Making Use of Benford s Law for the Randomized Response Technique. Andreas Diekmann ETH-Zurich

Size: px
Start display at page:

Download "Making Use of Benford s Law for the Randomized Response Technique. Andreas Diekmann ETH-Zurich"

Transcription

1 Benford & RRT Making Use of Benford s Law for the Randomized Response Technique Andreas Diekmann ETH-Zurich

2 1. The Newcomb-Benford Law Imagine a little bet. The two betters bet on the first digit it of an unknown house number drawn at random. The loser has to pay one euro to the winner. Player A wins if the digit is in the range 1 to 4. Player B wins if the digit is to 9. Is this a fair bet?

3 1. The Newcomb-Benford Law Imagine a little bet. The two betters bet on the first digit it of an unknown house number drawn at random. The loser has to pay one euro to the winner. Player A wins if the digit is in the range 1 to 4. Player B wins if the digit is to 9. Is this a fair bet? It is not. Paradoxically, the bet is rather unfavourable to player B. The first digits of house numbers follow a logarithmic distribution known as Benford s law. The betters odds are :3 in terms of objective probabilities.

4 Hungerbühler 2

5 Benford s Law P(d 1 )=log 1 (1 + 1/d 1 ) P(D 1 = d 1,..., D k = d k ) = log 1 [ 1 + (Σd i 1 k-i ) -1 ] with d 1 = 1, 2,...,9 and d j =, 1,...,9 (j = 2,..., k).

6 Distribution of First Digits of OLS-Regressions Coefficients from Articles Published in the American Journal of Sociology First Digit Distribution.3.3 Fre equencies First Digit Actual Benford Upper Bound Lower Bound N = 14, Tables from AJS 14 / 1. Deviation from Benford is significant for α=.. Diekmann 2

7 Hungerbühler 2 Digits in the Bible Compilation of Digits in the Elberfelder Konkordanz

8 Hungerbühler 2 Digits in the Bible Compilation of Digits in the Elberfelder Konkordanz

9 Benford s Law and the number of votes for candidate Ahmadinejad (Roukema 29)

10 Sensitive Questions Allen H. Barton, 198. Asking the Embarrassing Question. Public Opinion i Quarterly 22: -88

11 Barton s (198) method for a very sensitive question

12

13 May be RRT is a better method for asking sensitive questions?

14 2. The Randomized Response Technique (RRT). A Method to Guarantee Full Anonymity for Sensitive Questions Subjects had to respond to either a sensitive question A (e.g. shoplifting, tax evasion etc.) or to a random question B (Was your mother s birthday in an even month?). Assignment to question A or B is by a random device (a dice, a coin etc.) The meaning of an individual answer cannot be identified. However, it is possible to estimate the proportion of shoplifting etc. and other statistics on the aggregate level.

15 Because the random mechanisms are known one can estimate the probability of answering yes to the sensitive question by Bayes formula. The RRT has the advantage of guaranteeing anonymity, but not without costs. The price is a loss in efficiency. In addition to sampling error, the probabilistic RRT device enlarges the variance of the estimated proportion of positive responses to the sensitive question.

16 In formal terms: p is the probability to answer the question of interest A, q =1-p is the probability to answer the random question B. π y = P( yes B) is the probability to response yes to the random question. Then, we are looking for an estimate of π x = P( yes A), the expected proportion of respondents answering yes to the question of interest. If we denote the overall proportion of yes in the sample by λ we have: λ = p π x + (1-p) π y. (λ, p,π y is known)

17 Solving for π x yields: π x = λ/p π y (1-p)/p. p and π y are determined ex ante by the researcher s RRT-design. A special case is the forced response design with π y = 1. In this case, a person is forced to respond yes to the random question. With variance: Var(π x ) = λ(1- λ)/np 2

18 3. The Benford distribution as a randomizing device In face-to-face interviews, a pack of cards, a dice, a coin or some other device may be used to generate randomized outcomes. For example, if a person tosses head he or she is instructed to answer the random question, if the result is tail the question of interest has to be answered. This technique has some difficulties in telephone interviews and is particularly problematic in selfadministered interviews such as mailed questionnaires or online-surveys. As an alternative, I suggest to make use of the Benford distribution.

19 House numbers (1st digit) 1,2,3,4 versus,,,8,9 The probability that digit 1, 2, 3 or 4 turns out is, therefore,.99 or roughly.. The probability to draw a first digit among the set of remaining digits is.3. The :3 rule provides a mechanism to split the sample in a set of respondents answering the question of interest A and respondents answering the random question B. For example, subjects are asked to think of the address of a friend and to keep the house number in mind. Depending on the first digit either belonging to the set {1,2,3,4} or belonging to the set {,,,8,9} a person has to answer question A or question B. Other sets may be constructed if a researcher prefers smaller or larger probabilities for the question of interest. However, first we should ask: Do house numbers follow the Benford distribution at all?

20 House numbers collected from the telephone directory of Zurich 3% 3% Per rcentage 2% 2% 1% 1% % % House number 29,99% 1,9% 13,1% 1,84% 8,4%,9% 4,% 4,4%,12% Benford 3,1% 1,1% 12,49% 9,9%,92%,9%,8%,12% 4,8% First digit

21 I i d bt d t S I am indebted to S. Wehrli for compiling the data.

22 4. The Benford illusion and other advantages of the method The price for the anonymity of the method is an increase in the variance of the estimator for the proportion of yes-responses (π x ) to the question of interest. The variance is (Fox and Tracy 198): Var(π x ) = λ(1- λ)/n(1-q) 2 It follows that the variance increases with the probability q = 1-p to arrive at the random question. On the other hand, the larger q the larger is the degree of anonymity. This is the formal expression for the conflict between efficiency and anonymity.

23 Benford Illusion To use the Benford distribution for the RRT has the advantage to diminish i i the conflict between efficiency and anonymity. The reason is that the perceived probabilities and the objective probabilities differ. Many people believe that the chance to pick a one, two, three or four is much smaller than percent. This discrepancy or Benford illusion has the positive effect that t the perceived q, and, therefore, the perceived anonymity is larger than the objective q. With the little trick of the Benford illusion, the anonymity can be increased without loss in efficiency.

24 There are other advantages, too. The method does not require any physical device such as a coin or a dice to generate random numbers. In most previous studies, the RRT is applied to sensitive questions in face-to- face interviews. However, it is unlikely that most people, asked to fill in online-surveys or mailed questionnaires, follow instructions properly if a coin or dice is required.

25 . Application Shoplifting Questionnaire Imagine a friend or relative who does not live in your house with an address known n to you. Keep in mind the house number s first digit. If the digit ist,,,8 or 9 skip over the next question and mark yes If the digit is 1,2,3,4, please, answer the following question: In the last five years, did you ever intentionally pick a shopping item without paying for it?

26 Study 1: Shoplifting RRT Experiment in Vorlesung SS Questionnaire in lecture M. Abraham, Bern 2 Ja = 88, Ja = 114 Nein = Ja = , = 2, Result: n =29 2, p (Ladendiebstahl) = 2,/2,/2 =,12 Nein = 181 n = 29 π x =.12 (SE =.4)

27 Study 2: Shoplifting Result: n = 93 π x = 9/ =.14 (SE =.3) Questionnaire in lecture Szydlick

28 . Do Subjects underestimate the probability of 1,2,3,4? ( Benford Illusion ) Schätzung der Häufigkeit der Hausnummern mit erster Ziffer 1,2,3, Percent 4 P N = 289, N 289, Mean = 1. Lecture M Schätzung der Häufigkeit der Hausnummern mit erster Ziffer 1,2,3,4 Abraham, Bern 2

29 Estimated t frequency of fhouse numbers starting with 1, 2, 3 or 4 in per cent Percentage e of answe ers Lecture Szydlik, n = 92, mean = 4

30 Underestimation of Objective Probability (student population) subjective (mean) objective Study 1, Bern 1 Study 2, Zurch 4

31 . Do subjects generate Benforddistributed house numbers? As we have seen, objective data follow the Benford distribution. However, are the digits produced by the respondents in accordance with Benford as well? This is a crucial assumption. Otherwise, This is a crucial assumption. Otherwise, the method wouldn t work.

32 . Do subjects generate Benforddistributed house numbers? I am indebted to B. Jann for compiling the data. Survey B. Jann, Wages in Switzerland, 2/2, N = 313

Math 4610, Problems to be Worked in Class

Math 4610, Problems to be Worked in Class Math 4610, Problems to be Worked in Class Bring this handout to class always! You will need it. If you wish to use an expanded version of this handout with space to write solutions, you can download one

More information

Not the First Digit! Using Benford s Law to Detect Fraudulent Scientific Data* Andreas Diekmann Swiss Federal Institute of Technology Zurich

Not the First Digit! Using Benford s Law to Detect Fraudulent Scientific Data* Andreas Diekmann Swiss Federal Institute of Technology Zurich Not the First! Using Benford s Law to Detect Fraudulent Scientific Data* Andreas Diekmann Swiss Federal Institute of Technology Zurich October 2004 diekmann@soz.gess.ethz.ch *For data collection I would

More information

Module 4 Project Maths Development Team Draft (Version 2)

Module 4 Project Maths Development Team Draft (Version 2) 5 Week Modular Course in Statistics & Probability Strand 1 Module 4 Set Theory and Probability It is often said that the three basic rules of probability are: 1. Draw a picture 2. Draw a picture 3. Draw

More information

Sampling distributions and the Central Limit Theorem

Sampling distributions and the Central Limit Theorem Sampling distributions and the Central Limit Theorem Johan A. Elkink University College Dublin 14 October 2013 Johan A. Elkink (UCD) Central Limit Theorem 14 October 2013 1 / 29 Outline 1 Sampling 2 Statistical

More information

AP Statistics S A M P L I N G C H A P 11

AP Statistics S A M P L I N G C H A P 11 AP Statistics 1 S A M P L I N G C H A P 11 The idea that the examination of a relatively small number of randomly selected individuals can furnish dependable information about the characteristics of a

More information

The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you $5 that if you give me $10, I ll give you $20.)

The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you $5 that if you give me $10, I ll give you $20.) The Teachers Circle Mar. 2, 22 HOW TO GAMBLE IF YOU MUST (I ll bet you $ that if you give me $, I ll give you $2.) Instructor: Paul Zeitz (zeitzp@usfca.edu) Basic Laws and Definitions of Probability If

More information

Unit 8: Sample Surveys

Unit 8: Sample Surveys Unit 8: Sample Surveys Marius Ionescu 10/27/2011 Marius Ionescu () Unit 8: Sample Surveys 10/27/2011 1 / 13 Chapter 19: Surveys Why take a survey? Marius Ionescu () Unit 8: Sample Surveys 10/27/2011 2

More information

Math 147 Lecture Notes: Lecture 21

Math 147 Lecture Notes: Lecture 21 Math 147 Lecture Notes: Lecture 21 Walter Carlip March, 2018 The Probability of an Event is greater or less, according to the number of Chances by which it may happen, compared with the whole number of

More information

Midterm 2 Practice Problems

Midterm 2 Practice Problems Midterm 2 Practice Problems May 13, 2012 Note that these questions are not intended to form a practice exam. They don t necessarily cover all of the material, or weight the material as I would. They are

More information

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098%

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% Coin tosses If a fair coin is tossed 10 times, what will we see? 30% 25% 24.61% 20% 15% 10% Probability 20.51% 20.51% 11.72% 11.72% 5% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% 0 1 2 3 4 5 6 7 8 9 10 Number

More information

Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015

Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015 1 Probability Axioms Let A,B,C be three arbitrary events. Find the probability of exactly one of these events occuring. Sample space S: {ABC, AB, AC, BC, A, B, C, }, and S = 8. P(A or B or C) = 3 8. note:

More information

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

More information

4.3 Rules of Probability

4.3 Rules of Probability 4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:

More information

a) Getting 10 +/- 2 head in 20 tosses is the same probability as getting +/- heads in 320 tosses

a) Getting 10 +/- 2 head in 20 tosses is the same probability as getting +/- heads in 320 tosses Question 1 pertains to tossing a fair coin (8 pts.) Fill in the blanks with the correct numbers to make the 2 scenarios equally likely: a) Getting 10 +/- 2 head in 20 tosses is the same probability as

More information

Unit 1B-Modelling with Statistics. By: Niha, Julia, Jankhna, and Prerana

Unit 1B-Modelling with Statistics. By: Niha, Julia, Jankhna, and Prerana Unit 1B-Modelling with Statistics By: Niha, Julia, Jankhna, and Prerana [ Definitions ] A population is any large collection of objects or individuals, such as Americans, students, or trees about which

More information

Suppose Y is a random variable with probability distribution function f(y). The mathematical expectation, or expected value, E(Y) is defined as:

Suppose Y is a random variable with probability distribution function f(y). The mathematical expectation, or expected value, E(Y) is defined as: Suppose Y is a random variable with probability distribution function f(y). The mathematical expectation, or expected value, E(Y) is defined as: E n ( Y) y f( ) µ i i y i The sum is taken over all values

More information

Skip Lists S 3 S 2 S 1. 2/6/2016 7:04 AM Skip Lists 1

Skip Lists S 3 S 2 S 1. 2/6/2016 7:04 AM Skip Lists 1 Skip Lists S 3 15 15 23 10 15 23 36 2/6/2016 7:04 AM Skip Lists 1 Outline and Reading What is a skip list Operations Search Insertion Deletion Implementation Analysis Space usage Search and update times

More information

Statistics 1040 Summer 2009 Exam III

Statistics 1040 Summer 2009 Exam III Statistics 1040 Summer 2009 Exam III 1. For the following basic probability questions. Give the RULE used in the appropriate blank (BEFORE the question), for each of the following situations, using one

More information

5. Aprimenumberisanumberthatisdivisibleonlyby1anditself. Theprimenumbers less than 100 are listed below.

5. Aprimenumberisanumberthatisdivisibleonlyby1anditself. Theprimenumbers less than 100 are listed below. 1. (a) Let x 1,x 2,...,x n be a given data set with mean X. Now let y i = x i + c, for i =1, 2,...,n be a new data set with mean Ȳ,wherecisaconstant. What will be the value of Ȳ compared to X? (b) Let

More information

November 11, Chapter 8: Probability: The Mathematics of Chance

November 11, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 11, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Probability Rules Probability Rules Rule 1.

More information

, x {1, 2, k}, where k > 0. (a) Write down P(X = 2). (1) (b) Show that k = 3. (4) Find E(X). (2) (Total 7 marks)

, x {1, 2, k}, where k > 0. (a) Write down P(X = 2). (1) (b) Show that k = 3. (4) Find E(X). (2) (Total 7 marks) 1. The probability distribution of a discrete random variable X is given by 2 x P(X = x) = 14, x {1, 2, k}, where k > 0. Write down P(X = 2). (1) Show that k = 3. Find E(X). (Total 7 marks) 2. In a game

More information

Discrete Random Variables Day 1

Discrete Random Variables Day 1 Discrete Random Variables Day 1 What is a Random Variable? Every probability problem is equivalent to drawing something from a bag (perhaps more than once) Like Flipping a coin 3 times is equivalent to

More information

Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

More information

Sampling Terminology. all possible entities (known or unknown) of a group being studied. MKT 450. MARKETING TOOLS Buyer Behavior and Market Analysis

Sampling Terminology. all possible entities (known or unknown) of a group being studied. MKT 450. MARKETING TOOLS Buyer Behavior and Market Analysis Sampling Terminology MARKETING TOOLS Buyer Behavior and Market Analysis Population all possible entities (known or unknown) of a group being studied. Sampling Procedures Census study containing data from

More information

Please Turn Over Page 1 of 7

Please Turn Over Page 1 of 7 . Page 1 of 7 ANSWER ALL QUESTIONS Question 1: (25 Marks) A random sample of 35 homeowners was taken from the village Penville and their ages were recorded. 25 31 40 50 62 70 99 75 65 50 41 31 25 26 31

More information

Probability with Set Operations. MATH 107: Finite Mathematics University of Louisville. March 17, Complicated Probability, 17th century style

Probability with Set Operations. MATH 107: Finite Mathematics University of Louisville. March 17, Complicated Probability, 17th century style Probability with Set Operations MATH 107: Finite Mathematics University of Louisville March 17, 2014 Complicated Probability, 17th century style 2 / 14 Antoine Gombaud, Chevalier de Méré, was fond of gambling

More information

INTRODUCTORY STATISTICS LECTURE 4 PROBABILITY

INTRODUCTORY STATISTICS LECTURE 4 PROBABILITY INTRODUCTORY STATISTICS LECTURE 4 PROBABILITY THE GREAT SCHLITZ CAMPAIGN 1981 Superbowl Broadcast of a live taste pitting Against key competitor: Michelob Subjects: 100 Michelob drinkers REF: SCHLITZBREWING.COM

More information

1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested.

1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested. 1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 0 calculators is tested. Write down the expected number of faulty calculators in the sample. Find

More information

Sampling. I Oct 2008

Sampling. I Oct 2008 Sampling I214 21 Oct 2008 Why the need to understand sampling? To be able to read and use intelligently information collected by others: Marketing research Large surveys, like the Pew Internet and American

More information

Math 10 Homework 2 ANSWER KEY. Name: Lecturer: Instructions

Math 10 Homework 2 ANSWER KEY. Name: Lecturer: Instructions Math 10 Homework 2 ANSWER KEY Name: Lecturer: Instructions Type your answers and paste images directly into this document. Answers are usually short, with 1-3 sentences. Print out and hand in homework

More information

Week 1: Probability models and counting

Week 1: Probability models and counting Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model

More information

Class XII Chapter 13 Probability Maths. Exercise 13.1

Class XII Chapter 13 Probability Maths. Exercise 13.1 Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

More information

Date. Probability. Chapter

Date. Probability. Chapter Date Probability Contests, lotteries, and games offer the chance to win just about anything. You can win a cup of coffee. Even better, you can win cars, houses, vacations, or millions of dollars. Games

More information

Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability

Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write

More information

4.1 Sample Spaces and Events

4.1 Sample Spaces and Events 4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

More information

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098%

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% Coin tosses If a fair coin is tossed 10 times, what will we see? 30% 25% 24.61% 20% 15% 10% Probability 20.51% 20.51% 11.72% 11.72% 5% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% 0 1 2 3 4 5 6 7 8 9 10 Number

More information

Section 7.1 Experiments, Sample Spaces, and Events

Section 7.1 Experiments, Sample Spaces, and Events Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.

More information

Lecture 21/Chapter 18 When Intuition Differs from Relative Frequency

Lecture 21/Chapter 18 When Intuition Differs from Relative Frequency Lecture 21/Chapter 18 When Intuition Differs from Relative Frequency Birthday Problem and Coincidences Gambler s Fallacy Confusion of the Inverse Expected Value: Short Run vs. Long Run Psychological Influences

More information

AP Statistics Ch In-Class Practice (Probability)

AP Statistics Ch In-Class Practice (Probability) AP Statistics Ch 14-15 In-Class Practice (Probability) #1a) A batter who had failed to get a hit in seven consecutive times at bat then hits a game-winning home run. When talking to reporters afterward,

More information

Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results:

Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results: Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results: Outcome Frequency 1 8 2 8 3 12 4 7 5 15 8 7 8 8 13 9 9 10 12 (a) What is the experimental probability

More information

Lesson 4: Chapter 4 Sections 1-2

Lesson 4: Chapter 4 Sections 1-2 Lesson 4: Chapter 4 Sections 1-2 Caleb Moxley BSC Mathematics 14 September 15 4.1 Randomness What s randomness? 4.1 Randomness What s randomness? Definition (random) A phenomenon is random if individual

More information

7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count

7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count 7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count Probability deals with predicting the outcome of future experiments in a quantitative way. The experiments

More information

Social Studies 201 Notes for November 8, 2006 Sampling distributions Rest of semester For the remainder of the semester, we will be studying and

Social Studies 201 Notes for November 8, 2006 Sampling distributions Rest of semester For the remainder of the semester, we will be studying and 1 Social Studies 201 Notes for November 8, 2006 Sampling distributions Rest of semester For the remainder of the semester, we will be studying and working with inferential statistics estimation and hypothesis

More information

Simulations. 1 The Concept

Simulations. 1 The Concept Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that can be

More information

Before giving a formal definition of probability, we explain some terms related to probability.

Before giving a formal definition of probability, we explain some terms related to probability. probability 22 INTRODUCTION In our day-to-day life, we come across statements such as: (i) It may rain today. (ii) Probably Rajesh will top his class. (iii) I doubt she will pass the test. (iv) It is unlikely

More information

Math 141 Exam 3 Review with Key. 1. P(E)=0.5, P(F)=0.6 P(E F)=0.9 Find ) b) P( E F ) c) P( E F )

Math 141 Exam 3 Review with Key. 1. P(E)=0.5, P(F)=0.6 P(E F)=0.9 Find ) b) P( E F ) c) P( E F ) Math 141 Exam 3 Review with Key 1. P(E)=0.5, P(F)=0.6 P(E F)=0.9 Find C C C a) P( E F) ) b) P( E F ) c) P( E F ) 2. A fair coin is tossed times and the sequence of heads and tails is recorded. Find a)

More information

Benford s Law and Fraud Detection. Facts and Legends

Benford s Law and Fraud Detection. Facts and Legends ETH Zurich Sociology Working Paper No. 8 Benford s Law and Fraud Detection. Facts and Legends Andreas Diekmann, Ben Jann February 2010 ETH Zurich, Chair of Sociology SEW E 21, Scheuchzerstrasse 70 8092

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

More information

An extended description of the project:

An extended description of the project: A brief one paragraph description of your project: - Our project mainly focuses on dividing the indivisible properties. This method is applied in many situation of the real life such as: divorce, inheritance,

More information

MAT 1272 STATISTICS LESSON STATISTICS AND TYPES OF STATISTICS

MAT 1272 STATISTICS LESSON STATISTICS AND TYPES OF STATISTICS MAT 1272 STATISTICS LESSON 1 1.1 STATISTICS AND TYPES OF STATISTICS WHAT IS STATISTICS? STATISTICS STATISTICS IS THE SCIENCE OF COLLECTING, ANALYZING, PRESENTING, AND INTERPRETING DATA, AS WELL AS OF MAKING

More information

CSC/MTH 231 Discrete Structures II Spring, Homework 5

CSC/MTH 231 Discrete Structures II Spring, Homework 5 CSC/MTH 231 Discrete Structures II Spring, 2010 Homework 5 Name 1. A six sided die D (with sides numbered 1, 2, 3, 4, 5, 6) is thrown once. a. What is the probability that a 3 is thrown? b. What is the

More information

Probability - Introduction Chapter 3, part 1

Probability - Introduction Chapter 3, part 1 Probability - Introduction Chapter 3, part 1 Mary Lindstrom (Adapted from notes provided by Professor Bret Larget) January 27, 2004 Statistics 371 Last modified: Jan 28, 2004 Why Learn Probability? Some

More information

3 The multiplication rule/miscellaneous counting problems

3 The multiplication rule/miscellaneous counting problems Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is

More information

MATH 1115, Mathematics for Commerce WINTER 2011 Toby Kenney Homework Sheet 6 Model Solutions

MATH 1115, Mathematics for Commerce WINTER 2011 Toby Kenney Homework Sheet 6 Model Solutions MATH, Mathematics for Commerce WINTER 0 Toby Kenney Homework Sheet Model Solutions. A company has two machines for producing a product. The first machine produces defective products % of the time. The

More information

Counting and Probability

Counting and Probability Counting and Probability Lecture 42 Section 9.1 Robb T. Koether Hampden-Sydney College Wed, Apr 9, 2014 Robb T. Koether (Hampden-Sydney College) Counting and Probability Wed, Apr 9, 2014 1 / 17 1 Probability

More information

Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27

Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27 Exercise Sheet 3 jacques@ucsd.edu Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27 1. A six-sided die is tossed.

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 17: Using the Normal Curve with Box Models Tessa L. Childers-Day UC Berkeley 23 July 2014 By the end of this lecture... You will be able to: Draw and

More information

Probability: Part 1 1/28/16

Probability: Part 1 1/28/16 Probability: Part 1 1/28/16 The Kind of Studies We Can t Do Anymore Negative operant conditioning with a random reward system Addictive behavior under a random reward system FBJ murine osteosarcoma viral

More information

Chapter 2. Weighted Voting Systems. Sections 2 and 3. The Banzhaf Power Index

Chapter 2. Weighted Voting Systems. Sections 2 and 3. The Banzhaf Power Index Chapter 2. Weighted Voting Systems Sections 2 and 3. The Banzhaf Power Index John Banzhaf is an attorney and law professor. In 1965, his analysis of the power in the Nassau County NY Board of Supervisors

More information

CCST9017 Hidden Order in Daily Life: A Mathematical Perspective. Lecture 8. Statistical Frauds and Benford s Law

CCST9017 Hidden Order in Daily Life: A Mathematical Perspective. Lecture 8. Statistical Frauds and Benford s Law CCST9017 Hidden Order in Daily Life: A Mathematical Perspective Lecture 8 Statistical Frauds and Benford s Law Dr. S. P. Yung (9017) Dr. Z. Hua (9017B) Department of Mathematics, HKU Outline Recall on

More information

Chapter 6: Probability and Simulation. The study of randomness

Chapter 6: Probability and Simulation. The study of randomness Chapter 6: Probability and Simulation The study of randomness Introduction Probability is the study of chance. 6.1 focuses on simulation since actual observations are often not feasible. When we produce

More information

Exam III Review Problems

Exam III Review Problems c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous Week-in-Reviews

More information

Mathacle. Name: Date:

Mathacle. Name: Date: Quiz Probability 1.) A telemarketer knows from past experience that when she makes a call, the probability that someone will answer the phone is 0.20. What is probability that the next two phone calls

More information

Lecture 1. Permutations and combinations, Pascal s triangle, learning to count

Lecture 1. Permutations and combinations, Pascal s triangle, learning to count 18.440: Lecture 1 Permutations and combinations, Pascal s triangle, learning to count Scott Sheffield MIT 1 Outline Remark, just for fun Permutations Counting tricks Binomial coefficients Problems 2 Outline

More information

Introduction to probability

Introduction to probability Introduction to probability Suppose an experiment has a finite set X = {x 1,x 2,...,x n } of n possible outcomes. Each time the experiment is performed exactly one on the n outcomes happens. Assign each

More information

Statistical Hypothesis Testing

Statistical Hypothesis Testing Statistical Hypothesis Testing Statistical Hypothesis Testing is a kind of inference Given a sample, say something about the population Examples: Given a sample of classifications by a decision tree, test

More information

Ex 1: A coin is flipped. Heads, you win $1. Tails, you lose $1. What is the expected value of this game?

Ex 1: A coin is flipped. Heads, you win $1. Tails, you lose $1. What is the expected value of this game? AFM Unit 7 Day 5 Notes Expected Value and Fairness Name Date Expected Value: the weighted average of possible values of a random variable, with weights given by their respective theoretical probabilities.

More information

This page intentionally left blank

This page intentionally left blank Appendix E Labs This page intentionally left blank Dice Lab (Worksheet) Objectives: 1. Learn how to calculate basic probabilities of dice. 2. Understand how theoretical probabilities explain experimental

More information

INDIAN STATISTICAL INSTITUTE

INDIAN STATISTICAL INSTITUTE INDIAN STATISTICAL INSTITUTE B1/BVR Probability Home Assignment 1 20-07-07 1. A poker hand means a set of five cards selected at random from usual deck of playing cards. (a) Find the probability that it

More information

Probabilities and Probability Distributions

Probabilities and Probability Distributions Probabilities and Probability Distributions George H Olson, PhD Doctoral Program in Educational Leadership Appalachian State University May 2012 Contents Basic Probability Theory Independent vs. Dependent

More information

Basic Concepts * David Lane. 1 Probability of a Single Event

Basic Concepts * David Lane. 1 Probability of a Single Event OpenStax-CNX module: m11169 1 Basic Concepts * David Lane This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 1.0 1 Probability of a Single Event If you roll

More information

Homework 8 (for lectures on 10/14,10/16)

Homework 8 (for lectures on 10/14,10/16) Fall 2014 MTH122 Survey of Calculus and its Applications II Homework 8 (for lectures on 10/14,10/16) Yin Su 2014.10.16 Topics in this homework: Topic 1 Discrete random variables 1. Definition of random

More information

Polls, such as this last example are known as sample surveys.

Polls, such as this last example are known as sample surveys. Chapter 12 Notes (Sample Surveys) In everything we have done thusfar, the data were given, and the subsequent analysis was exploratory in nature. This type of statistical analysis is known as exploratory

More information

Theory of Probability - Brett Bernstein

Theory of Probability - Brett Bernstein Theory of Probability - Brett Bernstein Lecture 3 Finishing Basic Probability Review Exercises 1. Model flipping two fair coins using a sample space and a probability measure. Compute the probability of

More information

Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability

Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability Lesson Practice Problems Lesson 1: Predicting to Win (Finding Theoretical Probabilities) 1-3 Lesson 2: Choosing Marbles

More information

1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2)

1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) Math 1090 Test 2 Review Worksheet Ch5 and Ch 6 Name Use the following distribution to answer the question. 1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) 3) Estimate

More information

CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events

CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events CHAPTER 2 PROBABILITY 2.1 Sample Space A probability model consists of the sample space and the way to assign probabilities. Sample space & sample point The sample space S, is the set of all possible outcomes

More information

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1 Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally

More information

Junior Circle Meeting 5 Probability. May 2, ii. In an actual experiment, can one get a different number of heads when flipping a coin 100 times?

Junior Circle Meeting 5 Probability. May 2, ii. In an actual experiment, can one get a different number of heads when flipping a coin 100 times? Junior Circle Meeting 5 Probability May 2, 2010 1. We have a standard coin with one side that we call heads (H) and one side that we call tails (T). a. Let s say that we flip this coin 100 times. i. How

More information

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

More information

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM.

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. 6.04/6.43 Spring 09 Quiz Wednesday, March, 7:30-9:30 PM. Name: Recitation Instructor: TA: Question Part Score Out of 0 3 all 40 2 a 5 b 5 c 6 d 6 3 a 5 b 6 c 6 d 6 e 6 f 6 g 0 6.04 Total 00 6.43 Total

More information

Basic Probability Ideas. Experiment - a situation involving chance or probability that leads to results called outcomes.

Basic Probability Ideas. Experiment - a situation involving chance or probability that leads to results called outcomes. Basic Probability Ideas Experiment - a situation involving chance or probability that leads to results called outcomes. Random Experiment the process of observing the outcome of a chance event Simulation

More information

Class 10: Sampling and Surveys (Text: Section 3.2)

Class 10: Sampling and Surveys (Text: Section 3.2) Class 10: Sampling and Surveys (Text: Section 3.2) Populations and Samples If we talk to everyone in a population, we have taken a census. But this is often impractical, so we take a sample instead. We

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE IN STATISTICS, 2011 MODULE 3 : Basic statistical methods Time allowed: One and a half hours Candidates should answer THREE questions. Each

More information

There is no class tomorrow! Have a good weekend! Scores will be posted in Compass early Friday morning J

There is no class tomorrow! Have a good weekend! Scores will be posted in Compass early Friday morning J STATISTICS 100 EXAM 3 Fall 2016 PRINT NAME (Last name) (First name) *NETID CIRCLE SECTION: L1 12:30pm L2 3:30pm Online MWF 12pm Write answers in appropriate blanks. When no blanks are provided CIRCLE your

More information

CS1802 Week 9: Probability, Expectation, Entropy

CS1802 Week 9: Probability, Expectation, Entropy CS02 Discrete Structures Recitation Fall 207 October 30 - November 3, 207 CS02 Week 9: Probability, Expectation, Entropy Simple Probabilities i. What is the probability that if a die is rolled five times,

More information

Normal Distribution Lecture Notes Continued

Normal Distribution Lecture Notes Continued Normal Distribution Lecture Notes Continued 1. Two Outcome Situations Situation: Two outcomes (for against; heads tails; yes no) p = percent in favor q = percent opposed Written as decimals p + q = 1 Why?

More information

Such a description is the basis for a probability model. Here is the basic vocabulary we use.

Such a description is the basis for a probability model. Here is the basic vocabulary we use. 5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

More information

Chapter 11. Sampling Distributions. BPS - 5th Ed. Chapter 11 1

Chapter 11. Sampling Distributions. BPS - 5th Ed. Chapter 11 1 Chapter 11 Sampling Distributions BPS - 5th Ed. Chapter 11 1 Sampling Terminology Parameter fixed, unknown number that describes the population Statistic known value calculated from a sample a statistic

More information

Waiting Times. Lesson1. Unit UNIT 7 PATTERNS IN CHANCE

Waiting Times. Lesson1. Unit UNIT 7 PATTERNS IN CHANCE Lesson1 Waiting Times Monopoly is a board game that can be played by several players. Movement around the board is determined by rolling a pair of dice. Winning is based on a combination of chance and

More information

CSC/MATA67 Tutorial, Week 12

CSC/MATA67 Tutorial, Week 12 CSC/MATA67 Tutorial, Week 12 November 23, 2017 1 More counting problems A class consists of 15 students of whom 5 are prefects. Q: How many committees of 8 can be formed if each consists of a) exactly

More information

STAT Statistics I Midterm Exam One. Good Luck!

STAT Statistics I Midterm Exam One. Good Luck! STAT 515 - Statistics I Midterm Exam One Name: Instruction: You can use a calculator that has no connection to the Internet. Books, notes, cellphones, and computers are NOT allowed in the test. There are

More information

CIS 2033 Lecture 6, Spring 2017

CIS 2033 Lecture 6, Spring 2017 CIS 2033 Lecture 6, Spring 2017 Instructor: David Dobor February 2, 2017 In this lecture, we introduce the basic principle of counting, use it to count subsets, permutations, combinations, and partitions,

More information

Probability Paradoxes

Probability Paradoxes Probability Paradoxes Washington University Math Circle February 20, 2011 1 Introduction We re all familiar with the idea of probability, even if we haven t studied it. That is what makes probability so

More information

November 8, Chapter 8: Probability: The Mathematics of Chance

November 8, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 8, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Crystallographic notation The first symbol

More information

Lecture Start

Lecture Start Lecture -- 4 -- Start Outline 1. Science, Method & Measurement 2. On Building An Index 3. Correlation & Causality 4. Probability & Statistics 5. Samples & Surveys 6. Experimental & Quasi-experimental Designs

More information

Key Words: age-order, last birthday, full roster, full enumeration, rostering, online survey, within-household selection. 1.

Key Words: age-order, last birthday, full roster, full enumeration, rostering, online survey, within-household selection. 1. Comparing Alternative Methods for the Random Selection of a Respondent within a Household for Online Surveys Geneviève Vézina and Pierre Caron Statistics Canada, 100 Tunney s Pasture Driveway, Ottawa,

More information

Lesson 1: Chance Experiments

Lesson 1: Chance Experiments Student Outcomes Students understand that a probability is a number between and that represents the likelihood that an event will occur. Students interpret a probability as the proportion of the time that

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 3.2 - Measures of Central Tendency

More information

Basic Probability Concepts

Basic Probability Concepts 6.1 Basic Probability Concepts How likely is rain tomorrow? What are the chances that you will pass your driving test on the first attempt? What are the odds that the flight will be on time when you go

More information