# Lesson 10: Using Simulation to Estimate a Probability

Size: px
Start display at page:

Transcription

1 Lesson 10: Using Simulation to Estimate a Probability Classwork In previous lessons, you estimated probabilities of events by collecting data empirically or by establishing a theoretical probability model. There are real problems for which those methods may be difficult or not practical to use. Simulation is a procedure that will allow you to answer questions about real problems by running experiments that closely resemble the real situation. It is often important to know the probabilities of real-life events that may not have known theoretical probabilities. Scientists, engineers, and mathematicians design simulations to answer questions that involve topics such as diseases, water flow, climate changes, or functions of an engine. Results from the simulations are used to estimate probabilities that help researchers understand problems and provide possible solutions to these problems. Example 1: Families How likely is it that a family with three children has all boys or all girls? Let s assume that a child is equally likely to be a boy or a girl. Instead of observing the result of actual births, a toss of a fair coin could be used to simulate a birth. If the toss results in heads (H), then we could say a boy was born; if the toss results in tails (T), then we could say a girl was born. If the coin is fair (i.e., heads and tails are equally likely), then getting a boy or a girl is equally likely. Exercises 1 2 Suppose that a family has three children. To simulate the genders of the three children, the coin or number cube or a card would need to be used three times, once for each child. For example, three tosses of the coin resulted in HHT, representing a family with two boys and one girl. Note that HTH and THH also represent two boys and one girl. 1. Suppose a prime number (P) result of a rolled number cube simulates a boy birth, and a non-prime (N) simulates a girl birth. Using such a number cube, list the outcomes that would simulate a boy birth, and those that simulate a girl birth. Are the boy and girl birth outcomes equally likely? 2. Suppose that one card is drawn from a regular deck of cards, a red card (R) simulates a boy birth and a black card (B) simulates a girl birth. Describe how a family of three children could be simulated.

2 Example 2 Simulation provides an estimate for the probability that a family of three children would have three boys or three girls by performing three tosses of a fair coin many times. Each sequence of three tosses is called a trial. If a trial results in either HHH or TTT, then the trial represents all boys or all girls, which is the event that we are interested in. These trials would be called a success. If a trial results in any other order of H s and T s, then it is called a failure. The estimate for the probability that a family has either three boys or three girls based on the simulation is the number of successes divided by the number of trials. Suppose 100 trials are performed, and that in those 100 trials, 28 resulted in either HHH or TTT. Then the estimated probability that a family of three children has either three boys or three girls would be = Exercises Find an estimate of the probability that a family with three children will have exactly one girl using the following outcomes of 50 trials of tossing a fair coin three times per trial. Use H to represent a boy birth, and T to represent a girl birth. HHT HTH HHH TTH THT THT HTT HHH TTH HHH HHT TTT HHT TTH HHH HTH THH TTT THT THT THT HHH THH HTT HTH TTT HTT HHH TTH THT THH HHT TTT TTH HTT THH HTT HTH TTT HHH HTH HTH THT TTH TTT HHT HHT THT TTT HTT 4. Perform a simulation of 50 trials by rolling a fair number cube in order to find an estimate of the probability that a family with three children will have exactly one girl. a. Specify what outcomes of one roll of a fair number cube will represent a boy, and what outcomes will represent a girl.

3 b. Simulate 50 trials, keeping in mind that one trial requires three rolls of the number cube. List the results of your 50 trials. c. Calculate the estimated probability. 5. Calculate the theoretical probability that a family with three children will have exactly one girl. a. List the possible outcomes for a family with three children. For example, one possible outcome is BBB (all three children are boys). b. Assume that having a boy and having a girl are equally likely. Calculate the theoretical probability that a family with three children will have exactly one girl. c. Compare it to the estimated probabilities found in parts (a) and (b) above.

4 Example 3: Basketball Player Suppose that, on average, a basketball player makes about three out of every four foul shots. In other words, she has a 75% chance of making each foul shot she takes. Since a coin toss produces equally likely outcomes, it could not be used in a simulation for this problem. Instead, a number cube could be used by specifying that the numbers 1, 2, or 3 represent a hit, the number 4 represents a miss, and the numbers 5 and 6 would be ignored. Based on the following 50 trials of rolling a fair number cube, find an estimate of the probability that she makes five or six of the six foul shots she takes

5 Lesson Summary In previous lessons, you estimated probabilities by collecting data and found theoretical probabilities by creating a model. In this lesson you used simulation to estimate probabilities in real problems and in situations for which empirical or theoretical procedures are not easily calculated. Simulation is a method that uses an artificial process (like tossing a coin or rolling a number cube) to represent the outcomes of a real process that provides information about the probability of events. In several cases, simulations are needed to both understand the process as well as provide estimated probabilities. Problem Set 1. A mouse is placed at the start of the maze shown below. If it reaches station B, it is given a reward. At each point where the mouse has to decide which direction to go, assume that it is equally likely to go in either direction. At each decision point 1, 2, 3, it must decide whether to go left (L) or right (R). It cannot go backwards. a. Create a theoretical model of probabilities for the mouse to arrive at terminal points A, B, and C. i. List the possible paths of a sample space for the paths the mouse can take. For example, if the mouse goes left at decision point 1, and then right at decision point 2, then the path would be denoted LR. ii. iii. Are the paths in your sample space equally likely? Explain. What are the theoretical probabilities that a mouse reaches terminal points A, B, and C? Explain. b. Based on the following set of simulated paths, estimate the probabilities that the mouse arrives at points A, B, and C. RR RR RL LL LR RL LR LL LR RR LR RL LR RR RL LR RR LL RL RL LL LR LR LL RR RR RL LL RR LR RR LR RR LR LR LL LR RL RL LL c. How do the simulated probabilities in part (b) compare to the theoretical probabilities of part (a)?

6 2. Suppose that a dartboard is made up of the 8 8 grid of squares shown below. Also, suppose that when a dart is thrown, it is equally likely to land on any one of the 64 squares. A point is won if the dart lands on one of the 16 black squares. Zero points are earned if the dart lands in a white square. a. For one throw of a dart, what is the probability of winning a point? Note that a point is won if the dart lands on a black square. b. Lin wants to use a number cube to simulate the result of one dart. She suggests that 1 on the number cube could represent a win. Getting 2, 3, or 4 could represent no point scored. She says that she would ignore getting a 5 or 6. Is Lin s suggestion for a simulation appropriate? Explain why you would use it or, if not, how you would change it. c. Suppose a game consists of throwing a dart three times. A trial consists of three rolls of the number cube. Based on Lin s suggestion in part (b) and the following simulated rolls, estimate the probability of scoring two points in three darts d. The theoretical probability model for winning 0, 1, 2, and 3 points in three throws of the dart as described in this problem is i. winning 0 points has a probability of 0.42; ii. winning 1 point has a probability of 0.42; iii. winning 2 points has a probability of 0.14; iv. winning 3 points has a probability of Use the simulated rolls in part (c) to build a model of winning 0, 1, 2, and 3 points, and compare it to the theoretical model.

### Name: Class: Date: Probability/Counting Multiple Choice Pre-Test

Name: _ lass: _ ate: Probability/ounting Multiple hoice Pre-Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1 The dartboard has 8 sections of equal area.

### Page 1 of 22. Website: Mobile:

Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.

### NumberSense Companion Workbook Grade 4

NumberSense Companion Workbook Grade 4 Sample Pages (ENGLISH) Working in the NumberSense Companion Workbook The NumberSense Companion Workbooks address measurement, spatial reasoning (geometry) and data

### Probability of Independent and Dependent Events

706 Practice A Probability of In and ependent Events ecide whether each set of events is or. Explain your answer.. A student spins a spinner and rolls a number cube.. A student picks a raffle ticket from

### STOR 155 Introductory Statistics. Lecture 10: Randomness and Probability Model

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STOR 155 Introductory Statistics Lecture 10: Randomness and Probability Model 10/6/09 Lecture 10 1 The Monty Hall Problem Let s Make A Deal: a game show

### Chapter 8: Probability: The Mathematics of Chance

Chapter 8: Probability: The Mathematics of Chance Free-Response 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is

### STAT 155 Introductory Statistics. Lecture 11: Randomness and Probability Model

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 11: Randomness and Probability Model 10/5/06 Lecture 11 1 The Monty Hall Problem Let s Make A Deal: a game show

### Grade 6 Math Circles Fall Oct 14/15 Probability

1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014 - Oct 14/15 Probability Probability is the likelihood of an event occurring.

### Class XII Chapter 13 Probability Maths. Exercise 13.1

Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

### b. 2 ; the probability of choosing a white d. P(white) 25, or a a. Since the probability of choosing a

Applications. a. P(green) =, P(yellow) = 2, or 2, P(red) = 2 ; three of the four blocks are not red. d. 2. a. P(green) = 2 25, P(purple) = 6 25, P(orange) = 2 25, P(yellow) = 5 25, or 5 2 6 2 5 25 25 25

### RANDOM EXPERIMENTS AND EVENTS

Random Experiments and Events 18 RANDOM EXPERIMENTS AND EVENTS In day-to-day life we see that before commencement of a cricket match two captains go for a toss. Tossing of a coin is an activity and getting

### 3. a. P(white) =, or. b. ; the probability of choosing a white block. d. P(white) =, or. 4. a. = 1 b. 0 c. = 0

Answers Investigation ACE Assignment Choices Problem. Core, 6 Other Connections, Extensions Problem. Core 6 Other Connections 7 ; unassigned choices from previous problems Problem. Core 7 9 Other Connections

### Math 146 Statistics for the Health Sciences Additional Exercises on Chapter 3

Math 46 Statistics for the Health Sciences Additional Exercises on Chapter 3 Student Name: Find the indicated probability. ) If you flip a coin three times, the possible outcomes are HHH HHT HTH HTT THH

### Probability Assignment

Name Probability Assignment Student # Hr 1. An experiment consists of spinning the spinner one time. a. How many possible outcomes are there? b. List the sample space for the experiment. c. Determine the

### 1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2)

Math 1090 Test 2 Review Worksheet Ch5 and Ch 6 Name Use the following distribution to answer the question. 1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) 3) Estimate

### = = 0.1%. On the other hand, if there are three winning tickets, then the probability of winning one of these winning tickets must be 3 (1)

MA 5 Lecture - Binomial Probabilities Wednesday, April 25, 202. Objectives: Introduce combinations and Pascal s triangle. The Fibonacci sequence had a number pattern that we could analyze in different

### Diamond ( ) (Black coloured) (Black coloured) (Red coloured) ILLUSTRATIVE EXAMPLES

CHAPTER 15 PROBABILITY Points to Remember : 1. In the experimental approach to probability, we find the probability of the occurence of an event by actually performing the experiment a number of times

### EECS 203 Spring 2016 Lecture 15 Page 1 of 6

EECS 203 Spring 2016 Lecture 15 Page 1 of 6 Counting We ve been working on counting for the last two lectures. We re going to continue on counting and probability for about 1.5 more lectures (including

### Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1

Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

### FALL 2012 MATH 1324 REVIEW EXAM 4

FALL 01 MATH 134 REVIEW EXAM 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write the sample space for the given experiment. 1) An ordinary die

### Probability Exercise 2

Probability Exercise 2 1 Question 9 A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will

### CS 361: Probability & Statistics

January 31, 2018 CS 361: Probability & Statistics Probability Probability theory Probability Reasoning about uncertain situations with formal models Allows us to compute probabilities Experiments will

### UNIT 4 APPLICATIONS OF PROBABILITY Lesson 1: Events. Instruction. Guided Practice Example 1

Guided Practice Example 1 Bobbi tosses a coin 3 times. What is the probability that she gets exactly 2 heads? Write your answer as a fraction, as a decimal, and as a percent. Sample space = {HHH, HHT,

### Fdaytalk.com. Outcomes is probable results related to an experiment

EXPERIMENT: Experiment is Definite/Countable probable results Example: Tossing a coin Throwing a dice OUTCOMES: Outcomes is probable results related to an experiment Example: H, T Coin 1, 2, 3, 4, 5, 6

### Exercise Class XI Chapter 16 Probability Maths

Exercise 16.1 Question 1: Describe the sample space for the indicated experiment: A coin is tossed three times. A coin has two faces: head (H) and tail (T). When a coin is tossed three times, the total

### Lesson 3: Chance Experiments with Equally Likely Outcomes

Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records

### STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes

STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes Pengyuan (Penelope) Wang May 25, 2011 Review We have discussed counting techniques in Chapter 1. (Principle

### Use a tree diagram to find the number of possible outcomes. 2. How many outcomes are there altogether? 2.

Use a tree diagram to find the number of possible outcomes. 1. A pouch contains a blue chip and a red chip. A second pouch contains two blue chips and a red chip. A chip is picked from each pouch. The

### Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability

Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability Student Name: Find the indicated probability. 1) If you flip a coin three times, the possible outcomes are HHH

### Counting methods (Part 4): More combinations

April 13, 2009 Counting methods (Part 4): More combinations page 1 Counting methods (Part 4): More combinations Recap of last lesson: The combination number n C r is the answer to this counting question:

### heads 1/2 1/6 roll a die sum on 2 dice 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 1, 2, 3, 4, 5, 6 heads tails 3/36 = 1/12 toss a coin trial: an occurrence

trial: an occurrence roll a die toss a coin sum on 2 dice sample space: all the things that could happen in each trial 1, 2, 3, 4, 5, 6 heads tails 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 example of an outcome:

### Probability: Part 1 1/28/16

Probability: Part 1 1/28/16 The Kind of Studies We Can t Do Anymore Negative operant conditioning with a random reward system Addictive behavior under a random reward system FBJ murine osteosarcoma viral

### Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Week 6 Lecture Notes Discrete Probability Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. Introduction and

### Homework #1-19: Use the Counting Principle to answer the following questions.

Section 4.3: Tree Diagrams and the Counting Principle Homework #1-19: Use the Counting Principle to answer the following questions. 1) If two dates are selected at random from the 365 days of the year

### Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

NYS COMMON CORE MAEMAICS CURRICULUM 7 : Calculating Probabilities for Chance Experiments with Equally Likely Classwork Examples: heoretical Probability In a previous lesson, you saw that to find an estimate

### Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

Lesson : Calculating Probabilities for Chance Experiments with Equally Likely Outcomes Classwork Example : heoretical Probability In a previous lesson, you saw that to find an estimate of the probability

### Algebra I Notes Unit One: Real Number System

Syllabus Objectives: 1.1 The student will organize statistical data through the use of matrices (with and without technology). 1.2 The student will perform addition, subtraction, and scalar multiplication

### Probability. Dr. Zhang Fordham Univ.

Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!

### I. WHAT IS PROBABILITY?

C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

### Chapter 4: Introduction to Probability

MTH 243 Chapter 4: Introduction to Probability Suppose that we found that one of our pieces of data was unusual. For example suppose our pack of M&M s only had 30 and that was 3.1 standard deviations below

### Key Concepts. Theoretical Probability. Terminology. Lesson 11-1

Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally

### Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability

Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write

### CSC/MTH 231 Discrete Structures II Spring, Homework 5

CSC/MTH 231 Discrete Structures II Spring, 2010 Homework 5 Name 1. A six sided die D (with sides numbered 1, 2, 3, 4, 5, 6) is thrown once. a. What is the probability that a 3 is thrown? b. What is the

### Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability

Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability Lesson Practice Problems Lesson 1: Predicting to Win (Finding Theoretical Probabilities) 1-3 Lesson 2: Choosing Marbles

### 12 Probability. Introduction Randomness

2 Probability Assessment statements 5.2 Concepts of trial, outcome, equally likely outcomes, sample space (U) and event. The probability of an event A as P(A) 5 n(a)/n(u ). The complementary events as

### Date Learning Target/s Classwork Homework Self-Assess Your Learning. Pg. 2-3: WDYE 2.3: Designing a Fair Game

What Do You Expect: Probability and Expected Value Name: Per: Investigation 2: Experimental and Theoretical Probability Date Learning Target/s Classwork Homework Self-Assess Your Learning Mon, Feb. 29

### Lecture Start

Lecture -- 4 -- Start Outline 1. Science, Method & Measurement 2. On Building An Index 3. Correlation & Causality 4. Probability & Statistics 5. Samples & Surveys 6. Experimental & Quasi-experimental Designs

### XXII Probability. 4. The odds of being accepted in Mathematics at McGill University are 3 to 8. Find the probability of being accepted.

MATHEMATICS 20-BNJ-05 Topics in Mathematics Martin Huard Winter 204 XXII Probability. Find the sample space S along with n S. a) The face cards are removed from a regular deck and then card is selected

### Probability: Terminology and Examples Spring January 1, / 22

Probability: Terminology and Examples 18.05 Spring 2014 January 1, 2017 1 / 22 Board Question Deck of 52 cards 13 ranks: 2, 3,..., 9, 10, J, Q, K, A 4 suits:,,,, Poker hands Consists of 5 cards A one-pair

### 4.1 Sample Spaces and Events

4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

### Solving Problems by Searching

Solving Problems by Searching 1 Terminology State State Space Goal Action Cost State Change Function Problem-Solving Agent State-Space Search 2 Formal State-Space Model Problem = (S, s, A, f, g, c) S =

### TJP TOP TIPS FOR IGCSE STATS & PROBABILITY

TJP TOP TIPS FOR IGCSE STATS & PROBABILITY Dr T J Price, 2011 First, some important words; know what they mean (get someone to test you): Mean the sum of the data values divided by the number of items.

### Probability. Ms. Weinstein Probability & Statistics

Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

### MATH , Summer I Homework - 05

MATH 2300-02, Summer I - 200 Homework - 05 Name... TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Due on Tuesday, October 26th ) True or False: If p remains constant

### Probability. The Bag Model

Probability The Bag Model Imagine a bag (or box) containing balls of various kinds having various colors for example. Assume that a certain fraction p of these balls are of type A. This means N = total

### Lesson 8: The Difference Between Theoretical Probabilities and Estimated Probabilities

Lesson 8: The Difference Between Theoretical Probabilities and Estimated Probabilities Did you ever watch the beginning of a Super Bowl game? After the traditional handshakes, a coin is tossed to determine

### Lesson 8: The Difference Between Theoretical Probabilities and Estimated Probabilities

Lesson 8: The Difference Between Theoretical and Estimated Student Outcomes Given theoretical probabilities based on a chance experiment, students describe what they expect to see when they observe many

### Math141_Fall_2012 ( Business Mathematics 1) Week 7. Dr. Marco A. Roque Sol Department of Mathematics Texas A&M University

( Business Mathematics 1) Week 7 Dr. Marco A. Roque Department of Mathematics Texas A&M University In this sections we will consider two types of arrangements, namely, permutations and combinations a.

### 2 Event is equally likely to occur or not occur. When all outcomes are equally likely, the theoretical probability that an event A will occur is:

10.3 TEKS a.1, a.4 Define and Use Probability Before You determined the number of ways an event could occur. Now You will find the likelihood that an event will occur. Why? So you can find real-life geometric

### Probability Theory. POLI Mathematical and Statistical Foundations. Sebastian M. Saiegh

POLI 270 - Mathematical and Statistical Foundations Department of Political Science University California, San Diego November 11, 2010 Introduction to 1 Probability Some Background 2 3 Conditional and

### NAME DATE PERIOD. Study Guide and Intervention

9-1 Section Title The probability of a simple event is a ratio that compares the number of favorable outcomes to the number of possible outcomes. Outcomes occur at random if each outcome occurs by chance.

### 1. How to identify the sample space of a probability experiment and how to identify simple events

Statistics Chapter 3 Name: 3.1 Basic Concepts of Probability Learning objectives: 1. How to identify the sample space of a probability experiment and how to identify simple events 2. How to use the Fundamental

### Independence Is The Word

Problem 1 Simulating Independent Events Describe two different events that are independent. Describe two different events that are not independent. The probability of obtaining a tail with a coin toss

### Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015

1 Probability Axioms Let A,B,C be three arbitrary events. Find the probability of exactly one of these events occuring. Sample space S: {ABC, AB, AC, BC, A, B, C, }, and S = 8. P(A or B or C) = 3 8. note:

### A. 15 B. 24 C. 45 D. 54

A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative

### Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13

CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13 Introduction to Discrete Probability In the last note we considered the probabilistic experiment where we flipped a

### Section The Multiplication Principle and Permutations

Section 2.1 - The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different

### Find the probability of an event by using the definition of probability

LESSON 10-1 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event

### Section : Combinations and Permutations

Section 11.1-11.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words

### Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37

Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete

### MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #1 - SPRING DR. DAVID BRIDGE

MATH 205 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM # - SPRING 2006 - DR. DAVID BRIDGE TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Tell whether the statement is

### Math 4610, Problems to be Worked in Class

Math 4610, Problems to be Worked in Class Bring this handout to class always! You will need it. If you wish to use an expanded version of this handout with space to write solutions, you can download one

### Notes #45 Probability as a Fraction, Decimal, and Percent. As a result of what I learn today, I will be able to

Notes #45 Probability as a Fraction, Decimal, and Percent As a result of what I learn today, I will be able to Probabilities can be written in three ways:,, and. Probability is a of how an event is to.

### Lecture 21/Chapter 18 When Intuition Differs from Relative Frequency

Lecture 21/Chapter 18 When Intuition Differs from Relative Frequency Birthday Problem and Coincidences Gambler s Fallacy Confusion of the Inverse Expected Value: Short Run vs. Long Run Psychological Influences

### Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability?

Name:Date:_/_/ Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability? 1. Finding the probability that Jeffrey will get an odd number

### Unit 9: Probability Assignments

Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose

### Probability (Devore Chapter Two)

Probability (Devore Chapter Two) 1016-351-01 Probability Winter 2011-2012 Contents 1 Axiomatic Probability 2 1.1 Outcomes and Events............................... 2 1.2 Rules of Probability................................

### This Probability Packet Belongs to:

This Probability Packet Belongs to: 1 2 Station #1: M & M s 1. What is the sample space of your bag of M&M s? 2. Find the theoretical probability of the M&M s in your bag. Then, place the candy back into

### Practice Ace Problems

Unit 6: Moving Straight Ahead Investigation 2: Experimental and Theoretical Probability Practice Ace Problems Directions: Please complete the necessary problems to earn a maximum of 12 points according

### In how many ways can the letters of SEA be arranged? In how many ways can the letters of SEE be arranged?

-Pick up Quiz Review Handout by door -Turn to Packet p. 5-6 In how many ways can the letters of SEA be arranged? In how many ways can the letters of SEE be arranged? - Take Out Yesterday s Notes we ll

### WEEK 7 REVIEW. Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.1)

WEEK 7 REVIEW Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.) Definition of Probability (7.2) WEEK 8-7.3, 7.4 and Test Review THE MULTIPLICATION

### PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

### STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving.

Worksheet 4 th Topic : PROBABILITY TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving. BASIC COMPETENCY:

### Name Date. Probability of Disjoint and Overlapping Events For use with Exploration 12.4

12.4 Probability of Disjoint and Overlapping Events For use with Exploration 12.4 Essential Question How can you find probabilities of disjoint and overlapping events? Two events are disjoint, or mutually

### Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay

QuestionofDay Question of the Day There are 31 educators from the state of Nebraska currently enrolled in Experimentation, Conjecture, and Reasoning. What is the probability that two participants in our

### #2. A coin is tossed 40 times and lands on heads 21 times. What is the experimental probability of the coin landing on tails?

1 Pre-AP Geometry Chapter 14 Test Review Standards/Goals: A.1.f.: I can find the probability of a simple event. F.1.c.: I can use area to solve problems involving geometric probability. S.CP.1: I can define

### What Do You Expect? Concepts

Important Concepts What Do You Expect? Concepts Examples Probability A number from 0 to 1 that describes the likelihood that an event will occur. Theoretical Probability A probability obtained by analyzing

### Lesson 6: Using Tree Diagrams to Represent a Sample Space and to Calculate Probabilities

Lesson 6: Using Tree Diagrams to Represent a Sample Space and to Student Outcomes Given a description of a chance experiment that can be thought of as being performed in two or more stages, students use

### The Coin Toss Experiment

Experiments p. 1/1 The Coin Toss Experiment Perhaps the simplest probability experiment is the coin toss experiment. Experiments p. 1/1 The Coin Toss Experiment Perhaps the simplest probability experiment

### PROBABILITY M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier

Mathematics Revision Guides Probability Page 1 of 18 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier PROBABILITY Version: 2.1 Date: 08-10-2015 Mathematics Revision Guides Probability

### Simulations. 1 The Concept

Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that can be

### MATH STUDENT BOOK. 7th Grade Unit 6

MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20

### Probability and Counting Techniques

Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

### UNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet

Name Period Date UNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet 20.1 Solving Proportions 1 Add, subtract, multiply, and divide rational numbers. Use rates and proportions to solve problems.

### Algebra 1B notes and problems May 14, 2009 Independent events page 1

May 14, 009 Independent events page 1 Independent events In the last lesson we were finding the probability that a 1st event happens and a nd event happens by multiplying two probabilities For all the

### Elementary Statistics. Basic Probability & Odds

Basic Probability & Odds What is a Probability? Probability is a branch of mathematics that deals with calculating the likelihood of a given event to happen or not, which is expressed as a number between

### 1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested.

1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 0 calculators is tested. Write down the expected number of faulty calculators in the sample. Find