Multi-Robot Formation. Dr. Daisy Tang

Size: px
Start display at page:

Download "Multi-Robot Formation. Dr. Daisy Tang"

Transcription

1 Multi-Robot Formation Dr. Daisy Tang

2 Objectives Understand key issues in formationkeeping Understand various formation studied by Balch and Arkin and their pros/cons Understand local vs. global control Be able to determine best formation for given circumstances

3 Formation-Keeping Objective: Robots maintain specific formation while collectively moving along path Examples: Column formation Line formation

4 Key Issues in Formations What is the desired formation? How do robots determine their desired positionsin the formation? How do robots determine their actual positionsin the formation? How do robots move to ensure that a formation is maintained? What should robots do if there are obstacles? How do we evaluate robot formation performance?

5 What is Desired Formation? Dependent upon environment: Obstacle-free A few obstacles Cluttered Dependent upon sensing/communication capabilities and requirements: Ability to detect other robot positions Ability to communicate with each other Ability to sense effect of formation-keeping through the world

6 Possible Formations Formations can be hard-coded, in the sense that they specify Cartesian positions for all robots.

7 Possible Formations (con t.) Or, formations can be defined by constraints, which allow variation in Cartesian positions for robots Move object across room Maintain line-of-sight visibility

8 Some Formation Control Videos

9 Behavior-Based Formation Control for Multi-Robot Teams Presented by Iain Lee

10 About This Paper Author: Tucker Balch, Member, IEEE Ronald C. Arkin, Senior Member, IEEE Published in: IEEE Transactions on Robotics and Automation December, 1998

11 Introduction Why formation-keeping? Formations allow individual team members to concentrate their sensors across a portionof the environment, while their partners cover the rest It is important when sensor assets are limited Widely used in military applications Potential applications in robotics: robot scout, search and rescue, agricultural coverage tasks, and security patrols Formation-keeping objective: Robots maintain specific formation while moving along path

12 Four Major Formation Type Line, column, diamond and wedge Used by U.S. Army mechanized scout platoons on the battlefield

13 Formation Maintenance Two steps: Detect-formation-position(perceptual) Maintain-formation(motor) Three techniques for formation position determination Unit-center-referenced Leader-referenced Neighbor-referenced

14 Motor Schema-Based Formation Control Basic motor schemas (behaviors): move-to-goal avoid-static obstacle avoid-robot maintain-formation noise Each schema generates a vector representing the desired behavioral response A gain valueis used to indicate the relative importance of the individual behaviors

15 Recall the Motor Schema Approach

16 Motor Schema Parameters High-level combined behavior is generated by multiplying the outputs of each primitive behavior by its gain, then summing and normalizing the results.

17 Maintain-Formation Vector Direction: Always in the direction of the desired formation position Magnitude: Depends on how far the robot is away from the desired position Length of arrow = m = magnitude Angle of arrow = d = direction

18 When There Are Obstacles To avoid obstacles like barriers, choices are: Move as a unit around the barrier Divide into subgroups Depends on the relative strengths of behaviors(gain)

19 So, What s the Result? Qualitative/Quantitative View

20 Experiment Setup Georgia Tech s MissionLabrobot simulation Sensors allow a robot to distinguish between robots, obstacles and goals Robots have several navigation waypoints to follow

21 A Qualitative Analysis (1) Four robots in formations

22 A Qualitative Analysis (2) Move around obstacles and through turns Leader-referenced (left) vs. unit-center-referenced (right)

23 A Quantitative Analysis (1) Three metrics: path ratio, position error and timeout of formation Two experiments: a 90 degrees turn and an obstacle field

24 A Quantitative Analysis (2) Results: For 90-degree turn: Diamond formation best with unit-center-ref. Wedge, line formations best with leader-ref. For obstacle field: Column formation best with either unit-centerref. or leader-ref. Most of the time: Unit-center-ref. formations perform better than leader-ref. formations

25 But Unit-center-ref. formations are not widely used: If using human leader, leader-ref. is better For communications restricted applications, the unit-center-ref. requires a transmitter and receiver for each robot and a protocol Passive sensors are difficult to use for unit-center-ref.

26 Conclusion This paper presents a behavior-based approach to implement formationkeeping, several different formation types are implemented and compared But there are some issues that are not discussed in this paper, like scalability and implementation of other possible formation types

27 Designing Control Laws for Cooperative Agent Teams Presented by Raymond Luc

28 Local vs. Global Control Local control laws: No robot has all pertinent information Appealing because of their simplicityand potential to generate globally emergent functionality But, may be difficult to design to achieve desired group behavior Global control laws: Centralized controller (or all robots) possess all pertinent information Generally allow more coherent cooperation But, usually increase inter-agent communication

29 Global Control Use global goals of the team and/or global knowledge about the team s current or upcoming actions to direct an individual s actions How do agents obtain such global knowledge? Centralized informant Interpretation through agent modeling Shortcomings: No adequate global info available Agent does not use all global info provided Processing requires time and resources, hard for real-world applications Changing global info

30 Local Control Guide actions based on information derived from agent s sensory data Allows agent to react to dynamics Global functionality can emergefrom interaction of local control laws However, certain global goals cannot be achieved through the use of local control laws alone

31 Tradeoffs between Global and Local Control Question #1: How static is the global knowledge? In general, the more static the global knowledge is, the more practical its use by a global control law Question #2: How difficult it is to approximate global knowledge? Question #3: How badly will performance degrade without the use of global knowledge? How difficult is it to use global knowledge? In general, the more unknown the global information is, the more dependence a team must have on local control, combined with approximations to global knowledge based on observation

32 Conflicting Global and Local Controls Global control laws use strictly global information Local control laws use strictly local information A better way: view global information as providing general guidance for longer-term actions, whereas local information indicates more short-term, reactive actions A composite control law

33 Formation Keeping Assumptions Each agent has ability to sense locations of its neighbors relative to itself (local knowledge) Agent is physically constrained by inability to move backwards Global goal: Agent reaches destination asap Agents maintain formation Global knowledge: Path the group to take (waypoints) Path the leader is taking

34 Demonstration of Tradeoffs in Formation-Keeping Performance is measured by cumulative formation error: Strategies to investigate: Local control alone Local control + global goal Local control + global goal + partial global knowledge Local control + global goal + more complete global knowledge

35 Formation-Keeping Objective

36 Strategy I: Local Control Group leader knows path waypoints Each robot assigned local leader+ position offset from local leader As group leader moves, individual robots maintain relative positionto local leaders

37 Strategy II: Local Control + Global Goal Group leaderknows path waypoints Each robot assigned global leader+ position offset from global leader As group leader moves, individual robots maintain relative positionto global leader

38 Strategy III: Local Control + Global Goal + Partial Global Knowledge Group leaderknows path waypoints Each robot assigned global leader+ position offset from global leader Each robot knows next waypoint As group leader moves, individual robots maintain relative positionto global leader

39 Strategy IV: Local Control + Global Goal + More Complete Global Knowledge Group leaderknows path waypoints Each robot assigned global leader+ position offset from global leader Each robot knows current and next waypoints As group leader moves, individual maintain relative positionto global leader

40 Time and Cumulative Formation Error

41 Summary of The Formation Case Study Important to achieve proper balance between local and global knowledge and goals Static global knowledge easy to use as global control law Local knowledge appropriate when can approximate global knowledge Local control information should be used to ground global knowledge in the current situation

Multi-Robot Systems, Part II

Multi-Robot Systems, Part II Multi-Robot Systems, Part II October 31, 2002 Class Meeting 20 A team effort is a lot of people doing what I say. -- Michael Winner. Objectives Multi-Robot Systems, Part II Overview (con t.) Multi-Robot

More information

CS594, Section 30682:

CS594, Section 30682: CS594, Section 30682: Distributed Intelligence in Autonomous Robotics Spring 2003 Tuesday/Thursday 11:10 12:25 http://www.cs.utk.edu/~parker/courses/cs594-spring03 Instructor: Dr. Lynne E. Parker ½ TA:

More information

Task Allocation: Motivation-Based. Dr. Daisy Tang

Task Allocation: Motivation-Based. Dr. Daisy Tang Task Allocation: Motivation-Based Dr. Daisy Tang Outline Motivation-based task allocation (modeling) Formal analysis of task allocation Motivations vs. Negotiation in MRTA Motivations(ALLIANCE): Pro: Enables

More information

Real-time Cooperative Behavior for Tactical Mobile Robot Teams. September 10, 1998 Ronald C. Arkin and Thomas R. Collins Georgia Tech

Real-time Cooperative Behavior for Tactical Mobile Robot Teams. September 10, 1998 Ronald C. Arkin and Thomas R. Collins Georgia Tech Real-time Cooperative Behavior for Tactical Mobile Robot Teams September 10, 1998 Ronald C. Arkin and Thomas R. Collins Georgia Tech Objectives Build upon previous work with multiagent robotic behaviors

More information

Multi-Robot Path Planning and Motion Coordination

Multi-Robot Path Planning and Motion Coordination Multi-Robot Path Planning and Motion Coordination Dr. Lynne E. Parker Professor and Associate Head Dept. of Electrical Engineering & Computer Science University of Tennessee, Knoxville USA leparker@utk.edu

More information

Tracking and Formation Control of Leader-Follower Cooperative Mobile Robots Based on Trilateration Data

Tracking and Formation Control of Leader-Follower Cooperative Mobile Robots Based on Trilateration Data EMITTER International Journal of Engineering Technology Vol. 3, No. 2, December 2015 ISSN: 2443-1168 Tracking and Formation Control of Leader-Follower Cooperative Mobile Robots Based on Trilateration Data

More information

Robot Architectures. Prof. Yanco , Fall 2011

Robot Architectures. Prof. Yanco , Fall 2011 Robot Architectures Prof. Holly Yanco 91.451 Fall 2011 Architectures, Slide 1 Three Types of Robot Architectures From Murphy 2000 Architectures, Slide 2 Hierarchical Organization is Horizontal From Murphy

More information

Robot Architectures. Prof. Holly Yanco Spring 2014

Robot Architectures. Prof. Holly Yanco Spring 2014 Robot Architectures Prof. Holly Yanco 91.450 Spring 2014 Three Types of Robot Architectures From Murphy 2000 Hierarchical Organization is Horizontal From Murphy 2000 Horizontal Behaviors: Accomplish Steps

More information

Internalized Plans for Communication-Sensitive Robot Team Behaviors

Internalized Plans for Communication-Sensitive Robot Team Behaviors Internalized Plans for Communication-Sensitive Robot Team Behaviors Alan R.Wagner, Ronald C. Arkin Mobile Robot Laboratory, College of Computing Georgia Institute of Technology, Atlanta, USA, {alan.wagner,

More information

A Taxonomy of Multirobot Systems

A Taxonomy of Multirobot Systems A Taxonomy of Multirobot Systems ---- Gregory Dudek, Michael Jenkin, and Evangelos Milios in Robot Teams: From Diversity to Polymorphism edited by Tucher Balch and Lynne E. Parker published by A K Peters,

More information

Fuzzy Logic for Behaviour Co-ordination and Multi-Agent Formation in RoboCup

Fuzzy Logic for Behaviour Co-ordination and Multi-Agent Formation in RoboCup Fuzzy Logic for Behaviour Co-ordination and Multi-Agent Formation in RoboCup Hakan Duman and Huosheng Hu Department of Computer Science University of Essex Wivenhoe Park, Colchester CO4 3SQ United Kingdom

More information

A Reactive Robot Architecture with Planning on Demand

A Reactive Robot Architecture with Planning on Demand A Reactive Robot Architecture with Planning on Demand Ananth Ranganathan Sven Koenig College of Computing Georgia Institute of Technology Atlanta, GA 30332 {ananth,skoenig}@cc.gatech.edu Abstract In this

More information

Behaviour-Based Control. IAR Lecture 5 Barbara Webb

Behaviour-Based Control. IAR Lecture 5 Barbara Webb Behaviour-Based Control IAR Lecture 5 Barbara Webb Traditional sense-plan-act approach suggests a vertical (serial) task decomposition Sensors Actuators perception modelling planning task execution motor

More information

Multi-Robot Coordination. Chapter 11

Multi-Robot Coordination. Chapter 11 Multi-Robot Coordination Chapter 11 Objectives To understand some of the problems being studied with multiple robots To understand the challenges involved with coordinating robots To investigate a simple

More information

Multi-Agent Planning

Multi-Agent Planning 25 PRICAI 2000 Workshop on Teams with Adjustable Autonomy PRICAI 2000 Workshop on Teams with Adjustable Autonomy Position Paper Designing an architecture for adjustably autonomous robot teams David Kortenkamp

More information

IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks

IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks Proc. of IEEE International Conference on Intelligent Robots and Systems, Taipai, Taiwan, 2010. IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks Yu Zhang

More information

Adaptive Multi-Robot Behavior via Learning Momentum

Adaptive Multi-Robot Behavior via Learning Momentum Adaptive Multi-Robot Behavior via Learning Momentum J. Brian Lee (blee@cc.gatech.edu) Ronald C. Arkin (arkin@cc.gatech.edu) Mobile Robot Laboratory College of Computing Georgia Institute of Technology

More information

Robot Learning by Demonstration using Forward Models of Schema-Based Behaviors

Robot Learning by Demonstration using Forward Models of Schema-Based Behaviors Robot Learning by Demonstration using Forward Models of Schema-Based Behaviors Adam Olenderski, Monica Nicolescu, Sushil Louis University of Nevada, Reno 1664 N. Virginia St., MS 171, Reno, NV, 89523 {olenders,

More information

Statement May, 2014 TUCKER BALCH, ASSOCIATE PROFESSOR SCHOOL OF INTERACTIVE COMPUTING, COLLEGE OF COMPUTING GEORGIA INSTITUTE OF TECHNOLOGY

Statement May, 2014 TUCKER BALCH, ASSOCIATE PROFESSOR SCHOOL OF INTERACTIVE COMPUTING, COLLEGE OF COMPUTING GEORGIA INSTITUTE OF TECHNOLOGY TUCKER BALCH, ASSOCIATE PROFESSOR SCHOOL OF INTERACTIVE COMPUTING, COLLEGE OF COMPUTING GEORGIA INSTITUTE OF TECHNOLOGY Research on robot teams Beginning with Tucker s Ph.D. research at Georgia Tech with

More information

CSCI 445 Laurent Itti. Group Robotics. Introduction to Robotics L. Itti & M. J. Mataric 1

CSCI 445 Laurent Itti. Group Robotics. Introduction to Robotics L. Itti & M. J. Mataric 1 Introduction to Robotics CSCI 445 Laurent Itti Group Robotics Introduction to Robotics L. Itti & M. J. Mataric 1 Today s Lecture Outline Defining group behavior Why group behavior is useful Why group behavior

More information

Real-time Adaptive Robot Motion Planning in Unknown and Unpredictable Environments

Real-time Adaptive Robot Motion Planning in Unknown and Unpredictable Environments Real-time Adaptive Robot Motion Planning in Unknown and Unpredictable Environments IMI Lab, Dept. of Computer Science University of North Carolina Charlotte Outline Problem and Context Basic RAMP Framework

More information

Distributed Multi-Robot Coalitions through ASyMTRe-D

Distributed Multi-Robot Coalitions through ASyMTRe-D Proc. of IEEE International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2005. Distributed Multi-Robot Coalitions through ASyMTRe-D Fang Tang and Lynne E. Parker Distributed Intelligence

More information

Formation Control for Multi-Robot Teams Using A Data Glove

Formation Control for Multi-Robot Teams Using A Data Glove Formation Control for Multi-Robot Teams Using A Data Glove Nuttapon Boonpinon and Attawith Sudsang Department of Computer Engineering Chulalongkorn University Bangkok 10330, Thailand {nuttapon,attawith}@cp.eng.chula.ac.th

More information

Negotiated Formations

Negotiated Formations In Proceeedings of the Eighth Conference on Intelligent Autonomous Systems pages 181-190, Amsterdam, The Netherlands March 10-1, 200 Negotiated ormations David J. Naffin and Gaurav S. Sukhatme dnaf f in

More information

A Probabilistic Method for Planning Collision-free Trajectories of Multiple Mobile Robots

A Probabilistic Method for Planning Collision-free Trajectories of Multiple Mobile Robots A Probabilistic Method for Planning Collision-free Trajectories of Multiple Mobile Robots Maren Bennewitz Wolfram Burgard Department of Computer Science, University of Freiburg, 7911 Freiburg, Germany

More information

When Good Comms Go Bad: Communications Recovery For Multi-Robot Teams

When Good Comms Go Bad: Communications Recovery For Multi-Robot Teams When Good Comms Go Bad: Communications Recovery For Multi-Robot Teams Patrick Ulam, Ronald C. Arkin Mobile Robot Lab, College of Computing Georgia Institute of Technology Atlanta, USA {pulam, arkin}@cc.gatech.edu

More information

CS 599: Distributed Intelligence in Robotics

CS 599: Distributed Intelligence in Robotics CS 599: Distributed Intelligence in Robotics Winter 2016 www.cpp.edu/~ftang/courses/cs599-di/ Dr. Daisy Tang All lecture notes are adapted from Dr. Lynne Parker s lecture notes on Distributed Intelligence

More information

Mobile Robots (Wheeled) (Take class notes)

Mobile Robots (Wheeled) (Take class notes) Mobile Robots (Wheeled) (Take class notes) Wheeled mobile robots Wheeled mobile platform controlled by a computer is called mobile robot in a broader sense Wheeled robots have a large scope of types and

More information

Progress Report. Mohammadtaghi G. Poshtmashhadi. Supervisor: Professor António M. Pascoal

Progress Report. Mohammadtaghi G. Poshtmashhadi. Supervisor: Professor António M. Pascoal Progress Report Mohammadtaghi G. Poshtmashhadi Supervisor: Professor António M. Pascoal OceaNet meeting presentation April 2017 2 Work program Main Research Topic Autonomous Marine Vehicle Control and

More information

STRATEGO EXPERT SYSTEM SHELL

STRATEGO EXPERT SYSTEM SHELL STRATEGO EXPERT SYSTEM SHELL Casper Treijtel and Leon Rothkrantz Faculty of Information Technology and Systems Delft University of Technology Mekelweg 4 2628 CD Delft University of Technology E-mail: L.J.M.Rothkrantz@cs.tudelft.nl

More information

JAIST Reposi. Recent Advances in Multi-Robot Syste Controls for Swarms of Mobile Robots Fish Schools. Title. Author(s)Lee, Geunho; Chong, Nak Young

JAIST Reposi. Recent Advances in Multi-Robot Syste Controls for Swarms of Mobile Robots Fish Schools. Title. Author(s)Lee, Geunho; Chong, Nak Young JAIST Reposi https://dspace.j Title Recent Advances in Multi-Robot Syste Controls for Swarms of Mobile Robots Fish Schools Author(s)Lee, Geunho; Chong, Nak Young Citation Issue Date 2008-05 Type Book Text

More information

Real-time Cooperative Behavior for Tactical Mobile Robot Teams. May 11, 1999 Ronald C. Arkin and Thomas R. Collins Georgia Tech

Real-time Cooperative Behavior for Tactical Mobile Robot Teams. May 11, 1999 Ronald C. Arkin and Thomas R. Collins Georgia Tech Real-time Cooperative Behavior for Tactical Mobile Robot Teams May 11, 1999 Ronald C. Arkin and Thomas R. Collins Georgia Tech MissionLab Demonstrations 97-20 Surveillance Mission and Airfield Assessment

More information

Formation Maintenance for Autonomous Robots by Steering Behavior Parameterization

Formation Maintenance for Autonomous Robots by Steering Behavior Parameterization Formation Maintenance for Autonomous Robots by Steering Behavior Parameterization MAITE LÓPEZ-SÁNCHEZ, JESÚS CERQUIDES WAI Volume Visualization and Artificial Intelligence Research Group, MAiA Dept. Universitat

More information

MÄK Technologies, Inc. Visualization for Decision Superiority

MÄK Technologies, Inc. Visualization for Decision Superiority Visualization for Decision Superiority Purpose Explain how different visualization techniques can aid decision makers in shortening the decision cycle, decreasing information uncertainty, and improving

More information

Distributed Intelligence in Autonomous Robotics. Assignment #1 Out: Thursday, January 16, 2003 Due: Tuesday, January 28, 2003

Distributed Intelligence in Autonomous Robotics. Assignment #1 Out: Thursday, January 16, 2003 Due: Tuesday, January 28, 2003 Distributed Intelligence in Autonomous Robotics Assignment #1 Out: Thursday, January 16, 2003 Due: Tuesday, January 28, 2003 The purpose of this assignment is to build familiarity with the Nomad200 robotic

More information

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT F. TIECHE, C. FACCHINETTI and H. HUGLI Institute of Microtechnology, University of Neuchâtel, Rue de Tivoli 28, CH-2003

More information

Structure and Synthesis of Robot Motion

Structure and Synthesis of Robot Motion Structure and Synthesis of Robot Motion Motion Synthesis in Groups and Formations I Subramanian Ramamoorthy School of Informatics 5 March 2012 Consider Motion Problems with Many Agents How should we model

More information

Traffic Control for a Swarm of Robots: Avoiding Group Conflicts

Traffic Control for a Swarm of Robots: Avoiding Group Conflicts Traffic Control for a Swarm of Robots: Avoiding Group Conflicts Leandro Soriano Marcolino and Luiz Chaimowicz Abstract A very common problem in the navigation of robotic swarms is when groups of robots

More information

Tightly-Coupled Navigation Assistance in Heterogeneous Multi-Robot Teams

Tightly-Coupled Navigation Assistance in Heterogeneous Multi-Robot Teams Proc. of IEEE International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 2004. Tightly-Coupled Navigation Assistance in Heterogeneous Multi-Robot Teams Lynne E. Parker, Balajee Kannan,

More information

Collective Robotics. Marcin Pilat

Collective Robotics. Marcin Pilat Collective Robotics Marcin Pilat Introduction Painting a room Complex behaviors: Perceptions, deductions, motivations, choices Robotics: Past: single robot Future: multiple, simple robots working in teams

More information

DESIGN AND CAPABILITIES OF AN ENHANCED NAVAL MINE WARFARE SIMULATION FRAMEWORK. Timothy E. Floore George H. Gilman

DESIGN AND CAPABILITIES OF AN ENHANCED NAVAL MINE WARFARE SIMULATION FRAMEWORK. Timothy E. Floore George H. Gilman Proceedings of the 2011 Winter Simulation Conference S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds. DESIGN AND CAPABILITIES OF AN ENHANCED NAVAL MINE WARFARE SIMULATION FRAMEWORK Timothy

More information

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels Kambiz Azarian, Hesham El Gamal, and Philip Schniter Dept of Electrical Engineering, The Ohio State University Columbus, OH

More information

A Hybrid Planning Approach for Robots in Search and Rescue

A Hybrid Planning Approach for Robots in Search and Rescue A Hybrid Planning Approach for Robots in Search and Rescue Sanem Sariel Istanbul Technical University, Computer Engineering Department Maslak TR-34469 Istanbul, Turkey. sariel@cs.itu.edu.tr ABSTRACT In

More information

An Agent-based Heterogeneous UAV Simulator Design

An Agent-based Heterogeneous UAV Simulator Design An Agent-based Heterogeneous UAV Simulator Design MARTIN LUNDELL 1, JINGPENG TANG 1, THADDEUS HOGAN 1, KENDALL NYGARD 2 1 Math, Science and Technology University of Minnesota Crookston Crookston, MN56716

More information

Robotic Systems ECE 401RB Fall 2007

Robotic Systems ECE 401RB Fall 2007 The following notes are from: Robotic Systems ECE 401RB Fall 2007 Lecture 14: Cooperation among Multiple Robots Part 2 Chapter 12, George A. Bekey, Autonomous Robots: From Biological Inspiration to Implementation

More information

Tracking Evacuation of Pedestrians during Disasters

Tracking Evacuation of Pedestrians during Disasters Tracking Evacuation of Pedestrians during Disasters Gürkan Solmaz and Damla Turgut Department of Electrical Engineering and Computer Science University of Central Florida Email: {gsolmaz,turgut}@eecs.ucf.edu

More information

Distributed Area Coverage Using Robot Flocks

Distributed Area Coverage Using Robot Flocks Distributed Area Coverage Using Robot Flocks Ke Cheng, Prithviraj Dasgupta and Yi Wang Computer Science Department University of Nebraska, Omaha, NE, USA E-mail: {kcheng,ywang,pdasgupta}@mail.unomaha.edu

More information

CS123. Programming Your Personal Robot. Part 3: Reasoning Under Uncertainty

CS123. Programming Your Personal Robot. Part 3: Reasoning Under Uncertainty CS123 Programming Your Personal Robot Part 3: Reasoning Under Uncertainty Topics For Part 3 3.1 The Robot Programming Problem What is robot programming Challenges Real World vs. Virtual World Mapping and

More information

IEEE TRANSACTIONS ON ROBOTICS 1. IQ-ASyMTRe: Forming Executable Coalitions for Tightly Coupled Multirobot Tasks

IEEE TRANSACTIONS ON ROBOTICS 1. IQ-ASyMTRe: Forming Executable Coalitions for Tightly Coupled Multirobot Tasks IEEE TRANSACTIONS ON ROBOTICS 1 IQ-ASyMTRe: Forming Executable Coalitions for Tightly Coupled Multirobot Tasks Yu Zhang, Member, IEEE, and Lynne E. Parker, Fellow, IEEE Abstract While most previous research

More information

Surveillance strategies for autonomous mobile robots. Nicola Basilico Department of Computer Science University of Milan

Surveillance strategies for autonomous mobile robots. Nicola Basilico Department of Computer Science University of Milan Surveillance strategies for autonomous mobile robots Nicola Basilico Department of Computer Science University of Milan Intelligence, surveillance, and reconnaissance (ISR) with autonomous UAVs ISR defines

More information

Governing Lethal Behavior: Embedding Ethics in a Hybrid Reactive Deliberative Architecture

Governing Lethal Behavior: Embedding Ethics in a Hybrid Reactive Deliberative Architecture Governing Lethal Behavior: Embedding Ethics in a Hybrid Reactive Deliberative Architecture Ronald Arkin Gordon Briggs COMP150-BBR November 18, 2010 Overview Military Robots Goal of Ethical Military Robots

More information

Key-Words: - Fuzzy Behaviour Controls, Multiple Target Tracking, Obstacle Avoidance, Ultrasonic Range Finders

Key-Words: - Fuzzy Behaviour Controls, Multiple Target Tracking, Obstacle Avoidance, Ultrasonic Range Finders Fuzzy Behaviour Based Navigation of a Mobile Robot for Tracking Multiple Targets in an Unstructured Environment NASIR RAHMAN, ALI RAZA JAFRI, M. USMAN KEERIO School of Mechatronics Engineering Beijing

More information

OFFensive Swarm-Enabled Tactics (OFFSET)

OFFensive Swarm-Enabled Tactics (OFFSET) OFFensive Swarm-Enabled Tactics (OFFSET) Dr. Timothy H. Chung, Program Manager Tactical Technology Office Briefing Prepared for OFFSET Proposers Day 1 Why are Swarms Hard: Complexity of Swarms Number Agent

More information

M ous experience and knowledge to aid problem solving

M ous experience and knowledge to aid problem solving Adding Memory to the Evolutionary Planner/Navigat or Krzysztof Trojanowski*, Zbigniew Michalewicz"*, Jing Xiao" Abslract-The integration of evolutionary approaches with adaptive memory processes is emerging

More information

Multi-robot Dynamic Coverage of a Planar Bounded Environment

Multi-robot Dynamic Coverage of a Planar Bounded Environment Multi-robot Dynamic Coverage of a Planar Bounded Environment Maxim A. Batalin Gaurav S. Sukhatme Robotic Embedded Systems Laboratory, Robotics Research Laboratory, Computer Science Department University

More information

Convex Shape Generation by Robotic Swarm

Convex Shape Generation by Robotic Swarm 2016 International Conference on Autonomous Robot Systems and Competitions Convex Shape Generation by Robotic Swarm Irina Vatamaniuk 1, Gaiane Panina 1, Anton Saveliev 1 and Andrey Ronzhin 1 1 Laboratory

More information

Dynamic Robot Formations Using Directional Visual Perception. approaches for robot formations in order to outline

Dynamic Robot Formations Using Directional Visual Perception. approaches for robot formations in order to outline Dynamic Robot Formations Using Directional Visual Perception Franοcois Michaud 1, Dominic Létourneau 1, Matthieu Guilbert 1, Jean-Marc Valin 1 1 Université de Sherbrooke, Sherbrooke (Québec Canada), laborius@gel.usherb.ca

More information

RECENTLY, there has been much discussion in the robotics

RECENTLY, there has been much discussion in the robotics 438 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 4, JULY 2005 Validating Human Robot Interaction Schemes in Multitasking Environments Jacob W. Crandall, Michael

More information

AUV Self-Localization Using a Tetrahedral Array and Passive Acoustics

AUV Self-Localization Using a Tetrahedral Array and Passive Acoustics AUV Self-Localization Using a Tetrahedral Array and Passive Acoustics Nicholas R. Rypkema Erin M. Fischell Henrik Schmidt Background - Motivation Motivation: Accurate localization for miniature, low-cost

More information

Robots in the Loop: Supporting an Incremental Simulation-based Design Process

Robots in the Loop: Supporting an Incremental Simulation-based Design Process s in the Loop: Supporting an Incremental -based Design Process Xiaolin Hu Computer Science Department Georgia State University Atlanta, GA, USA xhu@cs.gsu.edu Abstract This paper presents the results of

More information

Adaptive Action Selection without Explicit Communication for Multi-robot Box-pushing

Adaptive Action Selection without Explicit Communication for Multi-robot Box-pushing Adaptive Action Selection without Explicit Communication for Multi-robot Box-pushing Seiji Yamada Jun ya Saito CISS, IGSSE, Tokyo Institute of Technology 4259 Nagatsuta, Midori, Yokohama 226-8502, JAPAN

More information

Reactive Planning with Evolutionary Computation

Reactive Planning with Evolutionary Computation Reactive Planning with Evolutionary Computation Chaiwat Jassadapakorn and Prabhas Chongstitvatana Intelligent System Laboratory, Department of Computer Engineering Chulalongkorn University, Bangkok 10330,

More information

Bluetooth Low Energy Sensing Technology for Proximity Construction Applications

Bluetooth Low Energy Sensing Technology for Proximity Construction Applications Bluetooth Low Energy Sensing Technology for Proximity Construction Applications JeeWoong Park School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr. N.W., Atlanta,

More information

We Know Where You Are : Indoor WiFi Localization Using Neural Networks Tong Mu, Tori Fujinami, Saleil Bhat

We Know Where You Are : Indoor WiFi Localization Using Neural Networks Tong Mu, Tori Fujinami, Saleil Bhat We Know Where You Are : Indoor WiFi Localization Using Neural Networks Tong Mu, Tori Fujinami, Saleil Bhat Abstract: In this project, a neural network was trained to predict the location of a WiFi transmitter

More information

RoboCup. Presented by Shane Murphy April 24, 2003

RoboCup. Presented by Shane Murphy April 24, 2003 RoboCup Presented by Shane Murphy April 24, 2003 RoboCup: : Today and Tomorrow What we have learned Authors Minoru Asada (Osaka University, Japan), Hiroaki Kitano (Sony CS Labs, Japan), Itsuki Noda (Electrotechnical(

More information

Advanced Modeling and Simulation of Mobile Ad-Hoc Networks

Advanced Modeling and Simulation of Mobile Ad-Hoc Networks Advanced Modeling and Simulation of Mobile Ad-Hoc Networks Prepared For: UMIACS/LTS Seminar March 3, 2004 Telcordia Contact: Stephanie Demers Robert A. Ziegler ziegler@research.telcordia.com 732.758.5494

More information

Multi-robot cognitive formations

Multi-robot cognitive formations Multi-robot cognitive formations Miguel Sousa 1, Sérgio Monteiro 1, Toni Machado 1, Wolfram Erlhagen 2 and Estela Bicho 1 Abstract In this paper, we show how a team of autonomous mobile robots, which drive

More information

Robot Team Formation Control using Communication "Throughput Approach"

Robot Team Formation Control using Communication Throughput Approach University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2013 Robot Team Formation Control using Communication "Throughput Approach" FatmaZahra Ahmed BenHalim

More information

Cognitive Radio: Smart Use of Radio Spectrum

Cognitive Radio: Smart Use of Radio Spectrum Cognitive Radio: Smart Use of Radio Spectrum Miguel López-Benítez Department of Electrical Engineering and Electronics University of Liverpool, United Kingdom M.Lopez-Benitez@liverpool.ac.uk www.lopezbenitez.es,

More information

A distributed exploration algorithm for unknown environments with multiple obstacles by multiple robots

A distributed exploration algorithm for unknown environments with multiple obstacles by multiple robots 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) September 24 28, 2017, Vancouver, BC, Canada A distributed exploration algorithm for unknown environments with multiple obstacles

More information

Mobile Robot Exploration and Map-]Building with Continuous Localization

Mobile Robot Exploration and Map-]Building with Continuous Localization Proceedings of the 1998 IEEE International Conference on Robotics & Automation Leuven, Belgium May 1998 Mobile Robot Exploration and Map-]Building with Continuous Localization Brian Yamauchi, Alan Schultz,

More information

Hybrid architectures. IAR Lecture 6 Barbara Webb

Hybrid architectures. IAR Lecture 6 Barbara Webb Hybrid architectures IAR Lecture 6 Barbara Webb Behaviour Based: Conclusions But arbitrary and difficult to design emergent behaviour for a given task. Architectures do not impose strong constraints Options?

More information

Sensor Network-based Multi-Robot Task Allocation

Sensor Network-based Multi-Robot Task Allocation In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS2003) pp. 1939-1944, Las Vegas, Nevada, October 27-31, 2003 Sensor Network-based Multi-Robot Task Allocation Maxim A. Batalin and Gaurav S.

More information

Multi-Platform Soccer Robot Development System

Multi-Platform Soccer Robot Development System Multi-Platform Soccer Robot Development System Hui Wang, Han Wang, Chunmiao Wang, William Y. C. Soh Division of Control & Instrumentation, School of EEE Nanyang Technological University Nanyang Avenue,

More information

Supplementary Information for Social Environment Shapes the Speed of Cooperation

Supplementary Information for Social Environment Shapes the Speed of Cooperation Supplementary Information for Social Environment Shapes the Speed of Cooperation Akihiro Nishi, Nicholas A. Christakis, Anthony M. Evans, and A. James O Malley, David G. Rand* *To whom correspondence should

More information

Subsumption Architecture in Swarm Robotics. Cuong Nguyen Viet 16/11/2015

Subsumption Architecture in Swarm Robotics. Cuong Nguyen Viet 16/11/2015 Subsumption Architecture in Swarm Robotics Cuong Nguyen Viet 16/11/2015 1 Table of content Motivation Subsumption Architecture Background Architecture decomposition Implementation Swarm robotics Swarm

More information

Multi robot Team Formation for Distributed Area Coverage. Raj Dasgupta Computer Science Department University of Nebraska, Omaha

Multi robot Team Formation for Distributed Area Coverage. Raj Dasgupta Computer Science Department University of Nebraska, Omaha Multi robot Team Formation for Distributed Area Coverage Raj Dasgupta Computer Science Department University of Nebraska, Omaha C MANTIC Lab Collaborative Multi AgeNt/Multi robot Technologies for Intelligent

More information

Robotic Vehicle Design

Robotic Vehicle Design Robotic Vehicle Design Sensors, measurements and interfacing Jim Keller July 2008 1of 14 Sensor Design Types Topology in system Specifications/Considerations for Selection Placement Estimators Summary

More information

Using Reactive Deliberation for Real-Time Control of Soccer-Playing Robots

Using Reactive Deliberation for Real-Time Control of Soccer-Playing Robots Using Reactive Deliberation for Real-Time Control of Soccer-Playing Robots Yu Zhang and Alan K. Mackworth Department of Computer Science, University of British Columbia, Vancouver B.C. V6T 1Z4, Canada,

More information

Evolving High-Dimensional, Adaptive Camera-Based Speed Sensors

Evolving High-Dimensional, Adaptive Camera-Based Speed Sensors In: M.H. Hamza (ed.), Proceedings of the 21st IASTED Conference on Applied Informatics, pp. 1278-128. Held February, 1-1, 2, Insbruck, Austria Evolving High-Dimensional, Adaptive Camera-Based Speed Sensors

More information

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,, March 16-18, 2016, Hong Kong Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free

More information

ENHANCED HUMAN-AGENT INTERACTION: AUGMENTING INTERACTION MODELS WITH EMBODIED AGENTS BY SERAFIN BENTO. MASTER OF SCIENCE in INFORMATION SYSTEMS

ENHANCED HUMAN-AGENT INTERACTION: AUGMENTING INTERACTION MODELS WITH EMBODIED AGENTS BY SERAFIN BENTO. MASTER OF SCIENCE in INFORMATION SYSTEMS BY SERAFIN BENTO MASTER OF SCIENCE in INFORMATION SYSTEMS Edmonton, Alberta September, 2015 ABSTRACT The popularity of software agents demands for more comprehensive HAI design processes. The outcome of

More information

Multi-robot Formation Control Based on Leader-follower Method

Multi-robot Formation Control Based on Leader-follower Method Journal of Computers Vol. 29 No. 2, 2018, pp. 233-240 doi:10.3966/199115992018042902022 Multi-robot Formation Control Based on Leader-follower Method Xibao Wu 1*, Wenbai Chen 1, Fangfang Ji 1, Jixing Ye

More information

PRIMATECH WHITE PAPER COMPARISON OF FIRST AND SECOND EDITIONS OF HAZOP APPLICATION GUIDE, IEC 61882: A PROCESS SAFETY PERSPECTIVE

PRIMATECH WHITE PAPER COMPARISON OF FIRST AND SECOND EDITIONS OF HAZOP APPLICATION GUIDE, IEC 61882: A PROCESS SAFETY PERSPECTIVE PRIMATECH WHITE PAPER COMPARISON OF FIRST AND SECOND EDITIONS OF HAZOP APPLICATION GUIDE, IEC 61882: A PROCESS SAFETY PERSPECTIVE Summary Modifications made to IEC 61882 in the second edition have been

More information

Localization in Wireless Sensor Networks

Localization in Wireless Sensor Networks Localization in Wireless Sensor Networks Part 2: Localization techniques Department of Informatics University of Oslo Cyber Physical Systems, 11.10.2011 Localization problem in WSN In a localization problem

More information

Overview Agents, environments, typical components

Overview Agents, environments, typical components Overview Agents, environments, typical components CSC752 Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami January 23, 2017 Outline 1 Autonomous robots 2 Agents

More information

Autonomous Initialization of Robot Formations

Autonomous Initialization of Robot Formations Autonomous Initialization of Robot Formations Mathieu Lemay, François Michaud, Dominic Létourneau and Jean-Marc Valin LABORIUS Research Laboratory on Mobile Robotics and Intelligent Systems Department

More information

Experiments in the Coordination of Large Groups of Robots

Experiments in the Coordination of Large Groups of Robots Experiments in the Coordination of Large Groups of Robots Leandro Soriano Marcolino and Luiz Chaimowicz VeRLab - Vision and Robotics Laboratory Computer Science Department - UFMG - Brazil {soriano, chaimo}@dcc.ufmg.br

More information

Evolution of Sensor Suites for Complex Environments

Evolution of Sensor Suites for Complex Environments Evolution of Sensor Suites for Complex Environments Annie S. Wu, Ayse S. Yilmaz, and John C. Sciortino, Jr. Abstract We present a genetic algorithm (GA) based decision tool for the design and configuration

More information

Handling Failures In A Swarm

Handling Failures In A Swarm Handling Failures In A Swarm Gaurav Verma 1, Lakshay Garg 2, Mayank Mittal 3 Abstract Swarm robotics is an emerging field of robotics research which deals with the study of large groups of simple robots.

More information

Robots Learning from Robots: A proof of Concept Study for Co-Manipulation Tasks. Luka Peternel and Arash Ajoudani Presented by Halishia Chugani

Robots Learning from Robots: A proof of Concept Study for Co-Manipulation Tasks. Luka Peternel and Arash Ajoudani Presented by Halishia Chugani Robots Learning from Robots: A proof of Concept Study for Co-Manipulation Tasks Luka Peternel and Arash Ajoudani Presented by Halishia Chugani Robots learning from humans 1. Robots learn from humans 2.

More information

Transactions on Information and Communications Technologies vol 6, 1994 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 6, 1994 WIT Press,   ISSN Application of artificial neural networks to the robot path planning problem P. Martin & A.P. del Pobil Department of Computer Science, Jaume I University, Campus de Penyeta Roja, 207 Castellon, Spain

More information

Incorporating Motivation in a Hybrid Robot Architecture

Incorporating Motivation in a Hybrid Robot Architecture Stoytchev, A., and Arkin, R. Paper: Incorporating Motivation in a Hybrid Robot Architecture Alexander Stoytchev and Ronald C. Arkin Mobile Robot Laboratory College of Computing, Georgia Institute of Technology

More information

Obstacle Displacement Prediction for Robot Motion Planning and Velocity Changes

Obstacle Displacement Prediction for Robot Motion Planning and Velocity Changes International Journal of Information and Electronics Engineering, Vol. 3, No. 3, May 13 Obstacle Displacement Prediction for Robot Motion Planning and Velocity Changes Soheila Dadelahi, Mohammad Reza Jahed

More information

Cooperative robot team navigation strategies based on an environmental model

Cooperative robot team navigation strategies based on an environmental model Cooperative robot team navigation strategies based on an environmental model P. Urcola and L. Montano Instituto de Investigación en Ingeniería de Aragón, University of Zaragoza (Spain) Email: {urcola,

More information

2 Copyright 2012 by ASME

2 Copyright 2012 by ASME ASME 2012 5th Annual Dynamic Systems Control Conference joint with the JSME 2012 11th Motion Vibration Conference DSCC2012-MOVIC2012 October 17-19, 2012, Fort Lauderdale, Florida, USA DSCC2012-MOVIC2012-8544

More information

A Framework for Multi-robot Foraging over the Internet

A Framework for Multi-robot Foraging over the Internet IEEE International Conference on Industrial Technology, Bangkok, Thailand, 11-14 December 2002 A Framework for Multi-robot Foraging over the Internet Pui Wo Tsui and Huosheng Hu Department of Computer

More information

A Comparative Study of Structured Light and Laser Range Finding Devices

A Comparative Study of Structured Light and Laser Range Finding Devices A Comparative Study of Structured Light and Laser Range Finding Devices Todd Bernhard todd.bernhard@colorado.edu Anuraag Chintalapally anuraag.chintalapally@colorado.edu Daniel Zukowski daniel.zukowski@colorado.edu

More information

Crowd-steering behaviors Using the Fame Crowd Simulation API to manage crowds Exploring ANT-Op to create more goal-directed crowds

Crowd-steering behaviors Using the Fame Crowd Simulation API to manage crowds Exploring ANT-Op to create more goal-directed crowds In this chapter, you will learn how to build large crowds into your game. Instead of having the crowd members wander freely, like we did in the previous chapter, we will control the crowds better by giving

More information

Task Allocation: Role Assignment. Dr. Daisy Tang

Task Allocation: Role Assignment. Dr. Daisy Tang Task Allocation: Role Assignment Dr. Daisy Tang Outline Multi-robot dynamic role assignment Task Allocation Based On Roles Usually, a task is decomposed into roleseither by a general autonomous planner,

More information