Math 146 Statistics for the Health Sciences Additional Exercises on Chapter 3


 Betty Fisher
 4 years ago
 Views:
Transcription
1 Math 46 Statistics for the Health Sciences Additional Exercises on Chapter 3 Student Name: Find the indicated probability. ) If you flip a coin three times, the possible outcomes are HHH HHT HTH HTT THH THT TTH TTT. What is the probability of getting at least one head? A) 3 4 B) 2 C) ) If you flip a coin three times, the possible outcomes are HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. What is the probability that the first two tosses come up the same? A) 3 8 B) 4 C) 8 2 3) If two balanced die are rolled, the possible outcomes can be represented as follows. (, ) (2, ) (3, ) (4, ) (, ) (6, ) (, 2) (2, 2) (3, 2) (4, 2) (, 2) (6, 2) (, 3) (2, 3) (3, 3) (4, 3) (, 3) (6, 3) (, 4) (2, 4) (3, 4) (4, 4) (, 4) (6, 4) (, ) (2, ) (3, ) (4, ) (, ) (6, ) (, 6) (2, 6) (3, 6) (4, 6) (, 6) (6, 6) Determine the probability that the sum of the dice is 2 or 0. A) 6 B) 9 C) ) A committee of three people is to be formed. The three people will be selected from a list of five possible committee members. A simple random sample of three people is taken, without replacement, from the group of five people. Using the letters A, B, C, D, E to represent the five people, list the possible samples of size three and use your list to determine the probability that B is included in the sample. (Hint: There are 0 possible samples.) A) 3 B) 2 C) ) A bag contains four chips of which one is red, one is blue, one is green, and one is yellow. A chip is selected at random from the bag and then replaced in the bag. A second chip is then selected at random. Make a list of the possible outcomes (for example RB represents the outcome red chip followed by blue chip) and use your list to determine the probability that the two chips selected are the same color. (Hint: There are 6 possible outcomes.) A) 8 B) 4 C) 6 2
2 Find the indicated probability by using the special addition rule. 6) The age distribution of students at a community college is given below. Age (years) Number of students (f) Under Over A student from the community college is selected at random. Find the probability that the student is between 26 and 3 inclusive. Round approximations to three decimal places. A) 28 B) 0.88 C) ) A relative frequency distribution is given below for the size of families in one U.S. city. Size Relative frequency A family is selected at random. Find the probability that the size of the family is less than. Round approximations to three decimal places. A) 0.09 B) C) ) A percentage distribution is given below for the size of families in one U.S. city. Size Percentage A family is selected at random. Find the probability that the size of the family is at most 3. Round approximations to three decimal places. A) 0.3 B) 0.68 C)
3 9) The distribution of B.A. degrees conferred by a local college is listed below, by major. Major Frequency English 2073 Mathematics 264 Chemistry 38 Physics 86 Liberal Arts 38 Business 676 Engineering What is the probability that a randomly selected degree is in English or Mathematics? A) 0.7 B) 0.00 C) ) Two 6sided dice are rolled. What is the probability that the sum of the numbers on the dice is 6 or 0? A) B) 2 C) Find the indicated probability by using the general addition rule. ) When two balanced dice are rolled, there are 36 possible outcomes. Find the probability that either doubles are rolled or the sum of the dice is 6. A) B) C) ) In one city, 47.2% of adults are female, 0.2% of adults are lefthanded, and 4.7% are lefthanded females. For an adult selected at random from the city, let F = event the person is female L = event the person is lefthanded. Find P(F or L). Round approximations to three decimal places. A) 0.74 B) 0.27 C) ) Let A and B be events such that P(A) = 6, P(A or B) =, and P(A and B) =. Determine P(B). A) 30 B) C) ) A spinner has regions numbered through. What is the probability that the spinner will stop on an even number or a multiple of 3? A) 3 B) 2 C)
4 ) Of the people who answered "yes" to a question, 7 were male. Of the 00 people who answered "no" to the question, 3 were male. If one person is selected at random from the group, what is the probability that the person answered "yes" or was male? A) B) 0.47 C) Find the indicated probability by using the complementation rule. 6) The age distribution of students at a community college is given below. Age (years) Number of students (f) Under Over A student from the community college is selected at random. Find the probability that the student is 2 years or over. Give your answer as a decimal rounded to three decimal places. A) B) C) ) A relative frequency distribution is given below for the size of families in one U.S. city. Size Relative frequency A family is selected at random. Find the probability that the size of the family is at most 6. Round approximations to three decimal places. A) 0.0 B) 0.94 C)
5 8) A percentage distribution is given below for the size of families in one U.S. city. Size Percentage A family is selected at random. Find the probability that the size of the family is 4 or more. Round results to three decimal places. A) B) 0.20 C) ) Based on meteorological records, the probability that it will snow in a certain town on January st is Find the probability that in a given year it will not snow on January st in that town. A).307 B) C) ) If a person is randomly selected, find the probability that his or her birthday is not in May. Ignore leap years. A) B) C)
6 Answer Key Testname: MATH 46 ADDITIONAL EXERCISES ON CHAPTER 3 ) D 2) D 3) B 4) A ) B 6) C 7) B 8) B 9) D 0) B ) B 2) B 3) B 4) C ) A 6) B 7) D 8) A 9) B 20) A 6
Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability
Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability Student Name: Find the indicated probability. 1) If you flip a coin three times, the possible outcomes are HHH
More information1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2)
Math 1090 Test 2 Review Worksheet Ch5 and Ch 6 Name Use the following distribution to answer the question. 1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) 3) Estimate
More informationUNIT 4 APPLICATIONS OF PROBABILITY Lesson 1: Events. Instruction. Guided Practice Example 1
Guided Practice Example 1 Bobbi tosses a coin 3 times. What is the probability that she gets exactly 2 heads? Write your answer as a fraction, as a decimal, and as a percent. Sample space = {HHH, HHT,
More informationFALL 2012 MATH 1324 REVIEW EXAM 4
FALL 01 MATH 134 REVIEW EXAM 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write the sample space for the given experiment. 1) An ordinary die
More informationGrade 6 Math Circles Fall Oct 14/15 Probability
1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014  Oct 14/15 Probability Probability is the likelihood of an event occurring.
More informationProbability and Statistics. Copyright Cengage Learning. All rights reserved.
Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.2 Probability Copyright Cengage Learning. All rights reserved. Objectives What Is Probability? Calculating Probability by
More informationChapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance FreeResponse 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
6. Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the probability. ) A bag contains red marbles, blue marbles, and 8
More informationSTAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes
STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes Pengyuan (Penelope) Wang May 25, 2011 Review We have discussed counting techniques in Chapter 1. (Principle
More informationProbability Assignment
Name Probability Assignment Student # Hr 1. An experiment consists of spinning the spinner one time. a. How many possible outcomes are there? b. List the sample space for the experiment. c. Determine the
More informationName. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.
Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided
More informationProbability: Terminology and Examples Spring January 1, / 22
Probability: Terminology and Examples 18.05 Spring 2014 January 1, 2017 1 / 22 Board Question Deck of 52 cards 13 ranks: 2, 3,..., 9, 10, J, Q, K, A 4 suits:,,,, Poker hands Consists of 5 cards A onepair
More informationDiamond ( ) (Black coloured) (Black coloured) (Red coloured) ILLUSTRATIVE EXAMPLES
CHAPTER 15 PROBABILITY Points to Remember : 1. In the experimental approach to probability, we find the probability of the occurence of an event by actually performing the experiment a number of times
More informationheads 1/2 1/6 roll a die sum on 2 dice 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 1, 2, 3, 4, 5, 6 heads tails 3/36 = 1/12 toss a coin trial: an occurrence
trial: an occurrence roll a die toss a coin sum on 2 dice sample space: all the things that could happen in each trial 1, 2, 3, 4, 5, 6 heads tails 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 example of an outcome:
More informationClass XII Chapter 13 Probability Maths. Exercise 13.1
Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:
More informationProbability of Independent and Dependent Events
706 Practice A Probability of In and ependent Events ecide whether each set of events is or. Explain your answer.. A student spins a spinner and rolls a number cube.. A student picks a raffle ticket from
More informationHomework #119: Use the Counting Principle to answer the following questions.
Section 4.3: Tree Diagrams and the Counting Principle Homework #119: Use the Counting Principle to answer the following questions. 1) If two dates are selected at random from the 365 days of the year
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even
More informationName: Class: Date: Probability/Counting Multiple Choice PreTest
Name: _ lass: _ ate: Probability/ounting Multiple hoice PreTest Multiple hoice Identify the choice that best completes the statement or answers the question. 1 The dartboard has 8 sections of equal area.
More informationProbability QUESTIONS Principles of Math 12  Probability Practice Exam 1
Probability QUESTIONS Principles of Math  Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..
More informationLesson 10: Using Simulation to Estimate a Probability
Lesson 10: Using Simulation to Estimate a Probability Classwork In previous lessons, you estimated probabilities of events by collecting data empirically or by establishing a theoretical probability model.
More informationEECS 203 Spring 2016 Lecture 15 Page 1 of 6
EECS 203 Spring 2016 Lecture 15 Page 1 of 6 Counting We ve been working on counting for the last two lectures. We re going to continue on counting and probability for about 1.5 more lectures (including
More informationCS 361: Probability & Statistics
January 31, 2018 CS 361: Probability & Statistics Probability Probability theory Probability Reasoning about uncertain situations with formal models Allows us to compute probabilities Experiments will
More informationMATH CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #1  SPRING DR. DAVID BRIDGE
MATH 205  CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #  SPRING 2006  DR. DAVID BRIDGE TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Tell whether the statement is
More informationPage 1 of 22. Website: Mobile:
Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.
More informationProbability Exercise 2
Probability Exercise 2 1 Question 9 A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will
More informationAlgebra I Notes Unit One: Real Number System
Syllabus Objectives: 1.1 The student will organize statistical data through the use of matrices (with and without technology). 1.2 The student will perform addition, subtraction, and scalar multiplication
More informationExercise Class XI Chapter 16 Probability Maths
Exercise 16.1 Question 1: Describe the sample space for the indicated experiment: A coin is tossed three times. A coin has two faces: head (H) and tail (T). When a coin is tossed three times, the total
More informationSTAT 155 Introductory Statistics. Lecture 11: Randomness and Probability Model
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 11: Randomness and Probability Model 10/5/06 Lecture 11 1 The Monty Hall Problem Let s Make A Deal: a game show
More informationTJP TOP TIPS FOR IGCSE STATS & PROBABILITY
TJP TOP TIPS FOR IGCSE STATS & PROBABILITY Dr T J Price, 2011 First, some important words; know what they mean (get someone to test you): Mean the sum of the data values divided by the number of items.
More informationSTOR 155 Introductory Statistics. Lecture 10: Randomness and Probability Model
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STOR 155 Introductory Statistics Lecture 10: Randomness and Probability Model 10/6/09 Lecture 10 1 The Monty Hall Problem Let s Make A Deal: a game show
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) 1 6
Math 300 Exam 4 Review (Chapter 11) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Give the probability that the spinner shown would land on
More informationBell Work. WarmUp Exercises. Two sixsided dice are rolled. Find the probability of each sum or 7
WarmUp Exercises Two sixsided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? WarmUp Notes Exercises
More information3. a. P(white) =, or. b. ; the probability of choosing a white block. d. P(white) =, or. 4. a. = 1 b. 0 c. = 0
Answers Investigation ACE Assignment Choices Problem. Core, 6 Other Connections, Extensions Problem. Core 6 Other Connections 7 ; unassigned choices from previous problems Problem. Core 7 9 Other Connections
More informationXXII Probability. 4. The odds of being accepted in Mathematics at McGill University are 3 to 8. Find the probability of being accepted.
MATHEMATICS 20BNJ05 Topics in Mathematics Martin Huard Winter 204 XXII Probability. Find the sample space S along with n S. a) The face cards are removed from a regular deck and then card is selected
More informationProbability Models. Section 6.2
Probability Models Section 6.2 The Language of Probability What is random? Empirical means that it is based on observation rather than theorizing. Probability describes what happens in MANY trials. Example
More informationProbability Rules. 2) The probability, P, of any event ranges from which of the following?
Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,
More informationSection 6.1 #16. Question: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
Section 6.1 #16 What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1
More informationLesson 3: Chance Experiments with Equally Likely Outcomes
Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records
More informationINDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results
More information= = 0.1%. On the other hand, if there are three winning tickets, then the probability of winning one of these winning tickets must be 3 (1)
MA 5 Lecture  Binomial Probabilities Wednesday, April 25, 202. Objectives: Introduce combinations and Pascal s triangle. The Fibonacci sequence had a number pattern that we could analyze in different
More informationIn how many ways can the letters of SEA be arranged? In how many ways can the letters of SEE be arranged?
Pick up Quiz Review Handout by door Turn to Packet p. 56 In how many ways can the letters of SEA be arranged? In how many ways can the letters of SEE be arranged?  Take Out Yesterday s Notes we ll
More information[Independent Probability, Conditional Probability, Tree Diagrams]
Name: Year 1 Review 119 Topic: Probability Day 2 Use your formula booklet! Page 5 Lesson 118: Probability Day 1 [Independent Probability, Conditional Probability, Tree Diagrams] Read and Highlight Station
More information12 Probability. Introduction Randomness
2 Probability Assessment statements 5.2 Concepts of trial, outcome, equally likely outcomes, sample space (U) and event. The probability of an event A as P(A) 5 n(a)/n(u ). The complementary events as
More informationRANDOM EXPERIMENTS AND EVENTS
Random Experiments and Events 18 RANDOM EXPERIMENTS AND EVENTS In daytoday life we see that before commencement of a cricket match two captains go for a toss. Tossing of a coin is an activity and getting
More informationNumberSense Companion Workbook Grade 4
NumberSense Companion Workbook Grade 4 Sample Pages (ENGLISH) Working in the NumberSense Companion Workbook The NumberSense Companion Workbooks address measurement, spatial reasoning (geometry) and data
More informationCounting methods (Part 4): More combinations
April 13, 2009 Counting methods (Part 4): More combinations page 1 Counting methods (Part 4): More combinations Recap of last lesson: The combination number n C r is the answer to this counting question:
More informationName Date. Sample Spaces and Probability For use with Exploration 12.1
. Sample Spaces and Probability For use with Exploration. Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment is the set of
More informationQuestion of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay
QuestionofDay Question of the Day There are 31 educators from the state of Nebraska currently enrolled in Experimentation, Conjecture, and Reasoning. What is the probability that two participants in our
More informationFdaytalk.com. Outcomes is probable results related to an experiment
EXPERIMENT: Experiment is Definite/Countable probable results Example: Tossing a coin Throwing a dice OUTCOMES: Outcomes is probable results related to an experiment Example: H, T Coin 1, 2, 3, 4, 5, 6
More informationRaise your hand if you rode a bus within the past month. Record the number of raised hands.
166 CHAPTER 3 PROBABILITY TOPICS Raise your hand if you rode a bus within the past month. Record the number of raised hands. Raise your hand if you answered "yes" to BOTH of the first two questions. Record
More informationProbability. Dr. Zhang Fordham Univ.
Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!
More informationPart 1: I can express probability as a fraction, decimal, and percent
Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:
More informationNovember 6, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern
More informationProbability I Sample spaces, outcomes, and events.
Probability I Sample spaces, outcomes, and events. When we perform an experiment, the result is called the outcome. The set of possible outcomes is the sample space and any subset of the sample space is
More informationb. 2 ; the probability of choosing a white d. P(white) 25, or a a. Since the probability of choosing a
Applications. a. P(green) =, P(yellow) = 2, or 2, P(red) = 2 ; three of the four blocks are not red. d. 2. a. P(green) = 2 25, P(purple) = 6 25, P(orange) = 2 25, P(yellow) = 5 25, or 5 2 6 2 5 25 25 25
More informationCombinatorics: The Fine Art of Counting
Combinatorics: The Fine Art of Counting Week 6 Lecture Notes Discrete Probability Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. Introduction and
More informationName: Section: Date:
WORKSHEET 5: PROBABILITY Name: Section: Date: Answer the following problems and show computations on the blank spaces provided. 1. In a class there are 14 boys and 16 girls. What is the probability of
More information1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?
1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,
More informationName Date Class. Identify the sample space and the outcome shown for each experiment. 1. spinning a spinner
Name Date Class 0.5 Practice B Experimental Probability Identify the sample space and the outcome shown for each experiment.. spinning a spinner 2. tossing two coins Write impossible, unlikely, as likely
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1342 Practice Test 2 Ch 4 & 5 Name 1) Nanette must pass through three doors as she walks from her company's foyer to her office. Each of these doors may be locked or unlocked. 1) List the outcomes
More information5.1 Probability Rules
Ch. 5 Probability 5.1 Probability Rules 1 Apply the rules of probabilities. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response.
More informationMath 1342 Exam 2 Review
Math 1342 Exam 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) If a sportscaster makes an educated guess as to how well a team will do this
More informationUse a tree diagram to find the number of possible outcomes. 2. How many outcomes are there altogether? 2.
Use a tree diagram to find the number of possible outcomes. 1. A pouch contains a blue chip and a red chip. A second pouch contains two blue chips and a red chip. A chip is picked from each pouch. The
More informationChapter 4: Introduction to Probability
MTH 243 Chapter 4: Introduction to Probability Suppose that we found that one of our pieces of data was unusual. For example suppose our pack of M&M s only had 30 and that was 3.1 standard deviations below
More informationKey Concept Probability of Independent Events. Key Concept Probability of Mutually Exclusive Events. Key Concept Probability of Overlapping Events
154 Compound Probability TEKS FOCUS TEKS (1)(E) Apply independence in contextual problems. TEKS (1)(B) Use a problemsolving model that incorporates analyzing given information, formulating a plan or strategy,
More informationLecture Start
Lecture  4  Start Outline 1. Science, Method & Measurement 2. On Building An Index 3. Correlation & Causality 4. Probability & Statistics 5. Samples & Surveys 6. Experimental & Quasiexperimental Designs
More informationMiniUnit. Data & Statistics. Investigation 1: Correlations and Probability in Data
MiniUnit Data & Statistics Investigation 1: Correlations and Probability in Data I can Measure Variation in Data and Strength of Association in TwoVariable Data Lesson 3: Probability Probability is a
More informationSample Spaces, Events, Probability
Sample Spaces, Events, Probability CS 3130/ECE 3530: Probability and Statistics for Engineers August 28, 2014 Sets A set is a collection of unique objects. Sets A set is a collection of unique objects.
More informationCHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events
CHAPTER 2 PROBABILITY 2.1 Sample Space A probability model consists of the sample space and the way to assign probabilities. Sample space & sample point The sample space S, is the set of all possible outcomes
More informationExam III Review Problems
c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous WeekinReviews
More informationProbability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability
Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write
More informationIndependent and Mutually Exclusive Events
Independent and Mutually Exclusive Events By: OpenStaxCollege Independent and mutually exclusive do not mean the same thing. Independent Events Two events are independent if the following are true: P(A
More informationMAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions
MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions 1. Appetizers: Salads: Entrées: Desserts: 2. Letters: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
More informationMATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG
MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, InclusionExclusion, and Complement. (a An office building contains 7 floors and has 7 offices
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Mathematical Ideas Chapter 2 Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) In one town, 2% of all voters are Democrats. If two voters
More informationProbability and Randomness. Day 1
Probability and Randomness Day 1 Randomness and Probability The mathematics of chance is called. The probability of any outcome of a chance process is a number between that describes the proportion of
More information, the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4.
41 Sample Spaces and Probability as a general concept can be defined as the chance of an event occurring. In addition to being used in games of chance, probability is used in the fields of,, and forecasting,
More informationPROBABILITY. 1. Introduction. Candidates should able to:
PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation
More informationNovember 8, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 8, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Crystallographic notation The first symbol
More informationS = {(1, 1), (1, 2),, (6, 6)}
Part, MULTIPLE CHOICE, 5 Points Each An experiment consists of rolling a pair of dice and observing the uppermost faces. The sample space for this experiment consists of 6 outcomes listed as pairs of numbers:
More information, x {1, 2, k}, where k > 0. (a) Write down P(X = 2). (1) (b) Show that k = 3. (4) Find E(X). (2) (Total 7 marks)
1. The probability distribution of a discrete random variable X is given by 2 x P(X = x) = 14, x {1, 2, k}, where k > 0. Write down P(X = 2). (1) Show that k = 3. Find E(X). (Total 7 marks) 2. In a game
More informationProbability. Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible
Probability Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible Impossible In summer, it doesn t rain much in Cape Town, so on a chosen
More informationClassical vs. Empirical Probability Activity
Name: Date: Hour : Classical vs. Empirical Probability Activity (100 Formative Points) For this activity, you will be taking part in 5 different probability experiments: Rolling dice, drawing cards, drawing
More informationName: Probability, Part 1 March 4, 2013
1) Assuming all sections are equal in size, what is the probability of the spinner below stopping on a blue section? Write the probability as a fraction. 2) A bag contains 3 red marbles, 4 blue marbles,
More informationProbability. Ms. Weinstein Probability & Statistics
Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random
More informationProbability: Part 1 1/28/16
Probability: Part 1 1/28/16 The Kind of Studies We Can t Do Anymore Negative operant conditioning with a random reward system Addictive behavior under a random reward system FBJ murine osteosarcoma viral
More informationProbability with Set Operations. MATH 107: Finite Mathematics University of Louisville. March 17, Complicated Probability, 17th century style
Probability with Set Operations MATH 107: Finite Mathematics University of Louisville March 17, 2014 Complicated Probability, 17th century style 2 / 14 Antoine Gombaud, Chevalier de Méré, was fond of gambling
More informationProbability Theory. POLI Mathematical and Statistical Foundations. Sebastian M. Saiegh
POLI 270  Mathematical and Statistical Foundations Department of Political Science University California, San Diego November 11, 2010 Introduction to 1 Probability Some Background 2 3 Conditional and
More informationMath 1313 Section 6.2 Definition of Probability
Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability
More informationCS 237: Probability in Computing
CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 5: o Independence reviewed; Bayes' Rule o Counting principles and combinatorics; o Counting considered
More informationCh Probability Outcomes & Trials
Learning Intentions: Ch. 10.2 Probability Outcomes & Trials Define the basic terms & concepts of probability. Find experimental probabilities. Calculate theoretical probabilities. Vocabulary: Trial: realworld
More informationBasic Probability. Let! = # 8 # < 13, # N ,., and / are the subsets of! such that  = multiples of four. = factors of 24 / = square numbers
Basic Probability Let! = # 8 # < 13, # N ,., and / are the subsets of! such that  = multiples of four. = factors of 24 / = square numbers (a) List the elements of!. (b) (i) Draw a Venn diagram to show
More informationSTANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving.
Worksheet 4 th Topic : PROBABILITY TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving. BASIC COMPETENCY:
More informationTEST A CHAPTER 11, PROBABILITY
TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability
More information108 Probability of Compound Events
Use any method to find the total number of outcomes in each situation. 6. Nathan has 4 tshirts, 4 pairs of shorts, and 2 pairs of flipflops. Use the Fundamental Counting Principle to find the number
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1332 Review Test 4 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the problem by applying the Fundamental Counting Principle with two
More informationToday s Topics. Next week: Conditional Probability
Today s Topics 2 Last time: Combinations Permutations Group Assignment TODAY: Probability! Sample Spaces and Event Spaces Axioms of Probability Lots of Examples Next week: Conditional Probability Sets
More informationSolving Problems by Searching
Solving Problems by Searching 1 Terminology State State Space Goal Action Cost State Change Function ProblemSolving Agent StateSpace Search 2 Formal StateSpace Model Problem = (S, s, A, f, g, c) S =
More informationAlgebra 1B notes and problems May 14, 2009 Independent events page 1
May 14, 009 Independent events page 1 Independent events In the last lesson we were finding the probability that a 1st event happens and a nd event happens by multiplying two probabilities For all the
More information