Math 4610, Problems to be Worked in Class

Size: px
Start display at page:

Download "Math 4610, Problems to be Worked in Class"

Transcription

1 Math 4610, Problems to be Worked in Class Bring this handout to class always! You will need it. If you wish to use an expanded version of this handout with space to write solutions, you can download one chapter by chapter on my web site: Note on numbering: Each problem is numbered as <Chapter#.Section#.Problem# >. The rst two numbers always refer to the relevant chapter and section in the textbook. The third number is used only for internal organization of this handout. Chapter 1 Problem Two fair dice are rolled. a) Find the chance that both dice show an odd number. b) Find the chance that the sum of the numbers on the dice is 8. Problem What is the distribution of the length of a word, picked at random from the sentence \A quick brown fox jumps over the lazy dog"? Problem A box contains three two-sided cards. The rst card is black on both sides, the second is white on both sides, and the third is black on one side, and white on the other. A card is drawn at random from the box and placed randomly on the table. If the visible side of the card is black, what is the chance that the other side is white? Problem Two cards are dealt from a well-shued standard deck of 52 cards. Find: a) the chance that the rst card is a king b) the chance that the second card is a king c) the chance that both cards are kings. Problem An electrical device consists of two components. The rst component can fail with a probability of 15%. If the rst component fails, the second component will fail also with a probability of 20$. If the rst component does not fail, the second component will fail with a probability of only 10%. Find: a) the chance that the second component works (i.e. does not fail) b) the chance that one component works and the other fails. Problem A hat contains three coins. The rst coin is fair, the second lands heads one-third of the time, and the third lands heads two-fths of the time. A coin is picked at random from the hat and ipped. What is the chance the coin lands heads? 1

2 Problem Two electrical components perform independently of each other. The rst works with probability 0:4 and fails with probability 0:6, the second works with probability 0:5 and fails with probability 0:5. Find the chance that: a) both components fail b) exactly one component works Problem A blood test is used to test for a certain disease. Suppose 95% of people who have the disease test positive. On the other hand, 1% of people without the disease test positive too (false positives). Suppose rther that 0:5% of the population has the disease. a) A person is chosen at random and tests positive. Given this, what is the probability that the person has the disease? b) Answer the same question, but this time given that the test was negative. Problem (Guessing the box) There are three boxes: Box 1 contains one white and one black ball; Box 2 contains two white balls and one black ball; and Box 3 contains three white balls and one black ball. A box is picked at random, and a ball is pulled at random from that box. For i = 1; 2; 3, nd the probability that the box selected was Box i, given that the ball is white. Problem (Continuation of Problem ) A patient enters the doctor's oce, feeling ill. Taking into account the patient's symptoms, age, gender, and family history, the doctor estimates the probability that the patient has the disease to be 25%. If the blood test turns out positive, how should the doctor revise his opinion? Problem A ve-card hand is dealt from a deck of 52. What is the probability that the hand is a ush? (i.e. ve cards from the same suit) Problem (Birthday Problem) There are n people at a party. What is the probability that at least two of them have the same birthday? Problem Suppose each of the switches in the following circuit is closed with probability p i, and open with probability q i = 1 p i, i = 1; : : : ; 5. Assuming that the switches act independently, calculate the probability that current will ow through the circuit. (Figure from p.68 of the textbook goes here) 2

3 Problem Consider a sequence of independent Bernoulli(p) trials. a) What is the probability that exactly k trials are needed to get a success? b) What is the probability that at most k trials are needed to get a success? Problem You roll a fair die repeatedly until it shows the number 6. Find the chance that this takes: a) at most 4 rolls b) exactly 4 rolls c) more than 4 rolls Chapter 2 Problem A man res 8 shots at a target. Assume that the shots are independent, and each shot hits the bull's eye with probability 0:7. a) What is the chance that he hits the bull's eye exactly 4 times? b) Given that he hit the bull's eye at least twice, what is the chance that he hit the bull's eye exactly 4 times? c) Given that the rst two shots hit the bull's eye, what is the chance that he hits the bull's eye exactly 4 times in the 8 shots? Problem A survey organization takes a random sample of 200 voters from a district. If 45% of the voters in the district oppose a certain ballot measure, estimate the chance that: a) exactly 90 voters in the sample oppose the measure b) more than half the voters in the sample oppose the measure Problem Two fair dice are rolled 60 times. Call each time the dice are rolled a trial. Find the chance that double-six happens exactly twice in the 60 trials: a) exactly (using the binomial distribution formula) b) using the normal approximation c) using the Poisson approximation Problem Repeat Problem , but now for 600 trials. Problem A company produces plasma TVs, 99% of which work properly, and 1% of which are defective. A sample of 200 TVs is taken. What is the chance that the sample contains at least 198 TVs that work properly? Problem A deck of cards is shued and dealt to four players, with each receiving 13 cards. Find: a) the probability that the rst player holds all the aces b) the probability that the rst player holds all the aces given that she holds the ace of hearts c) the probability that the rst player holds all the aces given that she holds at least one d) the probability that the second player holds all the aces given that he holds all the hearts 3

4 Chapter 3 Problem Let X have a uniform distribution on the integers 10; 9; : : : ; 9; 10. That is, P (X = x) = 1 for x = 10; 9; : : : ; 9; 10. Find: 21 a) P (3X 7) b) P (X 2 7) c) P ( p X + 10 > 4) d) P (e X 1) e) P (jx 4j > 3) Problem Two draws are made without replacement from a box containing three tickets, labeled 1, 2 and 3. Let X denote the rst number drawn, and Y the second number. a) Find the joint distribution of X and Y. b) Find the distribution of Z := X Y. Problem Three numbers are picked at random, without replacement, from the set f0; 1; : : : ; 9g. Let X be the smallest, and Y the largest of the three numbers drawn. a) Find the joint distribution of X and Y. b) Find the distribution of S := X + Y. Problem You roll a fair die 10 times. What is the chance that you get exactly 3 ves, 2 sixes, and 5 others? Problem (Independent or not?) A box with 10 tickets contains some number r of red tickets, and 10 r green tickets. A sample of size 100 is drawn at random from the box with replacement. Then a second sample of size 100 is drawn with replacement. Let X i denote the number of red tickets in the ith sample (i = 1; 2). Are X 1 and X 2 independent? Explain! Problem Let X have the uniform distribution on f1; 2; 3g, and let Y = X 2. a) Find the distribution of Y. b) Find E(Y ) = E(X 2 ), and compare with [E(X)] 2. Problem A fair coin is tossed twice. Let X be the number of heads, and Y the number of tails in the two tosses. Show that E(XY ) 6= E(X)E(Y ). Problem Ten dice are rolled. Find the expectation of the sum of the dice. Problem A building has 10 oors above the basement. If 12 people get into an elevator at the basement, and each chooses a oor at random to get out, independently of the others, at how many oors do you expect the elevator to make a stop to let out one or more of these 12 people? 4

5 Problem Three dice are rolled. Let M be the minimum of the three numbers rolled, and let S be the sum of the three numbers rolled. a) Find E(M). b) Find E(S). Problem The 13 spades of a deck of cards are dealt one by one. Let X be the number of cards before the ace, and Y the number of cards after the ace. a) Show that SD(X) = SD(Y ). b) Find E(X) and E(Y ). Problem Suppose the average family income in an area is $10,000. a) Find an upper bound for the percentage of families with incomes over $50,000. b) Find a better upper bound if it is known that the standard deviation of incomes is $8000. Problem A die is rolled repeatedly until 6 appears. Find the probability that the die is rolled a) an even number of times b) an odd number of times Problem Two players, A and B, play a sequence of independent games. Each game is won by A with probability P (A), won by B with probability P (B), or drawn with probability P (D). Suppose they play until the rst decisive game, and call the winner of that game the overall winner. Find the probability that A is the overall winner. Problem Let X denote the number of times you need to roll a die until 6 has appeared three times. What is the distribution of X? Problem How many raisins must cookies contain on average for the chance of a cookie containing at least one raisin to be at least 99%? Problem Let X P s(1), Y P s(2), and assume X and Y are independent. Find the probability that the average of X and Y equals 5. Chapter 4 Problem Measurements on the weight of a lump of metal are believed to be independent and identically distributed; each measurement has mean 12 grams and SD 1.1 gram. a) Find the chance that a single measurement is between 11.8 and 12.2 grams, assuming that individual measurements are normally distributed. b) Estimate the chance that the average of 100 measurements is between 11.8 and 12.2 grams. For this calculation, is it necessary to assume that individual measurements are normally distributed? Explain. Problem Suppose the lifetime of a light bulb has an exponential distribution with a mean of 800 hours. What is the chance that it will last more than 1000 hours? 5

6 Problem Suppose the time you have to wait for the bus has an exponential distribution with a mean of 15 minutes. If you have already waited 10 minutes, what is the chance the bus will arrive in the next 5 minutes? Problem A particular kind of atom has a half-life of 1 year. Find: a) the probability that an atom of this type survives at least 5 years b) the time at which the expected number of atoms is 10% of the original c) if there are 1024 atoms present initially, the time at which the expected number of atoms remaining is one d) the chance that in fact none of the 1024 original atoms remains after the time calculated in c) Problem Let X be a N(; 2 ) random variable, and let Y = e X. a) Find the density of Y. b) Find the mean and variance of Y. (They are not and 2!) 6

TEST A CHAPTER 11, PROBABILITY

TEST A CHAPTER 11, PROBABILITY TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability

More information

Important Distributions 7/17/2006

Important Distributions 7/17/2006 Important Distributions 7/17/2006 Discrete Uniform Distribution All outcomes of an experiment are equally likely. If X is a random variable which represents the outcome of an experiment of this type, then

More information

Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27

Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27 Exercise Sheet 3 jacques@ucsd.edu Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27 1. A six-sided die is tossed.

More information

Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

More information

Review Questions on Ch4 and Ch5

Review Questions on Ch4 and Ch5 Review Questions on Ch4 and Ch5 1. Find the mean of the distribution shown. x 1 2 P(x) 0.40 0.60 A) 1.60 B) 0.87 C) 1.33 D) 1.09 2. A married couple has three children, find the probability they are all

More information

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

More information

3 The multiplication rule/miscellaneous counting problems

3 The multiplication rule/miscellaneous counting problems Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is

More information

Chapter 11: Probability and Counting Techniques

Chapter 11: Probability and Counting Techniques Chapter 11: Probability and Counting Techniques Diana Pell Section 11.3: Basic Concepts of Probability Definition 1. A sample space is a set of all possible outcomes of an experiment. Exercise 1. An experiment

More information

1 2-step and other basic conditional probability problems

1 2-step and other basic conditional probability problems Name M362K Exam 2 Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. 1 2-step and other basic conditional probability problems 1. Suppose A, B, C are

More information

4.1 Sample Spaces and Events

4.1 Sample Spaces and Events 4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

More information

Conditional Probability Worksheet

Conditional Probability Worksheet Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.

More information

4.3 Rules of Probability

4.3 Rules of Probability 4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:

More information

1 2-step and other basic conditional probability problems

1 2-step and other basic conditional probability problems Name M362K Exam 2 Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. 1 2-step and other basic conditional probability problems 1. Suppose A, B, C are

More information

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly.

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly. Introduction to Statistics Math 1040 Sample Exam II Chapters 5-7 4 Problem Pages 4 Formula/Table Pages Time Limit: 90 Minutes 1 No Scratch Paper Calculator Allowed: Scientific Name: The point value of

More information

Conditional Probability Worksheet

Conditional Probability Worksheet Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 3-6, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A

More information

Section 7.1 Experiments, Sample Spaces, and Events

Section 7.1 Experiments, Sample Spaces, and Events Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.

More information

Class XII Chapter 13 Probability Maths. Exercise 13.1

Class XII Chapter 13 Probability Maths. Exercise 13.1 Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

More information

Chapter 11: Probability and Counting Techniques

Chapter 11: Probability and Counting Techniques Chapter 11: Probability and Counting Techniques Diana Pell Section 11.1: The Fundamental Counting Principle Exercise 1. How many different two-letter words (including nonsense words) can be formed when

More information

3 The multiplication rule/miscellaneous counting problems

3 The multiplication rule/miscellaneous counting problems Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1. Suppose P (A) = 0.4, P (B) = 0.5. (a) If A and B are independent, what is P (A B)? What is P (A B)? (b) If A and B are disjoint,

More information

Midterm 2 Practice Problems

Midterm 2 Practice Problems Midterm 2 Practice Problems May 13, 2012 Note that these questions are not intended to form a practice exam. They don t necessarily cover all of the material, or weight the material as I would. They are

More information

AP Statistics Ch In-Class Practice (Probability)

AP Statistics Ch In-Class Practice (Probability) AP Statistics Ch 14-15 In-Class Practice (Probability) #1a) A batter who had failed to get a hit in seven consecutive times at bat then hits a game-winning home run. When talking to reporters afterward,

More information

Unit 9: Probability Assignments

Unit 9: Probability Assignments Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose

More information

Exam III Review Problems

Exam III Review Problems c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous Week-in-Reviews

More information

8.2 Union, Intersection, and Complement of Events; Odds

8.2 Union, Intersection, and Complement of Events; Odds 8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context

More information

Probability: Anticipating Patterns

Probability: Anticipating Patterns Probability: Anticipating Patterns Anticipating Patterns: Exploring random phenomena using probability and simulation (20% 30%) Probability is the tool used for anticipating what the distribution of data

More information

The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you $5 that if you give me $10, I ll give you $20.)

The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you $5 that if you give me $10, I ll give you $20.) The Teachers Circle Mar. 2, 22 HOW TO GAMBLE IF YOU MUST (I ll bet you $ that if you give me $, I ll give you $2.) Instructor: Paul Zeitz (zeitzp@usfca.edu) Basic Laws and Definitions of Probability If

More information

Week in Review #5 ( , 3.1)

Week in Review #5 ( , 3.1) Math 166 Week-in-Review - S. Nite 10/6/2012 Page 1 of 5 Week in Review #5 (2.3-2.4, 3.1) n( E) In general, the probability of an event is P ( E) =. n( S) Distinguishable Permutations Given a set of n objects

More information

1. How to identify the sample space of a probability experiment and how to identify simple events

1. How to identify the sample space of a probability experiment and how to identify simple events Statistics Chapter 3 Name: 3.1 Basic Concepts of Probability Learning objectives: 1. How to identify the sample space of a probability experiment and how to identify simple events 2. How to use the Fundamental

More information

For question 1 n = 5, we let the random variable (Y) represent the number out of 5 who get a heart attack, p =.3, q =.7 5

For question 1 n = 5, we let the random variable (Y) represent the number out of 5 who get a heart attack, p =.3, q =.7 5 1 Math 321 Lab #4 Note: answers may vary slightly due to rounding. 1. Big Grack s used car dealership reports that the probabilities of selling 1,2,3,4, and 5 cars in one week are 0.256, 0.239, 0.259,

More information

1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested.

1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested. 1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 0 calculators is tested. Write down the expected number of faulty calculators in the sample. Find

More information

Unit 6: Probability. Marius Ionescu 10/06/2011. Marius Ionescu () Unit 6: Probability 10/06/ / 22

Unit 6: Probability. Marius Ionescu 10/06/2011. Marius Ionescu () Unit 6: Probability 10/06/ / 22 Unit 6: Probability Marius Ionescu 10/06/2011 Marius Ionescu () Unit 6: Probability 10/06/2011 1 / 22 Chapter 13: What is a probability Denition The probability that an event happens is the percentage

More information

Unit 6: Probability. Marius Ionescu 10/06/2011. Marius Ionescu () Unit 6: Probability 10/06/ / 22

Unit 6: Probability. Marius Ionescu 10/06/2011. Marius Ionescu () Unit 6: Probability 10/06/ / 22 Unit 6: Probability Marius Ionescu 10/06/2011 Marius Ionescu () Unit 6: Probability 10/06/2011 1 / 22 Chapter 13: What is a probability Denition The probability that an event happens is the percentage

More information

Moore, IPS 6e Chapter 05

Moore, IPS 6e Chapter 05 Page 1 of 9 Moore, IPS 6e Chapter 05 Quizzes prepared by Dr. Patricia Humphrey, Georgia Southern University Suppose that you are a student worker in the Statistics Department and they agree to pay you

More information

Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37

Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37 Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete

More information

MATH , Summer I Homework - 05

MATH , Summer I Homework - 05 MATH 2300-02, Summer I - 200 Homework - 05 Name... TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Due on Tuesday, October 26th ) True or False: If p remains constant

More information

Chapter 8: Probability: The Mathematics of Chance

Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance Free-Response 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is

More information

Contemporary Mathematics Math 1030 Sample Exam I Chapters Time Limit: 90 Minutes No Scratch Paper Calculator Allowed: Scientific

Contemporary Mathematics Math 1030 Sample Exam I Chapters Time Limit: 90 Minutes No Scratch Paper Calculator Allowed: Scientific Contemporary Mathematics Math 1030 Sample Exam I Chapters 13-15 Time Limit: 90 Minutes No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the left-hand margin.

More information

Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

More information

Textbook: pp Chapter 2: Probability Concepts and Applications

Textbook: pp Chapter 2: Probability Concepts and Applications 1 Textbook: pp. 39-80 Chapter 2: Probability Concepts and Applications 2 Learning Objectives After completing this chapter, students will be able to: Understand the basic foundations of probability analysis.

More information

MATH 1115, Mathematics for Commerce WINTER 2011 Toby Kenney Homework Sheet 6 Model Solutions

MATH 1115, Mathematics for Commerce WINTER 2011 Toby Kenney Homework Sheet 6 Model Solutions MATH, Mathematics for Commerce WINTER 0 Toby Kenney Homework Sheet Model Solutions. A company has two machines for producing a product. The first machine produces defective products % of the time. The

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

More information

Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11 Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical

More information

A Probability Work Sheet

A Probability Work Sheet A Probability Work Sheet October 19, 2006 Introduction: Rolling a Die Suppose Geoff is given a fair six-sided die, which he rolls. What are the chances he rolls a six? In order to solve this problem, we

More information

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

More information

n(s)=the number of ways an event can occur, assuming all ways are equally likely to occur. p(e) = n(e) n(s)

n(s)=the number of ways an event can occur, assuming all ways are equally likely to occur. p(e) = n(e) n(s) The following story, taken from the book by Polya, Patterns of Plausible Inference, Vol. II, Princeton Univ. Press, 1954, p.101, is also quoted in the book by Szekely, Classical paradoxes of probability

More information

Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations

Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations Objective(s): Vocabulary: I. Fundamental Counting Principle: Two Events: Three or more Events: II. Permutation: (top of p. 684)

More information

MAT 17: Introduction to Mathematics Final Exam Review Packet. B. Use the following definitions to write the indicated set for each exercise below:

MAT 17: Introduction to Mathematics Final Exam Review Packet. B. Use the following definitions to write the indicated set for each exercise below: MAT 17: Introduction to Mathematics Final Exam Review Packet A. Using set notation, rewrite each set definition below as the specific collection of elements described enclosed in braces. Use the following

More information

MTH 103 H Final Exam. 1. I study and I pass the course is an example of a. (a) conjunction (b) disjunction. (c) conditional (d) connective

MTH 103 H Final Exam. 1. I study and I pass the course is an example of a. (a) conjunction (b) disjunction. (c) conditional (d) connective MTH 103 H Final Exam Name: 1. I study and I pass the course is an example of a (a) conjunction (b) disjunction (c) conditional (d) connective 2. Which of the following is equivalent to (p q)? (a) p q (b)

More information

, x {1, 2, k}, where k > 0. (a) Write down P(X = 2). (1) (b) Show that k = 3. (4) Find E(X). (2) (Total 7 marks)

, x {1, 2, k}, where k > 0. (a) Write down P(X = 2). (1) (b) Show that k = 3. (4) Find E(X). (2) (Total 7 marks) 1. The probability distribution of a discrete random variable X is given by 2 x P(X = x) = 14, x {1, 2, k}, where k > 0. Write down P(X = 2). (1) Show that k = 3. Find E(X). (Total 7 marks) 2. In a game

More information

Section The Multiplication Principle and Permutations

Section The Multiplication Principle and Permutations Section 2.1 - The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different

More information

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1 Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally

More information

1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?

1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,

More information

1. Let X be a continuous random variable such that its density function is 8 < k(x 2 +1), 0 <x<1 f(x) = 0, elsewhere.

1. Let X be a continuous random variable such that its density function is 8 < k(x 2 +1), 0 <x<1 f(x) = 0, elsewhere. Lebanese American University Spring 2006 Byblos Date: 3/03/2006 Duration: h 20. Let X be a continuous random variable such that its density function is 8 < k(x 2 +), 0

More information

Math 1342 Exam 2 Review

Math 1342 Exam 2 Review Math 1342 Exam 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) If a sportscaster makes an educated guess as to how well a team will do this

More information

Name Instructor: Uli Walther

Name Instructor: Uli Walther Name Instructor: Uli Walther Math 416 Fall 2016 Practice Exam Questions You are not allowed to use books or notes. Calculators are permitted. Full credit is given for complete correct solutions. Please

More information

STAT Statistics I Midterm Exam One. Good Luck!

STAT Statistics I Midterm Exam One. Good Luck! STAT 515 - Statistics I Midterm Exam One Name: Instruction: You can use a calculator that has no connection to the Internet. Books, notes, cellphones, and computers are NOT allowed in the test. There are

More information

Suppose Y is a random variable with probability distribution function f(y). The mathematical expectation, or expected value, E(Y) is defined as:

Suppose Y is a random variable with probability distribution function f(y). The mathematical expectation, or expected value, E(Y) is defined as: Suppose Y is a random variable with probability distribution function f(y). The mathematical expectation, or expected value, E(Y) is defined as: E n ( Y) y f( ) µ i i y i The sum is taken over all values

More information

Stat210 WorkSheet#2 Chapter#2

Stat210 WorkSheet#2 Chapter#2 1. When rolling a die 5 times, the number of elements of the sample space equals.(ans.=7,776) 2. If an experiment consists of throwing a die and then drawing a letter at random from the English alphabet,

More information

Grade 7/8 Math Circles February 25/26, Probability

Grade 7/8 Math Circles February 25/26, Probability Faculty of Mathematics Waterloo, Ontario N2L 3G1 Probability Grade 7/8 Math Circles February 25/26, 2014 Probability Centre for Education in Mathematics and Computing Probability is the study of how likely

More information

a) Getting 10 +/- 2 head in 20 tosses is the same probability as getting +/- heads in 320 tosses

a) Getting 10 +/- 2 head in 20 tosses is the same probability as getting +/- heads in 320 tosses Question 1 pertains to tossing a fair coin (8 pts.) Fill in the blanks with the correct numbers to make the 2 scenarios equally likely: a) Getting 10 +/- 2 head in 20 tosses is the same probability as

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1342 Practice Test 2 Ch 4 & 5 Name 1) Nanette must pass through three doors as she walks from her company's foyer to her office. Each of these doors may be locked or unlocked. 1) List the outcomes

More information

Math 141 Exam 3 Review with Key. 1. P(E)=0.5, P(F)=0.6 P(E F)=0.9 Find ) b) P( E F ) c) P( E F )

Math 141 Exam 3 Review with Key. 1. P(E)=0.5, P(F)=0.6 P(E F)=0.9 Find ) b) P( E F ) c) P( E F ) Math 141 Exam 3 Review with Key 1. P(E)=0.5, P(F)=0.6 P(E F)=0.9 Find C C C a) P( E F) ) b) P( E F ) c) P( E F ) 2. A fair coin is tossed times and the sequence of heads and tails is recorded. Find a)

More information

If a regular six-sided die is rolled, the possible outcomes can be listed as {1, 2, 3, 4, 5, 6} there are 6 outcomes.

If a regular six-sided die is rolled, the possible outcomes can be listed as {1, 2, 3, 4, 5, 6} there are 6 outcomes. Section 11.1: The Counting Principle 1. Combinatorics is the study of counting the different outcomes of some task. For example If a coin is flipped, the side facing upward will be a head or a tail the

More information

7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events 7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

More information

Math 147 Lecture Notes: Lecture 21

Math 147 Lecture Notes: Lecture 21 Math 147 Lecture Notes: Lecture 21 Walter Carlip March, 2018 The Probability of an Event is greater or less, according to the number of Chances by which it may happen, compared with the whole number of

More information

EE 126 Fall 2006 Midterm #1 Thursday October 6, 7 8:30pm DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO

EE 126 Fall 2006 Midterm #1 Thursday October 6, 7 8:30pm DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO EE 16 Fall 006 Midterm #1 Thursday October 6, 7 8:30pm DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO You have 90 minutes to complete the quiz. Write your solutions in the exam booklet. We will

More information

Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability

Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write

More information

Simulations. 1 The Concept

Simulations. 1 The Concept Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that can be

More information

Section : Combinations and Permutations

Section : Combinations and Permutations Section 11.1-11.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words

More information

Ex 1: A coin is flipped. Heads, you win $1. Tails, you lose $1. What is the expected value of this game?

Ex 1: A coin is flipped. Heads, you win $1. Tails, you lose $1. What is the expected value of this game? AFM Unit 7 Day 5 Notes Expected Value and Fairness Name Date Expected Value: the weighted average of possible values of a random variable, with weights given by their respective theoretical probabilities.

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Before we can move from descriptive statistics to inferential statistics, we need to have some understanding of probability: Ch4: Probability and Counting Rules

More information

Chapter 6: Probability and Simulation. The study of randomness

Chapter 6: Probability and Simulation. The study of randomness Chapter 6: Probability and Simulation The study of randomness Introduction Probability is the study of chance. 6.1 focuses on simulation since actual observations are often not feasible. When we produce

More information

CSC/MTH 231 Discrete Structures II Spring, Homework 5

CSC/MTH 231 Discrete Structures II Spring, Homework 5 CSC/MTH 231 Discrete Structures II Spring, 2010 Homework 5 Name 1. A six sided die D (with sides numbered 1, 2, 3, 4, 5, 6) is thrown once. a. What is the probability that a 3 is thrown? b. What is the

More information

I. WHAT IS PROBABILITY?

I. WHAT IS PROBABILITY? C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

More information

Math : Probabilities

Math : Probabilities 20 20. Probability EP-Program - Strisuksa School - Roi-et Math : Probabilities Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou

More information

1. Determine whether the following experiments are binomial.

1. Determine whether the following experiments are binomial. Math 141 Exam 3 Review Problem Set Note: Not every topic is covered in this review. It is more heavily weighted on 8.4-8.6. Please also take a look at the previous Week in Reviews for more practice problems

More information

Discrete probability and the laws of chance

Discrete probability and the laws of chance Chapter 8 Discrete probability and the laws of chance 8.1 Multiple Events and Combined Probabilities 1 Determine the probability of each of the following events assuming that the die has equal probability

More information

Discrete Random Variables Day 1

Discrete Random Variables Day 1 Discrete Random Variables Day 1 What is a Random Variable? Every probability problem is equivalent to drawing something from a bag (perhaps more than once) Like Flipping a coin 3 times is equivalent to

More information

Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E.

Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E. Probability and Statistics Chapter 3 Notes Section 3-1 I. Probability Experiments. A. When weather forecasters say There is a 90% chance of rain tomorrow, or a doctor says There is a 35% chance of a successful

More information

6) A) both; happy B) neither; not happy C) one; happy D) one; not happy

6) A) both; happy B) neither; not happy C) one; happy D) one; not happy MATH 00 -- PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. More 9.-9.3 Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. ) In how many ways can you answer the questions on

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Mathematical Ideas Chapter 2 Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) In one town, 2% of all voters are Democrats. If two voters

More information

Geometric Distribution

Geometric Distribution Geometric Distribution Review Binomial Distribution Properties The experiment consists of n repeated trials. Each trial can result in just two possible outcomes. The probability of success is the same

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

Probability and Counting Techniques

Probability and Counting Techniques Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

More information

Compute P(X 4) = Chapter 8 Homework Problems Compiled by Joe Kahlig

Compute P(X 4) = Chapter 8 Homework Problems Compiled by Joe Kahlig 141H homework problems, 10C-copyright Joe Kahlig Chapter 8, Page 1 Chapter 8 Homework Problems Compiled by Joe Kahlig Section 8.1 1. Classify the random variable as finite discrete, infinite discrete,

More information

18.S34 (FALL, 2007) PROBLEMS ON PROBABILITY

18.S34 (FALL, 2007) PROBLEMS ON PROBABILITY 18.S34 (FALL, 2007) PROBLEMS ON PROBABILITY 1. Three closed boxes lie on a table. One box (you don t know which) contains a $1000 bill. The others are empty. After paying an entry fee, you play the following

More information

Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015

Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015 1 Probability Axioms Let A,B,C be three arbitrary events. Find the probability of exactly one of these events occuring. Sample space S: {ABC, AB, AC, BC, A, B, C, }, and S = 8. P(A or B or C) = 3 8. note:

More information

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

More information

Chapter-wise questions. Probability. 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail.

Chapter-wise questions. Probability. 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail. Probability 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail. 2. 26 cards marked with English letters A to Z (one letter on each card) are shuffled well. If one

More information

Math 1070 Sample Exam 1

Math 1070 Sample Exam 1 University of Connecticut Department of Mathematics Math 1070 Sample Exam 1 Exam 1 will cover sections 4.1-4.7 and 5.1-5.4. This sample exam is intended to be used as one of several resources to help you

More information

Review of Probability

Review of Probability Review of Probability 1) What is probability? ( ) Consider the following two problems: Select 2 cards from a standard deck of 52 cards with replacement. What is the probability of obtaining two kings?

More information

Name: Section: Date:

Name: Section: Date: WORKSHEET 5: PROBABILITY Name: Section: Date: Answer the following problems and show computations on the blank spaces provided. 1. In a class there are 14 boys and 16 girls. What is the probability of

More information

Most of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.

Most of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected. AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:

More information

Raise your hand if you rode a bus within the past month. Record the number of raised hands.

Raise your hand if you rode a bus within the past month. Record the number of raised hands. 166 CHAPTER 3 PROBABILITY TOPICS Raise your hand if you rode a bus within the past month. Record the number of raised hands. Raise your hand if you answered "yes" to BOTH of the first two questions. Record

More information

Essential Question How can you list the possible outcomes in the sample space of an experiment?

Essential Question How can you list the possible outcomes in the sample space of an experiment? . TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G..B Sample Spaces and Probability Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment

More information

INDIAN STATISTICAL INSTITUTE

INDIAN STATISTICAL INSTITUTE INDIAN STATISTICAL INSTITUTE B1/BVR Probability Home Assignment 1 20-07-07 1. A poker hand means a set of five cards selected at random from usual deck of playing cards. (a) Find the probability that it

More information

1. Describe the sample space and all 16 events for a trial in which two coins are thrown and each shows either a head or a tail.

1. Describe the sample space and all 16 events for a trial in which two coins are thrown and each shows either a head or a tail. Single Maths B Probability & Statistics: Exercises 1. Describe the sample space and all 16 events for a trial in which two coins are thrown and each shows either a head or a tail. 2. A fair coin is tossed,

More information

Math 447 Test 1 February 25, Spring 2016

Math 447 Test 1 February 25, Spring 2016 Math 447 Test 1 February 2, Spring 2016 No books, no notes, only scientific (non-graphic calculators. You must show work, unless the question is a true/false or fill-in-the-blank question. Name: Question

More information