Software configuration Precise antenna positioning. Software configuration Precise antenna positioning

Size: px
Start display at page:

Download "Software configuration Precise antenna positioning. Software configuration Precise antenna positioning"

Transcription

1 Precise antenna positioning 43 Precise antenna positioning 44 36

2 Precise antenna positioning 44 Precise antenna positioning 44 37

3 Precise antenna positioning The US National Oceanic and Atmospheric Administration provides a similar service 45 Precise antenna positioning 45 38

4 Precise antenna positioning 45 Precise antenna positioning 45 39

5 From: opus Software Sent: Tuesday, configuration 20 September :45 To: Marais, Louis Subject: Precise antenna positioning OPUS solution : TRVL O OP FILE: TRVL O OP NOTE: Antenna offsets supplied by the user were <=0. Coordinates 1008 returned will be for the antenna reference point (ARP) NGS OPUS SOLUTION REPORT ======================== All computed coordinate accuracies are listed as peak-to-peak values. For additional information: USER: louis.marais@measurement.gov.au DATE: September 20, 2016 RINEX FILE: trvl o TIME: 03:44:24 UTC SOFTWARE: page master52.pl START: 2016/08/12 00:00:00 EPHEMERIS: igs19095.eph [precise] STOP: 2016/08/13 00:00:00 NAV FILE: brdc n OBS USED: / : 95% ANT NAME: JNSMARANT_GGD NONE # FIXED AMB: 234 / 268 : 87% ARP HEIGHT: OVERALL RMS: 0.016(m) REF FRAME: IGS08 (EPOCH: ) X: (m) 0.005(m) Y: (m) 0.008(m) Z: (m) 0.009(m) LAT: (m) E LON: (m) W LON: (m) EL HGT: (m) 0.012(m) UTM COORDINATES UTM (Zone 56 Set the position for the travelling receiver To use cggtts results antenna position must be set A utility called setcoords is provided 47 40

6 Set the position for the travelling receiver To use cggtts results antenna position must be set A utility called setcoords is provided 47 Set the position for the travelling receiver To use cggtts results antenna position must be set A utility called setcoords is provided 47 41

7 Set the position for the travelling receiver To use cggtts results antenna position must be set A utility called setcoords is provided 47 Set the position for the travelling receiver 47 42

8 Set the position for the travelling receiver 47 Set the position for the travelling receiver 47 43

9 Set the position for the travelling receiver 47 Set the position for the travelling receiver 47 44

10 Set the position for the travelling receiver 47 Set the position for the travelling receiver 47 45

11 Set the cable delays for the travelling receiver The cable delays also need to be set for Antenna cable (if using your own) Reference 1PPS cable We provide the setdelays utility to simplify this 48 Set the cable delays for the travelling receiver 48 46

12 Set the cable delays for the travelling receiver 48 Set the cable delays for the travelling receiver 48 47

13 Set the cable delays for the travelling receiver 48 Set the cable delays for the travelling receiver 48 48

14 Set the cable delays for the travelling receiver 48 Set the cable delays for the travelling receiver 48 49

15 Set the cable delays for the travelling receiver 48 Backups of the configuration file 49 50

16 Uncertainty of receiver delay Example Working through an example will aid understanding We treat the Antenna Delay, GPS Receiver Internal Delay, GPS Receiver 1PPS Delay and Counter Differential Channel Error as a single value which we call Receiver Delay. This reduces the uncertainty significantly 50 Antenna Delay Antenna Cable ns ±0.6 ns Delay GPS Rx 1PPS GPS Receiver Internal Delay Cs Clock 1PPS 10MHz 23.7 ns ±0.6 ns Cs Clock 1PPS Delay GPS Receiver 1PPS Delay ns ±1.3 ns 1 Ext Ref 2 Timer / Counter Uncertainty of receiver delay Example So we have the following values (standard uncertainties): Antenna cable: ns ±0.6 ns Reference 1PPS cable delay: 23.7 ns ±0.6 ns Receiver delay: ns ±1.3 ns We need to determine the type B uncertainty to assign to our time transfer system Use standard GUM technique to do the calculation: 51 3 i 1 u c u i ns ns 51

17 Uncertainty of receiver delay Example For the previous calculation, we only measured the reference 1PPS delay If both the antenna cable and the reference 1PPS delay was measured with the same counter there are correlations, and we need to add those measurements together Assume perfect correlation, correlation coefficient = 1 The calculation then becomes: 3 i 1 u c u 2 i ns ns 52 Uncertainty of receiver delay Measuring cable delays How do we measure these delays? Two examples: Using MicroSemi/Agilent/HP 5313xA Using Stanford Research Systems SR

18 Uncertainty of receiver delay Measuring cable delays Reference 10 MHz 1 PPS Time Interval Counter EXT REF CH1 CH2 Channel 1 settings: Trigger rising slope Level 0.5 peak voltage DC coupling Input : High Impedance Cable to be measured Channel 2 settings: Trigger rising slope Level 0.5 peak voltage DC coupling Input : 50 Ω 53 Uncertainty of receiver delay Measuring cable delays: model 53131A 53

19 Uncertainty of receiver delay Measuring cable delays: model 53131A CHANNEL 1 CHANNEL 2 54 Image source: Uncertainty of receiver delay Measuring cable delays: model 53131A 10 MHz CHANNEL 1 CHANNEL 2 1PPS Channel 1 settings: Trigger rising slope Level 0.5 peak voltage DC coupling Input : High Impedance Channel 2 settings: Trigger rising slope Level 0.5 peak voltage DC coupling Input : 50 Ω Uncertainty is ~ 2 ns, most contributed by Differential Channel Error 54 Image source: 54

20 Uncertainty of receiver delay Measuring cable delays: SR620 Uncertainty of receiver delay Measuring cable delays: SR MHz EXT A B REF OUT 1PPS 55 Image source: 55

21 Uncertainty of receiver delay Measuring cable delays: SR MHz EXT A B REF OUT Channel A settings: Trigger rising 1PPSslope Level 0.5 peak voltage DC coupling Input : High Impedance Channel B settings: Trigger rising slope Level 0.5 peak voltage DC coupling Input : 50 Ω Uncertainty is ~ 1.2 ns, most contributed by Differential Channel Error 55 Image source: Uncertainty of receiver delay Measuring cable delays: SR MHz EXT A B REF OUT Channel B settings: Trigger rising slope Level 0.5 peak voltage DC coupling Input : 50 Ω Uncertainty is ~ 1.2 ns, most contributed by Differential Channel Error 56 Image source: 56

22 Time Transfer Systems NMIA has been making systems for about 20 years Initial versions used industrial computers and HP counters Later versions used single board computers and counter cards Version with rubidium oscillator offered Latest version (under development) uses single board computer and FPGA based counter Contains 3 GNSS receivers (GPS, GLONASS, Beidou) Version with GPSDO offered 57 Time Transfer Systems: Version

23 Time Transfer Systems: Version 1 58 Time Transfer Systems: Version

24 Time Transfer Systems: Version 2 Computer Counter card NTP card GPS card (below) Rubidium oscillator 59 Time Transfer Systems: Version

25 Time Transfer Systems: Version 3 (being developed) GPS receiver GLONASSS receiver Computer Beidou receiver GPSDO FPGA counter 60 Time Transfer Systems: Version 3 (assembled) RF Splitter 60 60

26 Open Traceable Time Platform With assistance from APMP a inexpensive version of our Time Transfer System is being developed Goal is for it to cost less than $2000 It uses a single frequency GPS receiver Several receivers were evaluated Trimble SMT360 NVS08C Easy to customise: Hardware and software openly available github.com/openttp 61 Open Traceable Time Platform APMP partners in this development NPLI, India NML-SIRIM, Malaysia NIMT, Thailand Time frame is short, about 18 months Hope to deliver hardware to partners by November Further software development Customisation 62 61

27 Open Traceable Time Platform 63 Open Traceable Time Platform

28 Open Traceable Time Platform 63 Open Traceable Time Platform

29 Open Traceable Time Platform 63 Open Traceable Time Platform

30 Open Traceable Time Platform github.com/openttp 64 Open Traceable Time Platform github.com/openttp 64 65

31 Open Traceable Time Platform github.com/openttp 64 Open Traceable Time Platform github.com/openttp 64 66

32 Open Traceable Time Platform github.com/openttp 64 My OPENTTP Open Traceable Time development Platform system, built on a piece of plywood Computer GPS receiver FPGA counter GPSDO RF Splitter 65 67

33 Open Traceable Time Platform 66 Open Traceable Time Platform 66 68

34 Questions Department of Industry, Innovation and Science National Measurement Institute 36 Bradfield Rd PO Box 264 West Lindfield Lindfield NSW 2070 NSW 2070 Telephone louis.marais@measurement.gov.au 69

THE OPEN TRACEABLE TIME PLATFORM AND ITS APPLICATION IN FINANCE AND TELECOMMUNICATIONS. Michael J. Wouters. National Measurement Institute, Australia

THE OPEN TRACEABLE TIME PLATFORM AND ITS APPLICATION IN FINANCE AND TELECOMMUNICATIONS. Michael J. Wouters. National Measurement Institute, Australia THE OPEN TRACEABLE TIME PLATFORM AND ITS APPLICATION IN FINANCE AND TELECOMMUNICATIONS Michael J. Wouters National Measurement Institute, Australia E. Louis Marais National Measurement Institute, Australia

More information

Certificate of Calibration No

Certificate of Calibration No Federal Department of Justice olice FDJP Federal Office of Metrology METAS Certificate of Calibration No 7-006 Object GPS rcvr type Septentrio PolaRx4TR PRO serial 005 Antenna type Aero AT-675 serial 500

More information

Federal Department of Justice and Police FDJP Federal Office of Metrology METAS. Measurement Report No

Federal Department of Justice and Police FDJP Federal Office of Metrology METAS. Measurement Report No Federal epartment of Justice olice FJP Federal Office of Metrology METAS Measurement Report No 9-0009 Object GPS receiver type Septentrio PolaRxeTR serial 05 Antenna type Aero AT-775 serial 5577 Cable

More information

PRECISE RECEIVER CLOCK OFFSET ESTIMATIONS ACCORDING TO EACH GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) TIMESCALES

PRECISE RECEIVER CLOCK OFFSET ESTIMATIONS ACCORDING TO EACH GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) TIMESCALES ARTIFICIAL SATELLITES, Vol. 52, No. 4 DOI: 10.1515/arsa-2017-0009 PRECISE RECEIVER CLOCK OFFSET ESTIMATIONS ACCORDING TO EACH GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) TIMESCALES Thayathip Thongtan National

More information

Activity Report of Time and Frequency Laboratory, NMIM (formally known as NML-SIRIM), Malaysia

Activity Report of Time and Frequency Laboratory, NMIM (formally known as NML-SIRIM), Malaysia Activity Report of Time and Frequency Laboratory, NMIM (formally known as NML-SIRIM), Malaysia Dr. Mohd. Nasir Senior Principal Metrologist Ahmad Sahar Senior Metrologist Mohd Rafiq Metrologist Mohd Izzulfitri

More information

Report. Bilateral Comparison on Time Differences Between Two Pulses Between TÜBİTAK UME and SASO NMCC GULFMET.TF-S1

Report. Bilateral Comparison on Time Differences Between Two Pulses Between TÜBİTAK UME and SASO NMCC GULFMET.TF-S1 Report Bilateral Comparison on Time Differences Between Two Pulses Between TÜBİTAK UME and SASO NMCC GULFMET.TF-S1 (Rev. 1) April 21, 2017 Contents Contents... 2 1. Introduction... 3 2. Travelling Standard...

More information

Report of the GPS calibration trip among NIMT, NMIM, and VMI in 2017

Report of the GPS calibration trip among NIMT, NMIM, and VMI in 2017 Report of the GPS calibration trip among NIMT, NMIM, and VMI in 2017 Y. Huang, T. Chiu, H. Lin and C. Liao 2017 ATF, CSIR-NPL, India November 25, 2017 Calibration for time transfer UTC(k) UTC(j) GPS Receiver

More information

Status Report on Time and Frequency Activities at NPL India

Status Report on Time and Frequency Activities at NPL India Status Report on Time and Frequency Activities at NPL India (APMP TCTF 2013) A. Sen Gupta, A. Chatterjee, A. K. Suri, A. Agarwal, S. Panja P. Arora, S. De, P. Thorat, S. Yadav, P. Kandpal, M. P. Olaniya

More information

Status Report on Time and Frequency Activities at CSIR-NPL India

Status Report on Time and Frequency Activities at CSIR-NPL India Status Report on Time and Frequency Activities at CSIR-NPL India (APMP -TCTF 2016) S. Panja, A. Agarwal, D. Chadha, P. Arora, P. Thorat, S. De, S. Yadav, P. Kandpal, M. P. Olaniya and V. N. Ojha (Da Nang,

More information

ABSOLUTE CALIBRATION OF TIME RECEIVERS WITH DLR'S GPS/GALILEO HW SIMULATOR

ABSOLUTE CALIBRATION OF TIME RECEIVERS WITH DLR'S GPS/GALILEO HW SIMULATOR ABSOLUTE CALIBRATION OF TIME RECEIVERS WITH DLR'S GPS/GALILEO HW SIMULATOR S. Thölert, U. Grunert, H. Denks, and J. Furthner German Aerospace Centre (DLR), Institute of Communications and Navigation, Oberpfaffenhofen,

More information

CURRENT ACTIVITIES OF THE NATIONAL STANDARD TIME AND FREQUENCY LABORATORY OF THE TELECOMMUNICATION LABORATORIES, CHT TELECOM CO., LTD.

CURRENT ACTIVITIES OF THE NATIONAL STANDARD TIME AND FREQUENCY LABORATORY OF THE TELECOMMUNICATION LABORATORIES, CHT TELECOM CO., LTD. CURRENT ACTIVITIES OF THE NATIONAL STANDARD TIME AND FREQUENCY LABORATORY OF THE TELECOMMUNICATION LABORATORIES, CHT TELECOM CO., LTD., TAIWAN C. S. Liao, P. C. Chang, and S. S. Chen National Standard

More information

THE DEVELOPMENT OF MULTI-CHANNEL GPS RECEIVERS AT THE CSIR - NATIONAL METROLOGY LABORATORY

THE DEVELOPMENT OF MULTI-CHANNEL GPS RECEIVERS AT THE CSIR - NATIONAL METROLOGY LABORATORY 32nd Annual Precise Time and Time Interval (PTTI) Meeting THE DEVELOPMENT OF MULTI-CHANNEL GPS RECEIVERS AT THE CSIR - NATIONAL METROLOGY LABORATORY E. L. Marais CSIR-NML, P.O. Box 395, Pretoria, 0001,

More information

NPLI Report. for. Technical workshop and inter-laboratory comparison exercise for GPS time-transfer and calibration techniques under MEDEA

NPLI Report. for. Technical workshop and inter-laboratory comparison exercise for GPS time-transfer and calibration techniques under MEDEA NPLI Report for Technical workshop and inter-laboratory comparison exercise for GPS time-transfer and calibration techniques under MEDEA Dr. V. N. Ojha, Dr. A. Agarwal, Mrs. D. Chaddha, Dr. S. Panja, Dr.

More information

Precise positioning in multi-gnss mode

Precise positioning in multi-gnss mode Precise positioning in multi-gnss mode Novembre 2017 ± Compatibilities between GNSS Lower L-Band Upper L-Band E5a+b E1 E5a E5b E6 L1 L5 B2 B2 L2 B3 B1 B1 Frequency (Mhz) GPS Galileo BeiDou BeiDou BeiDou

More information

Mongolian Agency for Standardization and Metrology Time Frequency Lab. Unurbileg Darmaa Head, Length & Time and Frequency lab MASM

Mongolian Agency for Standardization and Metrology Time Frequency Lab. Unurbileg Darmaa Head, Length & Time and Frequency lab MASM Mongolian Agency for Standardization and Metrology Time Frequency Lab Unurbileg Darmaa Head, Length & Time and Frequency lab MASM 2017-10-26 11/13/2017 Mongolian Agency for Standardization and Metrology

More information

TIME & FREQUENCY SERVICES IN MALAYSIA

TIME & FREQUENCY SERVICES IN MALAYSIA TIME & FREQUENCY SERVICES IN MALAYSIA Presented by : Mohd Rafiq Bin Abdul Kamal Metrologist National Metrology Laboratory SIRIM Berhad, Malaysia Time & Frequency Laboratory National Metrology Laboratory

More information

BUREAU INTERNATIONAL DES POIDS ET MESURES

BUREAU INTERNATIONAL DES POIDS ET MESURES Rapport BIPM-2004/06 BUREAU INTERNATIONAL DES POIDS ET MESURES DETERMINATION OF THE DIFFERENTIAL TIME CORRECTIONS FOR GPS TIME EQUIPMENT LOCATED AT THE OP, PTB, AOS, KRISS, CRL, NIST, USNO and APL W. Lewandowski

More information

Differential and Rubidium-Disciplined Test Results from an Iridium-Based Secure Timing Solution

Differential and Rubidium-Disciplined Test Results from an Iridium-Based Secure Timing Solution Differential and Rubidium-Disciplined Test Results from an Iridium-Based Secure Timing Solution Dr. Stewart Cobb Satelles, Inc. WSTS-2017 The Need for GNSS Augmentation The world has come to rely on GNSS

More information

Modelling GPS Observables for Time Transfer

Modelling GPS Observables for Time Transfer Modelling GPS Observables for Time Transfer Marek Ziebart Department of Geomatic Engineering University College London Presentation structure Overview of GPS Time frames in GPS Introduction to GPS observables

More information

Remote Frequency Calibration Service at NMIJ

Remote Frequency Calibration Service at NMIJ Remote Frequency Calibration Service at NMIJ Case Example for APMP-WS 2014 Frequency Measurement Systems Section National Metrology Institute of Japan (NMIJ), AIST, JAPAN Content Introduction Overview

More information

MULTI-GNSS TIME TRANSFER

MULTI-GNSS TIME TRANSFER MULTI-GNSS TIME TRANSFER Pascale Defraigne Royal Observatory of Belgium 1 OUTLINE Introduction GNSS Time Transfer Concept Instrumental aspect Multi-GNSS Requirements GPS-GLONASS experiment Galileo, Beidou:

More information

PXIe Contents. Required Software CALIBRATION PROCEDURE

PXIe Contents. Required Software CALIBRATION PROCEDURE CALIBRATION PROCEDURE PXIe-5160 This document contains the verification and adjustment procedures for the PXIe-5160. Refer to ni.com/calibration for more information about calibration solutions. Contents

More information

Clock Synchronization of Pseudolite Using Time Transfer Technique Based on GPS Code Measurement

Clock Synchronization of Pseudolite Using Time Transfer Technique Based on GPS Code Measurement , pp.35-40 http://dx.doi.org/10.14257/ijseia.2014.8.4.04 Clock Synchronization of Pseudolite Using Time Transfer Technique Based on GPS Code Measurement Soyoung Hwang and Donghui Yu* Department of Multimedia

More information

Configuring the Global Navigation Satellite System

Configuring the Global Navigation Satellite System Configuring the Global Navigation Satellite System uses a satellite receiver, also called the global navigation satellite system (GNSS), as a new timing interface. In typical telecom networks, synchronization

More information

MEASUREMENT UNITS STANDARDS AND SERVICES DEPARTMENT(MUSSD) SRI LANKA PRESENTED BY: R.G.S.A. PERERA

MEASUREMENT UNITS STANDARDS AND SERVICES DEPARTMENT(MUSSD) SRI LANKA PRESENTED BY: R.G.S.A. PERERA MEASUREMENT UNITS STANDARDS AND SERVICES DEPARTMENT(MUSSD) SRI LANKA PRESENTED BY: R.G.S.A. PERERA SRI LANKA Government type: Democratic Socialist Republic Capital city: Sri Jayawardenapura Location: South

More information

CCTF WG on GNSS time transfer

CCTF WG on GNSS time transfer WG on GNSS time transfer 2012-2015 Summary of the activities 17 Septembre 2015 20th Meeting of the, BIPM 1 Membership Chairman: Dr Pascale Defraigne (ORB) Secretary: Dr Gérard Petit (BIPM) Members: One

More information

The Global Positioning System II Field Experiments

The Global Positioning System II Field Experiments The Global Positioning System II Field Experiments 5-1 Mexico DGPS Field Campaign Cenotes in Tamaulipas, MX, near Aldama 5-2 Are Cenote Water Levels Related? 5-3 DGPS Static Survey of Cenote Water Levels

More information

Configuring the Global Navigation Satellite System

Configuring the Global Navigation Satellite System Configuring the Global Navigation Satellite System Effective Cisco IOS-XE Release 3.17, the Cisco ASR-920-12SZ-IM router uses a satellite receiver, also called the global navigation satellite system (GNSS),

More information

LIMITS ON GPS CARRIER-PHASE TIME TRANSFER *

LIMITS ON GPS CARRIER-PHASE TIME TRANSFER * LIMITS ON GPS CARRIER-PHASE TIME TRANSFER * M. A. Weiss National Institute of Standards and Technology Time and Frequency Division, 325 Broadway Boulder, Colorado, USA Tel: 303-497-3261, Fax: 303-497-6461,

More information

BUREAU INTERNATIONAL DES POIDS ET MESURES

BUREAU INTERNATIONAL DES POIDS ET MESURES Rapport BIPM-2003/05 BUREAU INTERNATIONAL DES POIDS ET MESURES DETERMINATION OF THE DIFFERENTIAL TIME CORRECTIONS FOR GPS TIME EQUIPMENT LOCATED AT THE OP, NTSC, CRL, NMIJ, TL, and NML W. Lewandowski and

More information

INITIAL TESTING OF A NEW GPS RECEIVER, THE POLARX2, FOR TIME AND FREQUENCY TRANSFER USING DUAL- FREQUENCY CODES AND CARRIER PHASES

INITIAL TESTING OF A NEW GPS RECEIVER, THE POLARX2, FOR TIME AND FREQUENCY TRANSFER USING DUAL- FREQUENCY CODES AND CARRIER PHASES INITIAL TESTING OF A NEW GPS RECEIVER, THE POLARX2, FOR TIME AND FREQUENCY TRANSFER USING DUAL- FREQUENCY CODES AND CARRIER PHASES P. Defraigne, C. Bruyninx, and F. Roosbeek Royal Observatory of Belgium

More information

Time and frequency transfer methods based on GNSS. LIANG Kun, National Institute of Metrology(NIM), China

Time and frequency transfer methods based on GNSS. LIANG Kun, National Institute of Metrology(NIM), China Time and frequency transfer methods based on GNSS LIANG Kun, National Institute of Metrology(NIM), China Outline Remote time and frequency transfer GNSS time and frequency transfer methods Data and results

More information

TIME AND FREQUENCY ACTIVITIES AT THE CSIR NATIONAL METROLOGY LABORATORY

TIME AND FREQUENCY ACTIVITIES AT THE CSIR NATIONAL METROLOGY LABORATORY TIME AND FREQUENCY ACTIVITIES AT THE CSIR NATIONAL METROLOGY LABORATORY E. L. Marais and B. Theron CSIR National Metrology Laboratory PO Box 395, Pretoria, 0001, South Africa Tel: +27 12 841 3013; Fax:

More information

Configuring the Global Navigation Satellite System

Configuring the Global Navigation Satellite System Configuring the Global Navigation Satellite System Effective Cisco IOS-XE Release 3.17, the Cisco ASR-920-12SZ-IM router uses a satellite receiver, also called the global navigation satellite system (GNSS),

More information

REPORT OF TIME AND FREQUENCY LABORATORY (VIETNAM METROLOGY INSTITUTE)

REPORT OF TIME AND FREQUENCY LABORATORY (VIETNAM METROLOGY INSTITUTE) Nguyen Bang Head of Time and Frequency Laboratory (TFL) Vietnam Metrology Institute (VMI) N 0 8, Hoang Quoc Viet Road, Caugiay District, Hanoi, Vietnam About Time & Frequency Laboratory (TFL) Time and

More information

MULTI-GNSS TIME TRANSFER

MULTI-GNSS TIME TRANSFER MULTI-GNSS TIME TRANSFER P. DEFRAIGNE Royal Observatory of Belgium Avenue Circulaire, 3, 118-Brussels e-mail: p.defraigne@oma.be ABSTRACT. Measurements from Global Navigation Satellite Systems (GNSS) are

More information

The Global Positioning Sytem II 10/19/2017

The Global Positioning Sytem II 10/19/2017 The Global Positioning System II Field Experiments 10/19/2017 5-1 Mexico DGPS Field Campaign Cenotes in Tamaulipas, MX, near Aldama 10/19/2017 5-2 Are Cenote Water Levels Related? 10/19/2017 5-3 M. Helper,

More information

Preparation of the Inter- Laboratories Comparison

Preparation of the Inter- Laboratories Comparison Preparation of the Inter- Laboratories Comparison Yi-Jiun Huang GPS time-transfer and calibration techniques Concluding Workshop, Taoyuan, Taiwan October 25-26, 2017 The Inter-Laboratories Comparison (ILC)

More information

Global Navigation Satellite System for IE 5000

Global Navigation Satellite System for IE 5000 Global Navigation Satellite System for IE 5000 Configuring GNSS 2 Information About GNSS 2 Guidelines and Limitations 4 Default Settings 4 Configuring GNSS 5 Configuring GNSS as Time Source for PTP 6 Verifying

More information

Critical Evaluation of the Motorola M12+ GPS Timing Receiver vs. the Master Clock at the United States Naval Observatory, Washington DC.

Critical Evaluation of the Motorola M12+ GPS Timing Receiver vs. the Master Clock at the United States Naval Observatory, Washington DC. Critical Evaluation of the Motorola M12+ GPS Timing Receiver vs. the Master Clock at the United States Naval Observatory, Washington DC. Richard M. Hambly CNS Systems, Inc., 363 Hawick Court, Severna Park,

More information

Relative calibration of the GPS time link between CERN and LNGS

Relative calibration of the GPS time link between CERN and LNGS Report calibration CERN-LNGS 2011 Physikalisch-Technische Bundesanstalt Fachbereich 4.4 Bundesallee 100, 38116 Braunschweig thorsten.feldmann@ptb.de Relative calibration of the GPS time link between CERN

More information

Expert Site Visit Report

Expert Site Visit Report Expert Site Visit Report Time and Frequency Metrology Sub Division Research Center for Metrology Indonesian Institute of Sciences RCM LIPI Metrology Enabling Developing Economies in Asia, MEDEA Project

More information

Status Report on Time and Frequency Activities at National Physical Laboratory India

Status Report on Time and Frequency Activities at National Physical Laboratory India Status Report on Time and Frequency Activities at National Physical Laboratory India (TCTF 2015) Ashish Agarwal *, S. Panja. P. Arora, P. Thorat, S. De, S. Yadav, P. Kandpal, M. P. Olaniya, S S Rajput,

More information

STATUS REPORT OF TIME AND FREQUENCY LAB. (VIETNAM METROLOGY INSTITUTE)

STATUS REPORT OF TIME AND FREQUENCY LAB. (VIETNAM METROLOGY INSTITUTE) STATUS REPORT OF TIME AND FREQUENCY LAB. (VIETNAM METROLOGY INSTITUTE) Trieu Viet Phuong Head of Time and Frequency Laboratory, VMI Email: phuongtv@vmi.gov.vn DA NANG 11-2016 About TFL Laboratory of time

More information

INTEROPERABILITY OF THE GNSS'S FOR POSITIONING AND TIMING. A. Caporali, L. Nicolini University of Padova, Italy

INTEROPERABILITY OF THE GNSS'S FOR POSITIONING AND TIMING. A. Caporali, L. Nicolini University of Padova, Italy INTEROPERABILITY OF THE GNSS'S FOR POSITIONING AND TIMING A. Caporali, L. Nicolini University of Padova, Italy Outlook Monitor 31 European GNSS sites with 5 different receivers (Javad, Leica, Septentrio,

More information

Upgradation and Strengthening of National Time Scale of India

Upgradation and Strengthening of National Time Scale of India Upgradation and Strengthening of National Time Scale of India (ATF 2017) Ashish Agarwal, P. Thorat, M. P. Olaniya, S. Yadav, P. Kandpal, P. Arora, S. Panja, S. De, T. Bharadwaj, N. Sharma, S. Kazim, B.

More information

HOW TO RECEIVE UTC AND HOW TO PROVE ACCURACY

HOW TO RECEIVE UTC AND HOW TO PROVE ACCURACY HOW TO RECEIVE UTC AND HOW TO PROVE ACCURACY Marc Weiss, Ph.D. Independent Consultant to Booz Allen Hamilton Weiss_Marc@ne.bah.com Innovation center, Washington, D.C. JANUARY 23, 2018 HOW DO YOU GET UTC

More information

THE CRYSTAL OSCILLATOR CHARACTERIZATION FACILITY AT THE AEROSPACE CORPORATION

THE CRYSTAL OSCILLATOR CHARACTERIZATION FACILITY AT THE AEROSPACE CORPORATION THE CRYSTAL OSCILLATOR CHARACTERIZATION FACILITY AT THE AEROSPACE CORPORATION S. Karuza, M. Rolenz, A. Moulthrop, A. Young, and V. Hunt The Aerospace Corporation El Segundo, CA 90245, USA Abstract At the

More information

DDG-210 Preliminary Manual Version A4

DDG-210 Preliminary Manual Version A4 General Information DDG-210 is a Digital Delay which can control experiments as a master device. Timing is referenced to the leading edge of the START pulse. There are 6 signal outputs available on which

More information

Configuring the Global Navigation Satellite System

Configuring the Global Navigation Satellite System Configuring the Global Navigation Satellite System Effective Cisco IOS-XE Release 3.17, the Cisco ASR 903 (with RSP3 module) and Cisco ASR 907 router uses a satellite receiver, also called the global navigation

More information

Configuring the Global Navigation Satellite System

Configuring the Global Navigation Satellite System Configuring the Global Navigation Satellite System Effective Cisco IOS-XE Release 3.17, the Cisco ASR-920-12SZ-IM router uses a satellite receiver, also called the global navigation satellite system (GNSS),

More information

Introduction to Global Navigation Satellite System (GNSS) Signal Structure

Introduction to Global Navigation Satellite System (GNSS) Signal Structure Introduction to Global Navigation Satellite System (GNSS) Signal Structure Dinesh Manandhar Center for Spatial Information Science The University of Tokyo Contact Information: dinesh@iis.u-tokyo.ac.jp

More information

CONTINUED EVALUATION OF CARRIER-PHASE GNSS TIMING RECEIVERS FOR UTC/TAI APPLICATIONS

CONTINUED EVALUATION OF CARRIER-PHASE GNSS TIMING RECEIVERS FOR UTC/TAI APPLICATIONS CONTINUED EVALUATION OF CARRIER-PHASE GNSS TIMING RECEIVERS FOR UTC/TAI APPLICATIONS Jeff Prillaman U.S. Naval Observatory 3450 Massachusetts Avenue, NW Washington, D.C. 20392, USA Tel: +1 (202) 762-0756

More information

GNSS. Pascale Defraigne Royal Observatory of Belgium

GNSS. Pascale Defraigne Royal Observatory of Belgium GNSS Time Transfer Pascale Defraigne Royal Observatory of Belgium OUTLINE Principle Instrumental point of view Calibration issue Recommendations OUTLINE Principle Instrumental point of view Calibration

More information

Configuring the Global Navigation Satellite System

Configuring the Global Navigation Satellite System Configuring the Global Navigation Satellite System First Published: November 30, 2015 Effective Cisco IOS-XE Release 3.17, the Cisco ASR 903 (with RSP3 module) and Cisco ASR 907 uter uses a satellite receiver,

More information

Global Products for GPS Point Positioning Approaching Real-Time

Global Products for GPS Point Positioning Approaching Real-Time Global Products for GPS Point Positioning Approaching Real-Time Y. Gao 1, P. Heroux 2 and M. Caissy 2 1 Department of Geomatics Engineering, University of Calgary 2 Geodetic Survey Division, Natural Resources

More information

Specific Accreditation Criteria Calibration ISO/IEC Annex. Electrical metrology

Specific Accreditation Criteria Calibration ISO/IEC Annex. Electrical metrology Specific Accreditation Criteria Calibration ISO/IEC 17025 Annex Electrical metrology January 2018 Copyright National Association of Testing Authorities, Australia 2014 This publication is protected by

More information

COMPARISON BETWEEN BROADCAST AND PRECISE ORBITS: GPS GLONASS GALILEO AND BEIDOU. A. Caporali and L. Nicolini University of Padova, Italy

COMPARISON BETWEEN BROADCAST AND PRECISE ORBITS: GPS GLONASS GALILEO AND BEIDOU. A. Caporali and L. Nicolini University of Padova, Italy COMPARISON BETWEEN BROADCAST AND PRECISE ORBITS: GPS GLONASS GALILEO AND BEIDOU A. Caporali and L. Nicolini University of Padova, Italy Summary Previous works Input data and method used Comparison between

More information

BUREAU INTERNATIONAL DES POIDS ET MESURES

BUREAU INTERNATIONAL DES POIDS ET MESURES Rapport BIPM-2008/03 BUREAU INTERNATIONAL DES POIDS ET MESURES DETERMINATION OF THE DIFFERENTIAL TIME CORRECTIONS FOR GPS TIME EQUIPMENT LOCATED AT THE OP, TCC, ONBA, IGMA and CNMP W. Lewandowski and L.

More information

Pendulum Instruments AB Sorterargatan 26 SE VÄLLINGBY SWEDEN

Pendulum Instruments AB Sorterargatan 26 SE VÄLLINGBY SWEDEN Ã Pendulum Instruments AB Sorterargatan 26 SE-162 15 VÄLLINGBY SWEDEN Handläggare, enhet / +DQGOHGÃE\ÃGHSDUWPHQW Datum / 'DWH Beteckning / 5HIHUHQFH Sida / 3DJH Kenneth Jaldehag, Fysik och Elteknik 2000-09-04

More information

Relative calibration of ESTEC GPS receivers internal delays

Relative calibration of ESTEC GPS receivers internal delays Report calibration ESTEC 2012 V3 Physikalisch-Technische Bundesanstalt Fachbereich 4.4 Bundesallee 100 38116 Braunschweig Germany Relative calibration of ESTEC GPS receivers internal delays June 2013 Andreas

More information

CCTF 2015: Report of the Royal Observatory of Belgium

CCTF 2015: Report of the Royal Observatory of Belgium CCTF 2015: Report of the Royal Observatory of Belgium P. Defraigne Royal Observatory of Belgium Clocks and Time scales: The Precise Time Facility (PTF) of the Royal Observatory of Belgium (ROB) contains

More information

CRITERIA FOR LABORATORY ACCREDITATION IN THE FIELD OF TIME AND FREQUENCY METROLOGY

CRITERIA FOR LABORATORY ACCREDITATION IN THE FIELD OF TIME AND FREQUENCY METROLOGY CRITERIA FOR LABORATORY ACCREDITATION IN THE FIELD OF TIME AND FREQUENCY METROLOGY Approved By: Chief Executive Officer: Ron Josias Senior Manager: Mpho Phaloane Revised By: Specialist Technical Committee

More information

The Global Positioning System II Field Experiments. 10/10/2013 GEO327G/386G, UT Austin 5-1

The Global Positioning System II Field Experiments. 10/10/2013 GEO327G/386G, UT Austin 5-1 The Global Positioning System II Field Experiments 10/10/2013 GEO327G/386G, UT Austin 5-1 Mexico DGPS Field Campaign Cenotes in Tamaulipas, MX, near Aldama 10/10/2013 GEO327G/386G, UT Austin 5-2 Are Cenote

More information

IMPROVING THE PERFORMANCE OF LOW COST GPS TIMING RECEIVERS

IMPROVING THE PERFORMANCE OF LOW COST GPS TIMING RECEIVERS IMPROVING THE PERFORMANCE OF LOW COST GPS TIMING RECEIVERS Thomas A. Clark NASA Goddard Space Flight Center (retired) mailto:k3io@verizon.net Richard M. Hambly CNS Systems, Inc. ( http://cnssys.com & http://gpstime.com

More information

Haruo Saito. National Institute of Information and Communications Technology

Haruo Saito. National Institute of Information and Communications Technology Calibration system at NICT Haruo Saito National Institute of Information and Communications Technology Organization of NICT Content Calibration system Calibration system Carried in system and remote system

More information

Evaluation of timing GPS receivers for industrial applications

Evaluation of timing GPS receivers for industrial applications 12th IMEKO TC1 Workshop on Technical Diagnostics June 6-7, 213, Florence, Italy Evaluation of timing GPS receivers for industrial applications Vojt ch Vigner 1, Jaroslav Rozto il 2, Blanka emusová 3 1,

More information

GNSS analysis software GSILIB for utilizing Multi- GNSS data

GNSS analysis software GSILIB for utilizing Multi- GNSS data Technical Seminar Reference Frame in Practice, GNSS analysis software GSILIB for utilizing Multi- GNSS data *Satoshi Kawamoto, Naofumi Takamatsu Geospatial Information Authority of Japan Sponsors: Geospatial

More information

A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION

A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION Józef Kalisz and Ryszard Szplet Military University of Technology Kaliskiego 2, 00-908 Warsaw, Poland Tel: +48 22 6839016; Fax: +48 22 6839038 E-mail:

More information

Connecting a Cadastral Survey to PNG94 using GNSS

Connecting a Cadastral Survey to PNG94 using GNSS 43rd Association of Surveyors PNG Congress, Lae, 12th-15th August 2009 Connecting a Cadastral Survey to PNG94 using GNSS Richard Stanaway QUICKCLOSE Workshop overview Legal requirements to connect surveys

More information

Wednesday AM: (Doug) 2. PS and Long Period Signals

Wednesday AM: (Doug) 2. PS and Long Period Signals Wednesday AM: (Doug) 2 PS and Long Period Signals What is Colorado famous for? 32 satellites 12 Early on in the world of science synchronization of clocks was found to be important. consider Paris: puffs

More information

Time Firewall: Securing the GNSS receivers against Spoofing/Jamming. Shemi Prazot AccuBeat

Time Firewall: Securing the GNSS receivers against Spoofing/Jamming. Shemi Prazot AccuBeat Time Firewall: Securing the GNSS receivers against Spoofing/Jamming Shemi Prazot AccuBeat 1 The need The GNSS systems are widely used for both navigation and timing in civilian infrastructures and military

More information

Report of the TC Time and Frequency. Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey

Report of the TC Time and Frequency. Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey Report of the TC Time and Frequency Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey Contents TC-TF meeting and T&F strategy EMRP Projects and future optical redefinition of the second Time scale generation

More information

Using Dual Frequency GPS Under Tree Canopy

Using Dual Frequency GPS Under Tree Canopy Using Dual Frequency GPS Under Tree Canopy Presented by: Jon Aschenbach Resource Supply, LLC PO Box 663 West Linn, OR 97068 503-521-0888 Field Technology Conference 11-2015 Four Scenarios Will Be Reviewed

More information

LAB PROCEDURES: TOPCON TOOLS FAMILIARIZATION

LAB PROCEDURES: TOPCON TOOLS FAMILIARIZATION LAB PROCEDURES: TOPCON TOOLS FAMILIARIZATION This lab will cover the basic setup and processing options of Topcon Tools (TT). We will learn how to start a project, upload data and control files, set up

More information

Application Note. GPSG-1000 Dual RF Channel Operation

Application Note. GPSG-1000 Dual RF Channel Operation Application Note GPSG-1000 Dual RF Channel Operation Some GPS receivers require 2 GPS channels to be present at the same time for proper GPS signal reception. For example; a dual channel GPS receiver designed

More information

Principles of the Global Positioning System Lecture 08

Principles of the Global Positioning System Lecture 08 12.540 Principles of the Global Positioning System Lecture 08 Prof. Thomas Herring http://geoweb.mit.edu/~tah/12.540 Summary Review: Examined methods for measuring distances Examined GPS codes that allow

More information

Posicionamento por ponto com. Posicionamento por satélite UNESP PP 2017 Prof. Galera

Posicionamento por ponto com. Posicionamento por satélite UNESP PP 2017 Prof. Galera Posicionamento por ponto com multiconstelação GNSS Posicionamento por satélite UNESP PP 2017 Prof. Galera Single-GNSS Observation Equations Considering j = 1; : : : ; f S the frequencies of a certain GNSS

More information

Evaluation of performance of GPS controlled rubidium clocks

Evaluation of performance of GPS controlled rubidium clocks Indian Journal of Pure & Applied Physics Vol. 46, May 2008, pp. 349-354 Evaluation of performance of GPS controlled rubidium clocks P Banerjee, A K Suri, Suman, Arundhati Chatterjee & Amitabh Datta Time

More information

Integration of GPS with a Rubidium Clock and a Barometer for Land Vehicle Navigation

Integration of GPS with a Rubidium Clock and a Barometer for Land Vehicle Navigation Integration of GPS with a Rubidium Clock and a Barometer for Land Vehicle Navigation Zhaonian Zhang, Department of Geomatics Engineering, The University of Calgary BIOGRAPHY Zhaonian Zhang is a MSc student

More information

DS 6000 Specifications

DS 6000 Specifications DS 6000 Specifications All the specifications are guaranteed except the parameters marked with Typical and the oscilloscope needs to operate for more than 30 minutes under the specified operation temperature.

More information

Highly-Accurate Real-Time GPS Carrier Phase Disciplined Oscillator

Highly-Accurate Real-Time GPS Carrier Phase Disciplined Oscillator Highly-Accurate Real-Time GPS Carrier Phase Disciplined Oscillator C.-L. Cheng, F.-R. Chang, L.-S. Wang, K.-Y. Tu Dept. of Electrical Engineering, National Taiwan University. Inst. of Applied Mechanics,

More information

GPS PERFORMANCE EVALUATION OF THE HUAWEI MATE 9 WITH DIFFERENT ANTENNA CONFIGURATIONS

GPS PERFORMANCE EVALUATION OF THE HUAWEI MATE 9 WITH DIFFERENT ANTENNA CONFIGURATIONS GPS PERFORMANCE EVALUATION OF THE HUAWEI MATE 9 WITH DIFFERENT ANTENNA CONFIGURATIONS AND P10 IN THE FIELD Gérard Lachapelle & Research Team PLAN Group, University of Calgary (http://plan.geomatics.ucalgary.ca)

More information

Principles of Two Way Time & Frequency Transfer

Principles of Two Way Time & Frequency Transfer Principles of Two Way Time & Frequency Transfer Amitava Sen Gupta Time & Frequency Division National Physical Laboratory, India (NPLI) (APMP TCTF Workshop 2014) (Daejeon, South Korea Sep. 2014) 1 Basic

More information

Analysis of GNSS Receiver Biases and Noise using Zero Baseline Techniques

Analysis of GNSS Receiver Biases and Noise using Zero Baseline Techniques 1 Analysis of GNSS Receiver Biases and Noise using Zero Baseline Techniques Ken MacLeod, Simon Banville, Reza Ghoddousi-Fard and Paul Collins Canadian Geodetic Survey, Natural Resources Canada Plenary

More information

PARIS-MB User Manual

PARIS-MB User Manual PARIS-MB User Manual Serni Ribó Institut de Ciències de l Espai (CSIC/IEEC) January 7th, 2014 Version 1.0 1 Instrument Description The PARIS Multi-Band receiver is a GNSS reflection receiver capable of

More information

INTEROPERABILITY OF THE GNSS'S FOR POSITIONING AND TIMING. A. Caporali, L. Nicolini University of Padova, Italy

INTEROPERABILITY OF THE GNSS'S FOR POSITIONING AND TIMING. A. Caporali, L. Nicolini University of Padova, Italy INTEROPERABILITY OF THE GNSS'S FOR POSITIONING AND TIMING A. Caporali, L. Nicolini University of Padova, Italy Outlook Monitor 31 European GNSS sites with 5 different receivers (Javad, Leica, Septentrio,

More information

Correct Measurement of Timing and Synchronisation Signals - A Comprehensive Guide

Correct Measurement of Timing and Synchronisation Signals - A Comprehensive Guide Correct Measurement of Timing and Synchronisation Signals - A Comprehensive Guide Introduction This document introduces the fundamental aspects of making valid timing and synchronisation measurements and

More information

CCTF 2012 Report on Time & Frequency activities at National Physical Laboratory, India (NPLI)

CCTF 2012 Report on Time & Frequency activities at National Physical Laboratory, India (NPLI) CCTF 2012 Report on Time & Frequency activities at National Physical Laboratory, India (NPLI) Major activities of the Time & Frequency division of NPLI in the last three years have been: 1. Maintenance

More information

GPS-Disciplined-Rubidium Clock AR70A-00

GPS-Disciplined-Rubidium Clock AR70A-00 GPS-Disciplined-Rubidium Clock Miniature GPS-Rubidium Main Features Rubidium clock disciplined to GPS Outputs: 10MHz, 1PPS Inputs: External 1PPS, GPS antenna Time Accuracy: 100ns relative to GPS Frequency

More information

MD-261 MD-261. Features. Applications. Block Diagram. GNSS (GPS and GLONASS) Disciplined Oscillator Module

MD-261 MD-261. Features. Applications. Block Diagram. GNSS (GPS and GLONASS) Disciplined Oscillator Module MD-261 GNSS (GPS and GLONASS) Disciplined Oscillator Module MD-261 The MD-261 is a fully integrated GNSS disciplined oscillator module in a compact surface mount 25 x 20 mm package. The module has an embedded

More information

Specifications and Interfaces

Specifications and Interfaces Specifications and Interfaces Crimson TNG is a wide band, high gain, direct conversion quadrature transceiver and signal processing platform. Using analogue and digital conversion, it is capable of processing

More information

Connecting a Survey to PNG94 and MSL using GNSS

Connecting a Survey to PNG94 and MSL using GNSS 45th Association of Surveyors PNG Congress, Madang, 19-22 July 2011 Connecting a Survey to PNG94 and MSL using GNSS Richard Stanaway QUICKCLOSE Workshop overview Legal requirements to connect surveys to

More information

Cost-Effective Traceability for Oscilloscope Calibration. Author: Peter B. Crisp Head of Metrology Fluke Precision Instruments, Norwich, UK

Cost-Effective Traceability for Oscilloscope Calibration. Author: Peter B. Crisp Head of Metrology Fluke Precision Instruments, Norwich, UK Cost-Effective Traceability for Oscilloscope Calibration Author: Peter B. Crisp Head of Metrology Fluke Precision Instruments, Norwich, UK Abstract The widespread adoption of ISO 9000 has brought an increased

More information

NI PXIe-5171R. Contents. Required Software CALIBRATION PROCEDURE

NI PXIe-5171R. Contents. Required Software CALIBRATION PROCEDURE CALIBRATION PROCEDURE NI PXIe-5171R This document contains the verification and adjustment procedures for the NI PXIe-5171R (NI 5171R). Refer to ni.com/calibration for more information about calibration

More information

F6052 Universal Time Synchronizer

F6052 Universal Time Synchronizer F6052 Universal Time Synchronizer Doble Engineering Company March 2014 2013 Doble Engineering Company. All Rights Reserved 1 2013 Doble Engineering Company. All Rights Reserved History of Portable Time

More information

GPS10R - 10 MHz, GPS Disciplined, Rubidium Frequency Standards

GPS10R - 10 MHz, GPS Disciplined, Rubidium Frequency Standards GPS10R - 10 MHz, GPS Disciplined, Rubidium Standards Key Features Completely self-contained units. No extra P.C Multiple 10 MHz Outputs plus other outputs needed. Full information available via LCD. RS232

More information

RELEASE NOTES. Introduction. Trimble Infrastructure GNSS Series Receivers

RELEASE NOTES. Introduction. Trimble Infrastructure GNSS Series Receivers RELEASE NOTES Trimble Infrastructure GNSS Series Receivers These release notes describe the latest improvements made to the Trimble NetR9 GNSS Infrastructure series receivers. Introduction New Features

More information

Software Defined Radar

Software Defined Radar Software Defined Radar Group 33 Ranges and Test Beds MQP Final Presentation Shahil Kantesaria Nathan Olivarez 13 October 2011 This work is sponsored by the Department of the Air Force under Air Force Contract

More information

Understanding GPS: Principles and Applications Second Edition

Understanding GPS: Principles and Applications Second Edition Understanding GPS: Principles and Applications Second Edition Elliott Kaplan and Christopher Hegarty ISBN 1-58053-894-0 Approx. 680 pages Navtech Part #1024 This thoroughly updated second edition of an

More information