Chapter 11: Probability and Counting Techniques

Size: px
Start display at page:

Download "Chapter 11: Probability and Counting Techniques"

Transcription

1 Chapter 11: Probability and Counting Techniques Diana Pell Section 11.3: Basic Concepts of Probability Definition 1. A sample space is a set of all possible outcomes of an experiment. Exercise 1. An experiment consists of flipping a coin once. Find the sample space. Exercise 2. An experiment consist of flipping a coin twice. Find the sample space. Exercise 3. An experiment consists of flipping a coin three times. Find the sample space. 1

2 Exercise 4. An experiment consists of rolling a single die. Find the sample space. Exercise 5. An experiment consists of rolling a green die and a red die. Find the sample space. Definition 2. An event is a subset of a sample space of an experiment. Exercise 6. Suppose and experiment consists of tossing a coin three times and observing the sequence of heads and tails. Determine the event E = exactly two heads. Exercise 7. Suppose that we have two urns - call them urn I and urn II - each containing red balls and white balls. An experiment consists of selecting an urn and then selecting a ball from that urn and noting its color. a) What is a suitable sample space for this experiment? 2

3 b) Describe the event urn I is selected as a subset of the sample space. Definition 3. Experiments in which each outcome has the same probability are said to be experiments with equally likely outcomes. Exercise 8. Experiment consists of flipping a coin two times. Find probability of every outcome in the sample space. Definition 4. If an experiment with sample space S has equally likely outcomes, then for any event E the probability of E is given by P (E) = n(e) n(s) where n(e) and n(s) denote the number of elements in E and S, respectively. Note: Probability is always a number from 0 to 1. Impossible events always have probability 0 and certain events have probability 1. Exercise 9. A single die is rolled. Find the probability of getting a) A 2. 3

4 b) A number less than 5. Exercise 10. Roll a single die. What is the probability that it lands on an odd number? Complement Rule: P (E) = 1 P (E ) Exercise 11. Of the next 32 trials on the docket in a county court, 5 are homicides, 12 are drug offenses, 6 are assaults, and 9 are property crimes. If jurors are assigned to trials randomly, a) what s the probability that a given juror won t get a homicide case? 4

5 b) what s the probability that a juror gets assigned to a case that isn t a drug offense? Exercise 12. (Birthday Problem) A group of five people is to be selected at random. What is the probability that two or more of them have the same birthday? (Assume that each of the 365 days in a year is an equally likely birthday) Exercise 13. A basketball team has four players. What is the probability that at least two of them were born on the same day of the week? Exercise 14. In a random sample of 500 people, 210 had type O blood, 223 had type A, 51 had type B, and 16 had type AB. Set up a frequency distribution and find the probability that a randomly selected person from the general population has 5

6 a) Type O blood. b) Type A or B blood. c) Neither type A nor type O blood. d) A blood type other than AB. Section 11.4: Tree Diagrams, Tables, and Sample Spaces Exercise 15. Use a tree diagram to find the sample space for the genders of three children in a family. Exercise 16. (You Try!) A soda machine dispenses both Coke and Pepsi products, in both 12- ounce cans and 20-ounce bottles. For each brand, it has a regular cola, diet cola, and lemon-lime drink. Use a tree diagram to find the sample space for the experiment of choosing one drink at random from this machine. 6

7 Exercise 17. A coin is flipped, and then a die is rolled. Use a tree diagram to find the probability of getting heads on the coin and an even number on the die. Exercise 18. (You Try!) In order to collect information for a student survey, a researcher classifies students according to eye color (blue, brown, green), gender (male, female), and class rank (freshman, sophomore). A folder for each classification is then made up (e.g., freshman/female/green eyes). Find the sample space for the folders using a tree diagram. If a folder is selected at random, find the probability that a) It includes students with blue eyes. b) It includes students who are female. c) It includes students who are male freshmen. 7

8 Section 11.5: Probability Using Permutations and Combinations Exercise 19. Stacy has the option of selecting three books to read for a humanities course. The suggested book list consists of 10 biographies and five current events books. She decides to pick the three books at random. Find the probability that all three books will be current events books. Exercise 20. (You Try!) There are 12 women and 8 men in a seminar course. If the professor chooses five-person groups at random, what is the probability that the first group chosen will consist of all women? Exercise 21. What is the probability of getting 4 aces when drawing 5 cards from a standard deck of 52 cards? 8

9 Exercise 22. (You Try!) Suppose the deck of cards in the example above has all 32 cards with numbers less than 10 removed, so that only 10s, jacks, queens, kings, and aces remain. Now what is the probability of getting 4 aces when drawing 5 cards? Exercise 23. A combination lock has 40 numbers on it, from zero to 39. Find the probability that if the combination to unlock it consists of three numbers, it will contain the numbers 1, 2, and 3 in some order. Assume that numbers cannot be repeated in the combination. (It s interesting to note that a combination lock should really be called a permutation lock since the order of the numbers is important when you are unlocking the lock.) Exercise 24. (You Try!) A different permutation lock has letters from A through L on it, and the combination consists of four letters with no repeats. What is the probability that the combination is I, J, K, and L in some order? 9

10 Exercise 25. A store has six different fitness magazines and three different news magazines. If a customer buys three magazines at random, find the probability that the he ll pick two fitness magazines and one news magazine. Exercise 26. (You Try!) Find the probability that the customer in the example above picks at least two fitness magazines. Exercise 27. The list of potential parolees at a monthly parole hearing consists of eight drug offenders, five violent offenders, and two convicted of property crimes. I d surely like to think that parolees aren t chosen at random, but if this particular board chooses three parolees randomly, find the probability that a) All three are drug offenders. 10

11 b) Two of the three are property offenders. c) All three are violent offenders. d) One of each type of offender is paroled. e) Two are drug offenders and one is a violent offender. 11

12 Section 11.6: Odds and Expectations Converting between Odds and Probabilities If the odds in favor of the event E occurring are a to b, then P (E) = a a + b If P (E) = p, then the odds in favor of E are found by reducing the fraction p to the form a, 1 p b where a and b are integers having no common divisor. Then the odds in favor of E are. a to b Exercise 28. What are the odds of obtaining a three when rolling a die. Exercise 29. The probability of obtaining a sum of eight or more when rolling a pair of dice is. What are the odds of obtaining a sum of eight or more? Exercise 30. Four people are running for class president: Liz, John, Sue, and Tom. probabilities of John, Sue, and Tom winning are.18,.23, and.31, respectively. The (a) What is the probability of Liz winning? (b) What is the probability that a boy wins? 12

13 (c) What is the probability that Tom loses? (d) What are the odds that Sue loses? (e) What are the odds that a girl wins? (f) What are the odds that John wins? Exercise 31. (You Try!) A card is drawn from a standard deck of 52 cards. (a) Find the odds in favor of getting an ace. (b) Find the odds against getting an ace. 13

14 Another concept related to probability is expectation, or expected value. Expected value is used to determine the result that would be expected over the long term in some sort of gamble. Here s the key thing to remember as we study expected value: it only makes sense for events that have numerical outcomes. Consider probability distribution for a random variable X. Table 1: Probability distribution Outcome Probability x 1 p 1 x 2 p 2 x 3 p 3.. x k p k Recall that the expected value of X, denoted by E(X), is defined to be E(X) = x 1 p 1 + x 2 p x k p k Exercise 32. When a single die is rolled, find the expected value of the outcome. Exercise 33. The prize in a raffle is a flat-screen TV valued at \$350, and 1,000 tickets are sold. What s the expected value if you buy 1 ticket? 14

15 Exercise 34. You pay a dollar to roll two dice. If you roll 5 or 6, you get your dollar back plus two more just like it. If not, you get nothing and like it. Find the expected value of playing this game 100 times. Exercise 35. (You Try!) On a roulette wheel, there are 38 slots, 18 of which are colored red. If you bet \$5 on red and win, you get \$10 back. If red doesn t come up, you lose your \$5. Find the expected value of playing the game 100 times. 15

16 Exercise 36. Suppose that the following game is proposed by a friend: A fair die is to be rolled, and if an outcome of 2, 3, 4, or 5 occurs, then your friend will pay you \$1.50. If either a 1 or a 6 occurs, then you pay your friend an amount in dollars equal to the outcome. That is, you pay \$1.00 if a 1 occurs and \$6.00 if a 6 occurs. If you play the game many times, how much gain (or loss) should you expect (i.e. find the expected value)? Exercise 37. You pay \$2 to play. You pick a card at random from a standard deck of cards. If you pick the ace of spades, you win \$13. Any other ace wins \$10. Any face card (jack, queen, or king) wins \$5. All other cards win nothing. Do you want to play? Why or why not? Calculate your expected winnings. Note: The expected value of a completely fair game is 0. 16

17 Exercise 38. You pay \$2 to buy a lottery ticket. There are 1, 000 tickets in all. There is one first place prize of \$400, five second place prizes or \$200 and ten third place prizes of \$50. Let X represent net winnings. a) Find probability distribution of X. b) Find E(X). c) Is this a fair game? Why? Section 11.7: The Addition Rules for Probability Definition 5. Two events are mutually exclusive if they cannot both occur at the same time. That is, the events have no outcomes in common. Exercise 39. In drawing cards from a standard deck, determine whether the two events are mutually exclusive or not. a) Drawing a 4, drawing a 6. b) Drawing a 4, drawing a heart. 17

18 Exercise 40. (You Try!) If student government picks students at random to win free books for a semester, determine whether the two events are mutually exclusive or not. a) The winner is a sophomore or a business major. b) The winner is a junior or a senior. Definition 6. (Addition Rule I) When two events A and B are mutually exclusive, the probability that A or B will occur is P (A B) = P (A) + P (B) Exercise 41. A restaurant has three pieces of apple pie, five pieces of cherry pie, and four pieces of pumpkin pie in its dessert case. If a customer selects at random one kind of pie for dessert, find the probability that it will be either cherry or pumpkin. Exercise 42. (You Try!) A liberal arts math class contains 7 freshmen, 11 sophomores, 5 juniors, and 2 seniors. If the professor randomly chooses one to present a homework problem at the board, find the probability that it s either a junior or senior. Exercise 43. A card is drawn from a standard deck. Find the probability of getting an ace or a queen. 18

19 Exercise 44. (You Try!) At a political rally, there are 20 Republicans, 13 Democrats, and 6 Independents. If a person is selected at random, find the probability that he or she is either a Democrat or an Independent. Exercise 45. A card is drawn from a deck. Find the probability that it is either a club, a diamond, or a heart. Exercise 46. (You Try!) In rolling two dice, find the probability that the sum is 2, 3, or 4. Definition 7. (Addition Rule II) When two events A and B are NOT mutually exclusive, the probability that A or B will occur is P (A B) = P (A) + P (B) P (A B) 19

20 Exercise 47. A single card is drawn from a standard deck of cards. Find the probability that it s a king or a club. Exercise 48. (You Try!) A card is drawn from an ordinary deck. Find the probability that it is a heart or a face card. Exercise 49. Two dice are rolled. Find the probability of getting doubles or a sum of 6. Exercise 50. (You Try!) When two dice are rolled, find the probability that both numbers are more than three, or that they differ by exactly two. 20

21 Exercise 51. Joe feels that the probability of getting an A in history is.7, the probability of getting an A in psychology is.8, and the probability of getting an A in history or psychology is.9. What is the probability that he will get an A in both subjects? Exercise 52. In a hospital there are eight nurses and five physicians. Seven nurses and three physicians are females. If a staff person is selected, find the probability that the subject is a nurse or a male. Exercise 53. (You Try!) In one class, there are 15 freshmen and 10 sophomores. Six of the freshmen are education majors and four of the sophomores are education majors. If a student is selected at random, find the probability that the student is a sophomore or an education major. 21

22 Definition 8. Two events A and B are independent if the fact that A occurs has no effect on the probability of B occurring. 1) Rolling a die and getting a 6, and then rolling a second die and getting a 3. 2) Drawing a card from a deck and getting a queen, replacing it, and drawing a second card and getting a queen. Definition 9. Two events A and B are dependent if the outcome of A has some effect on the probability of B occurring. 1) Drawing a card from a deck, not replacing it, and then drawing a second card. 2) Parking in a no-parking zone and getting a parking ticket. Multiplication Rule 1 When two events A and B are independent, the probability of both occurring is P (A B) = P (A) P (B) Exercise 54. A coin is flipped and a die is rolled. Find the probability of getting heads on the coin and a 4 on the die. Exercise 55. As part of a psychology experiment on perception and memory, colored balls are picked from an urn. The urn contains three red balls, two green balls, and five white balls. A ball is picked and its color is noted. Then it is replaced. A second ball is picked and its color is noted. Find the probability of each of these. a) Picking two green balls. b) Picking a green ball and then a white ball. 22

23 c) Picking a red ball and then a green ball. Exercise 56. (You Try!) As part of a card trick, a card is drawn from a deck and replaced; then a second card is drawn. Find the probability of getting a queen and then an ace. Exercise 57. Three cards are drawn from a deck. After each card is drawn, its denomination and suit are noted and it s mixed back into the deck before the next card is drawn. Find the probability of getting a) Three kings. b) Three clubs. Exercise 58. According to a study done by the Princeton Review in 2012, 86 percent of collegebound students indicated that financial aid would be very necessary for them to attend college. If four college-bound students were chosen at random, find the probability that all four would rate financial aid as very necessary. 23

24 Conditional Probability Exercise 59. Suppose that a certain mathematics class contains 26 students. Of these, 14 are economics majors, 15 are first-years students, and 7 are neither. Suppose that a person is selected at random from the class. a) What is the probability that the person is both an economics major and a first-year student? b) Suppose we are given the additional information that the person selected is a first-year student. What is the probability that he or she is also an economics majors? Definition 10. The probability that a second event B occurs given that a first event A has occurred can be found by dividing the probability that both events occurred by the probability that the first event has occurred. The formula is P (B A) = P (A B) P (A) Exercise 60. Suppose that your professor goes stark raving mad and chooses your final grade from A, B, C, D, F, or Incomplete totally at random. Find the probability of getting an A given that you get a letter grade higher than D. 24

25 Exercise 61. (You Try!) A group of patients in a blind drug trial is assigned numbers from 1 through 8. The even numbers get an experimental drug, while the odd numbers get a placebo. If Eleanor is one of the patients, what s the probability that she s getting the experimental drug given that she wasn t assigned 1, 2, or 3? Exercise 62. Hate crimes are defined to be crimes in which the victim is targeted because of one or more personal characteristics, such as race, religion, or sexual orientation. The table below lists the motivation for certain hate crimes as reported by the FBI for Motivation Crimes against persons Crimes against property Crimes agains society Race 2, Religion Sexual Orientation Total 4,009 2, a) Find the probability that a hate crime was racially motivated given that it was a crime against persons. b) Find the probability that a hate crime was against property given that it was motivated by the victim s sexual orientation. 25

26 c) (You Try!) A crime was motivated by either race or religion given that it was a crime against society. d) (You Try!) A crime was against persons given that it was motivated by religion or sexual orientation. Section 11.9: The Binomial Distribution Experiments with just two outcomes are called binomial trials. Here are some examples of binomial trials. 1. Toss a coin and observe the outcome, heads or tails. 2. Administer a drug to a sick individual and classify the reaction as effective or ineffective. 3. Manufacture a light bulb and classify it as non-defective or defective. The outcomes of a binomial trial are usually called success or failure. We will denote the probability of success by p and probability of failure by q. Since binomial trial has only two outcomes we have p + q = 1, or q = 1 p X - success F - failure p = P (X) and q = P (F ) and q = 1 p (1) Repeat experiment n times. (2) Outcome is X or F. (3) Repeated trials are independent. 26

27 What is the probability of k successes and n k failures? ( ) n P (X = K) = p k q n k k Exercise 63. Find the probability of obtaining exactly two heads when tossing a fair coin three times. Exercise 64. Find the probability of obtaining exactly 17 heads when tossing a coin 20 times. Exercise 65. A plumbing-supplies manufacturer produces faucet washers, which are packaged in boxes of 300. Quality control studies have shown that 2% of the washers are defective. What is the probability that a box of washers contains exactly 9 defective washers? 27

28 Exercise 66. Each time at bat the probability that a baseball player gets a hit is.3. He comes up to a bat four times in a game. Assume that his times at bat are independent trials. Find the probability that he gets a) exactly two hits b) at least two hits Exercise 67. A survey found that 33% of people earning between 30, 000and75,000 said that they were very happy. If 6 people who earn between 30, 000and75,000 are selected at random, find the probability that at most 2 would consider themselves very happy. 28

29 Exercise 68. The recovery rate for a certain cattle disease is 25%. If 40 cattle are afflicted with the disease, what is the probability that exactly 10 will recover? Exercise 69. In a 20-question true-false test, what is the probability of answering exactly 18 questions correctly just by guessing? Exercise 70. A professor who intends to bring her briefcase to the office each morning forgets it one-quarter of the time. Assume that forgetting the briefcase is a Binomial trial, and find the probability that she forgets it at least twice a week (5 days). 29

30 PRACTICE Exercise 71. Of five physical therapists that work at a rehab center, three have master s degrees and two have doctorates. Each therapist is equally likely to be assigned to a patient on any given visit. If Tom has five sessions scheduled in the next two weeks, find the probability that a) He gets a therapist with a doctorate twice. b) He gets a therapist with a doctorate less than two times. Exercise 72. In a recent survey, 2% of the people surveyed said that they would keep their current job if they won a multi-million-dollar lottery. If 20 people are chosen randomly, find the probability that 3, 4, or 5 of them would keep their job. 30

Chapter 11: Probability and Counting Techniques

Chapter 11: Probability and Counting Techniques Diana Pell Section 11.1: The Fundamental Counting Principle Exercise 1. How many different two-letter words (including nonsense words) can be formed when

Section 11.4: Tree Diagrams, Tables, and Sample Spaces

Section 11.4: Tree Diagrams, Tables, and Sample Spaces Diana Pell Exercise 1. Use a tree diagram to find the sample space for the genders of three children in a family. Exercise 2. (You Try!) A soda machine

Section : Combinations and Permutations

Section 11.1-11.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words

4.1 Sample Spaces and Events

4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

Probability and Counting Techniques

Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

4.3 Rules of Probability

4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:

Unit 9: Probability Assignments

Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose

7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

TEST A CHAPTER 11, PROBABILITY

TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability

Review Questions on Ch4 and Ch5

Review Questions on Ch4 and Ch5 1. Find the mean of the distribution shown. x 1 2 P(x) 0.40 0.60 A) 1.60 B) 0.87 C) 1.33 D) 1.09 2. A married couple has three children, find the probability they are all

Fundamentals of Probability

Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

Chapter 1: Sets and Probability

Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping

Chapter 4. Probability and Counting Rules. McGraw-Hill, Bluman, 7 th ed, Chapter 4

Chapter 4 Probability and Counting Rules McGraw-Hill, Bluman, 7 th ed, Chapter 4 Chapter 4 Overview Introduction 4-1 Sample Spaces and Probability 4-2 Addition Rules for Probability 4-3 Multiplication

Math 4610, Problems to be Worked in Class

Math 4610, Problems to be Worked in Class Bring this handout to class always! You will need it. If you wish to use an expanded version of this handout with space to write solutions, you can download one

Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

Class XII Chapter 13 Probability Maths. Exercise 13.1

Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you \$5 that if you give me \$10, I ll give you \$20.)

The Teachers Circle Mar. 2, 22 HOW TO GAMBLE IF YOU MUST (I ll bet you \$ that if you give me \$, I ll give you \$2.) Instructor: Paul Zeitz (zeitzp@usfca.edu) Basic Laws and Definitions of Probability If

Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

Chapter 3: PROBABILITY

Chapter 3 Math 3201 1 3.1 Exploring Probability: P(event) = Chapter 3: PROBABILITY number of outcomes favourable to the event total number of outcomes in the sample space An event is any collection of

Chapter 1. Probability

Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

1. How to identify the sample space of a probability experiment and how to identify simple events

Statistics Chapter 3 Name: 3.1 Basic Concepts of Probability Learning objectives: 1. How to identify the sample space of a probability experiment and how to identify simple events 2. How to use the Fundamental

AP Statistics Ch In-Class Practice (Probability)

AP Statistics Ch 14-15 In-Class Practice (Probability) #1a) A batter who had failed to get a hit in seven consecutive times at bat then hits a game-winning home run. When talking to reporters afterward,

Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations

Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations Objective(s): Vocabulary: I. Fundamental Counting Principle: Two Events: Three or more Events: II. Permutation: (top of p. 684)

Probability - Chapter 4

Probability - Chapter 4 In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. A cynical person

6) A) both; happy B) neither; not happy C) one; happy D) one; not happy

MATH 00 -- PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural

Finite Mathematics MAT 141: Chapter 8 Notes

Finite Mathematics MAT 4: Chapter 8 Notes Counting Principles; More David J. Gisch The Multiplication Principle; Permutations Multiplication Principle Multiplication Principle You can think of the multiplication

Section Introduction to Sets

Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions

MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions 1. Appetizers: Salads: Entrées: Desserts: 2. Letters: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,

Chapter 1. Probability

Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Before we can move from descriptive statistics to inferential statistics, we need to have some understanding of probability: Ch4: Probability and Counting Rules

Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E.

Probability and Statistics Chapter 3 Notes Section 3-1 I. Probability Experiments. A. When weather forecasters say There is a 90% chance of rain tomorrow, or a doctor says There is a 35% chance of a successful

Week 1: Probability models and counting

Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model

3 The multiplication rule/miscellaneous counting problems

Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is

Grade 7/8 Math Circles February 25/26, Probability

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Probability Grade 7/8 Math Circles February 25/26, 2014 Probability Centre for Education in Mathematics and Computing Probability is the study of how likely

Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results:

Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results: Outcome Frequency 1 8 2 8 3 12 4 7 5 15 8 7 8 8 13 9 9 10 12 (a) What is the experimental probability

6. In how many different ways can you answer 10 multiple-choice questions if each question has five choices?

Pre-Calculus Section 4.1 Multiplication, Addition, and Complement 1. Evaluate each of the following: a. 5! b. 6! c. 7! d. 0! 2. Evaluate each of the following: a. 10! b. 20! 9! 18! 3. In how many different

3 The multiplication rule/miscellaneous counting problems

Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1. Suppose P (A) = 0.4, P (B) = 0.5. (a) If A and B are independent, what is P (A B)? What is P (A B)? (b) If A and B are disjoint,

Week in Review #5 ( , 3.1)

Math 166 Week-in-Review - S. Nite 10/6/2012 Page 1 of 5 Week in Review #5 (2.3-2.4, 3.1) n( E) In general, the probability of an event is P ( E) =. n( S) Distinguishable Permutations Given a set of n objects

CHAPTER 7 Probability

CHAPTER 7 Probability 7.1. Sets A set is a well-defined collection of distinct objects. Welldefined means that we can determine whether an object is an element of a set or not. Distinct means that we can

1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?

1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,

Probability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College

Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical

Chapter 3: Elements of Chance: Probability Methods

Chapter 3: Elements of Chance: Methods Department of Mathematics Izmir University of Economics Week 3-4 2014-2015 Introduction In this chapter we will focus on the definitions of random experiment, outcome,

MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG

MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, Inclusion-Exclusion, and Complement. (a An office building contains 7 floors and has 7 offices

CSC/MTH 231 Discrete Structures II Spring, Homework 5

CSC/MTH 231 Discrete Structures II Spring, 2010 Homework 5 Name 1. A six sided die D (with sides numbered 1, 2, 3, 4, 5, 6) is thrown once. a. What is the probability that a 3 is thrown? b. What is the

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

1. Let X be a continuous random variable such that its density function is 8 < k(x 2 +1), 0 <x<1 f(x) = 0, elsewhere.

Lebanese American University Spring 2006 Byblos Date: 3/03/2006 Duration: h 20. Let X be a continuous random variable such that its density function is 8 < k(x 2 +), 0

LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.

A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply

Exam III Review Problems

c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous Week-in-Reviews

MTH 103 H Final Exam. 1. I study and I pass the course is an example of a. (a) conjunction (b) disjunction. (c) conditional (d) connective

MTH 103 H Final Exam Name: 1. I study and I pass the course is an example of a (a) conjunction (b) disjunction (c) conditional (d) connective 2. Which of the following is equivalent to (p q)? (a) p q (b)

Probability: introduction

May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an

MATH STUDENT BOOK. 7th Grade Unit 6

MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Statistics Homework Ch 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability

CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY

CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY Probability is the Probability is used in many real-world fields, such as insurance, medical research, law enforcement, and political science. Objectives:

Most of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.

AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:

North Seattle Community College Winter ELEMENTARY STATISTICS 2617 MATH Section 05, Practice Questions for Test 2 Chapter 3 and 4

North Seattle Community College Winter 2012 ELEMENTARY STATISTICS 2617 MATH 109 - Section 05, Practice Questions for Test 2 Chapter 3 and 4 1. Classify each statement as an example of empirical probability,

Chapter 3: Probability (Part 1)

Chapter 3: Probability (Part 1) 3.1: Basic Concepts of Probability and Counting Types of Probability There are at least three different types of probability Subjective Probability is found through people

PROBABILITY Case of cards

WORKSHEET NO--1 PROBABILITY Case of cards WORKSHEET NO--2 Case of two die Case of coins WORKSHEET NO--3 1) Fill in the blanks: A. The probability of an impossible event is B. The probability of a sure

Statistics Intermediate Probability

Session 6 oscardavid.barrerarodriguez@sciencespo.fr April 3, 2018 and Sampling from a Population Outline 1 The Monty Hall Paradox Some Concepts: Event Algebra Axioms and Things About that are True Counting

Math 1342 Exam 2 Review

Math 1342 Exam 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) If a sportscaster makes an educated guess as to how well a team will do this

Ex 1: A coin is flipped. Heads, you win \$1. Tails, you lose \$1. What is the expected value of this game?

AFM Unit 7 Day 5 Notes Expected Value and Fairness Name Date Expected Value: the weighted average of possible values of a random variable, with weights given by their respective theoretical probabilities.

Math 1070 Sample Exam 1

University of Connecticut Department of Mathematics Math 1070 Sample Exam 1 Exam 1 will cover sections 4.1-4.7 and 5.1-5.4. This sample exam is intended to be used as one of several resources to help you

Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37

Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete

Probability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )

Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1

Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

Date. Probability. Chapter

Date Probability Contests, lotteries, and games offer the chance to win just about anything. You can win a cup of coffee. Even better, you can win cars, houses, vacations, or millions of dollars. Games

Permutations: The number of arrangements of n objects taken r at a time is. P (n, r) = n (n 1) (n r + 1) =

Section 6.6: Mixed Counting Problems We have studied a number of counting principles and techniques since the beginning of the course and when we tackle a counting problem, we may have to use one or a

Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

Math 1 Unit 4 Mid-Unit Review Chances of Winning

Math 1 Unit 4 Mid-Unit Review Chances of Winning Name My child studied for the Unit 4 Mid-Unit Test. I am aware that tests are worth 40% of my child s grade. Parent Signature MM1D1 a. Apply the addition

2. Let E and F be two events of the same sample space. If P (E) =.55, P (F ) =.70, and

c Dr. Patrice Poage, August 23, 2017 1 1324 Exam 1 Review NOTE: This review in and of itself does NOT prepare you for the test. You should be doing this review in addition to all your suggested homework,

Random Variables. A Random Variable is a rule that assigns a number to each outcome of an experiment.

Random Variables When we perform an experiment, we are often interested in recording various pieces of numerical data for each trial. For example, when a patient visits the doctor s office, their height,

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Mathematical Ideas Chapter 2 Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) In one town, 2% of all voters are Democrats. If two voters

RANDOM EXPERIMENTS AND EVENTS

Random Experiments and Events 18 RANDOM EXPERIMENTS AND EVENTS In day-to-day life we see that before commencement of a cricket match two captains go for a toss. Tossing of a coin is an activity and getting

SALES AND MARKETING Department MATHEMATICS. Combinatorics and probabilities. Tutorials and exercises

SALES AND MARKETING Department MATHEMATICS 2 nd Semester Combinatorics and probabilities Tutorials and exercises Online document : http://jff-dut-tc.weebly.com section DUT Maths S2 IUT de Saint-Etienne

Math 12 Academic Assignment 9: Probability Outcomes: B8, G1, G2, G3, G4, G7, G8

Math 12 Academic Assignment 9: Probability Outcomes: B8, G1, G2, G3, G4, G7, G8 Name: 45 1. A customer chooses 5 or 6 tapes from a bin of 40. What is the expression that gives the total number of possibilities?

Math 1101 Combinations Handout #17

Math 1101 Combinations Handout #17 1. Compute the following: (a) C(8, 4) (b) C(17, 3) (c) C(20, 5) 2. In the lottery game Megabucks, it used to be that a person chose 6 out of 36 numbers. The order of

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,

Name: Date: Interim 1-3 ACT Aspire, Pro-Core, and AIR Practice Site Statistics and Probability Int Math 2

1. Standard: S.ID.C.7: The graph below models a constant decrease in annual licorice sales for Licorice Company, Inc., from 1998 through 2000. The points have been connected to illustrate the trend. Which

Here are two situations involving chance:

Obstacle Courses 1. Introduction. Here are two situations involving chance: (i) Someone rolls a die three times. (People usually roll dice in pairs, so dice is more common than die, the singular form.)

Chapter 7 Homework Problems. 1. If a carefully made die is rolled once, it is reasonable to assign probability 1/6 to each of the six faces.

Chapter 7 Homework Problems 1. If a carefully made die is rolled once, it is reasonable to assign probability 1/6 to each of the six faces. A. What is the probability of rolling a number less than 3. B.

Functional Skills Mathematics

Functional Skills Mathematics Level Learning Resource Probability D/L. Contents Independent Events D/L. Page - Combined Events D/L. Page - 9 West Nottinghamshire College D/L. Information Independent Events

Random Variables. Outcome X (1, 1) 2 (2, 1) 3 (3, 1) 4 (4, 1) 5. (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) }

Random Variables When we perform an experiment, we are often interested in recording various pieces of numerical data for each trial. For example, when a patient visits the doctor s office, their height,

CISC 1400 Discrete Structures

CISC 1400 Discrete Structures Chapter 6 Counting CISC1400 Yanjun Li 1 1 New York Lottery New York Mega-million Jackpot Pick 5 numbers from 1 56, plus a mega ball number from 1 46, you could win biggest

Such a description is the basis for a probability model. Here is the basic vocabulary we use.

5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

6. a) Determine the probability distribution. b) Determine the expected sum of two dice. c) Repeat parts a) and b) for the sum of

d) generating a random number between 1 and 20 with a calculator e) guessing a person s age f) cutting a card from a well-shuffled deck g) rolling a number with two dice 3. Given the following probability

Algebra II- Chapter 12- Test Review

Sections: Counting Principle Permutations Combinations Probability Name Choose the letter of the term that best matches each statement or phrase. 1. An illustration used to show the total number of A.

Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include your name and student ID.

Math 3201 Unit 3 Probability Test 1 Unit Test Name: Part 1 Selected Response: Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include

Conditional Probability Worksheet

Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.

Math 1070 Sample Exam 2

University of Connecticut Department of Mathematics Math 1070 Sample Exam 2 Exam 2 will cover sections 4.6, 4.7, 5.2, 5.3, 5.4, 6.1, 6.2, 6.3, 6.4, F.1, F.2, F.3 and F.4. This sample exam is intended to

Probability Concepts and Counting Rules

Probability Concepts and Counting Rules Chapter 4 McGraw-Hill/Irwin Dr. Ateq Ahmed Al-Ghamedi Department of Statistics P O Box 80203 King Abdulaziz University Jeddah 21589, Saudi Arabia ateq@kau.edu.sa

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) 1 6

Math 300 Exam 4 Review (Chapter 11) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Give the probability that the spinner shown would land on

Probability Review before Quiz. Unit 6 Day 6 Probability

Probability Review before Quiz Unit 6 Day 6 Probability Warm-up: Day 6 1. A committee is to be formed consisting of 1 freshman, 1 sophomore, 2 juniors, and 2 seniors. How many ways can this committee be

Independent Events. If we were to flip a coin, each time we flip that coin the chance of it landing on heads or tails will always remain the same.

Independent Events Independent events are events that you can do repeated trials and each trial doesn t have an effect on the outcome of the next trial. If we were to flip a coin, each time we flip that

XXII Probability. 4. The odds of being accepted in Mathematics at McGill University are 3 to 8. Find the probability of being accepted.

MATHEMATICS 20-BNJ-05 Topics in Mathematics Martin Huard Winter 204 XXII Probability. Find the sample space S along with n S. a) The face cards are removed from a regular deck and then card is selected

Probability Warm-Up 2

Probability Warm-Up 2 Directions Solve to the best of your ability. (1) Write out the sample space (all possible outcomes) for the following situation: A dice is rolled and then a color is chosen, blue