2step and other basic conditional probability problems
Name M362K Exam 2 Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. 1 2step and other basic conditional probability problems 1. Suppose A, B, C are
More informationPage 1 of 22. Website: Mobile:
Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.
More informationAlgebra II. Slide 1 / 241. Slide 2 / 241. Slide 3 / 241. Probability and Statistics. Table of Contents click on the topic to go to that section
Slide 1 / 241 Slide 2 / 241 Algebra II Probability and Statistics 20160115 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 241 Sets Independence and Conditional Probability
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
More 9.9.3 Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. ) In how many ways can you answer the questions on
More informationMEP Practice Book ES5. 1. A coin is tossed, and a die is thrown. List all the possible outcomes.
5 Probability MEP Practice Book ES5 5. Outcome of Two Events 1. A coin is tossed, and a die is thrown. List all the possible outcomes. 2. A die is thrown twice. Copy the diagram below which shows all the
More information