Report of the GPS calibration trip among NIMT, NMIM, and VMI in 2017

Size: px
Start display at page:

Download "Report of the GPS calibration trip among NIMT, NMIM, and VMI in 2017"

Transcription

1 Report of the GPS calibration trip among NIMT, NMIM, and VMI in 2017 Y. Huang, T. Chiu, H. Lin and C. Liao 2017 ATF, CSIR-NPL, India November 25, 2017

2 Calibration for time transfer UTC(k) UTC(j) GPS Receiver UTC(k) GPST Reading: 15 ns GPS Receiver UTC(j) GPST Reading: 10 ns [UTC(k) UTC(j)] = 5 ns + internal delay internal delay The calibration is to determine the value of the internal delays

3 The GPS Receiver Readings GPST REF GPST-REF Reference delay, d GPST to k-th SV, d k GPST k-th GPS SV Geometry delay, ρk c Ionosphere, I k reading: Pseudorange τ k Troposphere, T k Internal (antenna), d Antenna cable, d GPS Receiver t Internal (receiver), d REF (e.g. UTC(k))

4 Model of the pseudorange ρ k : geometry distance d: total delay (ANT, INT and REF) τ k = d k + ρk c + Ik + T k + d + t REFGPS τ k : pseudorange atmosphere effects t REFGPS : time difference satellite clock offset

5 Common view and common clock: put two stations together τ L k = d k + τ T k = d k + x L k c x T k c + I k + T k + d L + t REFGPS + I k + T k + d T + t REFGPS GPS SV k x L k x T k GPST => τ k T τ k L x T k k x L = d c T d L Raw (common lock) difference Local Traveling REF

6 Raw (common clock) Difference Obtained from broadcasted navigation data τ T k τ L k x T k x L k c = d T d L pseudoranges: readings of the two receivers differential calibration: given one, compute the other This can be done by taking the difference between two CGGTTS data

7 Raw Difference from CGGTTS INT DLY = ns (GPS C1), ns (GPS P1), ns (GPS P2) CAB DLY = 0.0 ns REF DLY = 0.0 ns REF = UTC(TL) CKSUM = FF CAL_ID = xxxx-2017 Traveling receiver SAT CL MJD STTIME TRKL ELV AZTH REFSV SRSV REFSYS SRSYS DSG IOE MDTR SMDT MDIO SMDI MSIO SMSI ISG FR HC FRC CK hhmmss s.1dg.1dg.1ns.1ps/s.1ns.1ps/s.1ns.1ns.1ps/s.1ns.1ps/s.1ns.1ps/s.1ns G02 FF L1C FF RAW T = REFSV T + MDIO T + MDTR T + INTDLY T + CABDLY T REFDLY T ================================================================================================================================== INT DLY = ns (GPS C1), ns (GPS P1), ns (GPS P2) CAL_ID = CAB DLY = 0.0 ns REF DLY = 0.0 ns REF = UTC(TL) CKSUM = FF Local receiver SAT CL MJD STTIME TRKL ELV AZTH REFSV SRSV REFSYS SRSYS DSG IOE MDTR SMDT MDIO SMDI MSIO SMSI ISG FR HC FRC CK hhmmss s.1dg.1dg.1ns.1ps/s.1ns.1ps/s.1ns.1ns.1ps/s.1ns.1ps/s.1ns.1ps/s.1ns G02 FF L1C FF RAW L = REFSV L + MDIO L + MDTR L + INTDLY L + CABDLY L REFDLY L d T d L = RAW T RAW L

8 BIPM Calibration TL registered an ID Advised by NMIA(Australia), TL is in charge of the G2 calibration activity among NIMT(Thailand), NMIM(Malaysia) and VMI(Viet Nam) The trip: Taiwan->Thailand->Malaysia->Viet Nam->Taiwan Six months $8,000 for shipment (no CARNET)

9 GPS receivers in TL Ashtech Z12T (Reference, code: TLT1) NMIA Topcon/Javad Euro-80 (Traveling, code: TRVL) Cal_ID: Use time interval counters to link the UTC(k) and the time base inside the receiver

10 Traveling standard: TRVL To reduce the uncertainty, we ask the labs to use the same PPS cable (RG-58, 10m) to directly connect their UTC(k)

11 Long-term stabilities According to the BIPM guidelines, the receiver must demonstrate sufficient stability over a time period comparable with the campaign Reference receiver AU01 Data provided by NMIA MJD C1 INTDLY / ns

12 RAWDIF / ns Time Deviation / s RAWDIF in NIMT E C E C1, median = ns MJD 0.1ns 1.0E E E E E E+06 Averaging Time / s Visited receiver: NMIA Topcon/Javad Euro-80 (code: MTTO) The stability cannot reach 0.1 ns due to the salt-and-pepper noise

13 RAWDIF / ns Time Deviation / s RAWDIF in NMIM 0 1.0E C1-6 C1, median = ns MJD 1.0E E E E E E+06 Averaging Time / s Visited receiver: NMIA Topcon/Javad Euro-80 (code: LSM1)

14 RAWDIF / ns Time Deviation / s RAWDIF in VMI E C E C1, median = ns MJD 1.0E E E E E E+06 Averaging Time / s Visited receiver: NMIA Topcon/Javad Euro-80 (code: VM )

15 Time Deviation / s RAWDIF, Topcon receivers 1.0E E E ns MTTO LSM1 VM 1.0E E E E E E+06 Averaging Time / s TDEV of MTTO cannot down to 0.1 ns even we measured for 30 days Therefore, MTTO dominates the ua

16 RAWDIF / ns Time Deviation / s RAWDIF in NMIM E C1, median = ns P1, median = ns P2, median = ns 1.0E C1 P1 P MJD 1.0E E E E E E+06 Averaging Time / s Visited receiver: Septentrio PolaRx2eTR (code: LS2P)

17 RAWDIF / ns Time Deviation / s RAWDIF in VMI E C1, median = ns P1, median = ns P2, median = ns 1.0E C1 P1 P MJD 1.0E E E E E E+06 Averaging Time / s Visited receiver: Septentrio PolaRx3eTR (code: VM12)

18 RAWDIF / ns RAWDIF / ns RAWDIF in TL, closure C1, median = ns P1, median = ns P2, median = ns Misclosure of P2: 1.1 ns C1, median = ns P1, median = ns P2, median = ns MJD MJD The variation of RAWDIF (misclosure) is the largest components in the ub

19 Uncertainty Budget Unc. Value C1/P1 (ns) Value P2 (ns) Value P1-P2 (ns) Value P3 (ns) Description u a (T V) RAWDIF (traveling visited) u a (T R) RAWDIF (traveling reference) Misclosure u b, observed misclosure Systematic components related to RAWDIF u b, Position error at reference u b, Position error at visited u b, Multipaths at reference u b, Multipaths at visited Link of the Traveling system to the local UTC(k) u b, REFDLY T (at ref lab) u b, REFDLY T (at visited lab) Link of the Reference system to its local UTC(k) u b, REFDLY R (at ref lab) Link of the Visited system to its local UTC(k) u b, REFDLY V (at visited lab)

20 Results in the Circular T Date h UTC AUG 29 SEP 3 SEP 8 SEP 13 SEP 18 SEP 23 SEP 28 Uncertainty/ns Notes MJD ua ub u Laboratory k [UTC-UTC(k)]/ns NIMT (Pathumthani) NMLS (Sepang) VMI (Ha Noi) Only VMI modified the header of their CGGTTS, so they got the improvement As well, they got a time step. Date h UTC SEP 28 OCT 3 OCT 8 OCT 13 OCT 18 OCT 23 OCT 28 Uncertainty/ns Notes MJD ua ub u Laboratory k [UTC-UTC(k)]/ns NIMT (Pathumthani) NMLS (Sepang) VMI (Ha Noi) (4) (4) VMI : Time step of UTC(VMI) of about 25 ns on MJD due to calibration

21 Some observations Misclosure is the largest component in the uncertainty table A shorter traveling time may avoid this The biggest variation dominate the uncertainty for all labs To measure the ionosphere delay more accurately, the P1/P2 of Topcon receiver are required to calibrate

22 Summary One lab per trip is recommended Duties and rights are clear for the lab To minimize the aging of the traveling equipment To shorten the calibration period Thanks to Michael and Louis of NMIA for their technical support, and PTB for the financial support

Preparation of the Inter- Laboratories Comparison

Preparation of the Inter- Laboratories Comparison Preparation of the Inter- Laboratories Comparison Yi-Jiun Huang GPS time-transfer and calibration techniques Concluding Workshop, Taoyuan, Taiwan October 25-26, 2017 The Inter-Laboratories Comparison (ILC)

More information

CCTF WG on GNSS time transfer

CCTF WG on GNSS time transfer WG on GNSS time transfer 2012-2015 Summary of the activities 17 Septembre 2015 20th Meeting of the, BIPM 1 Membership Chairman: Dr Pascale Defraigne (ORB) Secretary: Dr Gérard Petit (BIPM) Members: One

More information

GNSS. Pascale Defraigne Royal Observatory of Belgium

GNSS. Pascale Defraigne Royal Observatory of Belgium GNSS Time Transfer Pascale Defraigne Royal Observatory of Belgium OUTLINE Principle Instrumental point of view Calibration issue Recommendations OUTLINE Principle Instrumental point of view Calibration

More information

Global positioning system (GPS) - Part I -

Global positioning system (GPS) - Part I - Global positioning system (GPS) - Part I - Thomas Hobiger Space-Time Standards Group National Institute of Information and Communications Technology (NICT), Japan Content GPS overview GPS Signal and Receiver

More information

Relative calibration of ESTEC GPS receivers internal delays

Relative calibration of ESTEC GPS receivers internal delays Report calibration ESTEC 2012 V3 Physikalisch-Technische Bundesanstalt Fachbereich 4.4 Bundesallee 100 38116 Braunschweig Germany Relative calibration of ESTEC GPS receivers internal delays June 2013 Andreas

More information

Certificate of Calibration No

Certificate of Calibration No Federal Department of Justice olice FDJP Federal Office of Metrology METAS Certificate of Calibration No 7-006 Object GPS rcvr type Septentrio PolaRx4TR PRO serial 005 Antenna type Aero AT-675 serial 500

More information

IMPLEMENTATION OF A STANDARD FORMAT FOR GPS COMMON VIEW DATA*

IMPLEMENTATION OF A STANDARD FORMAT FOR GPS COMMON VIEW DATA* IMPLEMENTATION OF A STANDARD FORMAT FOR GPS COMMON VIEW DATA* Marc A. Weiss Claudine Thomas Time and Frequency Division Time Section National Institute of Standards Bureau International des Poids and Technology

More information

Federal Department of Justice and Police FDJP Federal Office of Metrology METAS. Measurement Report No

Federal Department of Justice and Police FDJP Federal Office of Metrology METAS. Measurement Report No Federal epartment of Justice olice FJP Federal Office of Metrology METAS Measurement Report No 9-0009 Object GPS receiver type Septentrio PolaRxeTR serial 05 Antenna type Aero AT-775 serial 5577 Cable

More information

Improvement GPS Time Link in Asia with All in View

Improvement GPS Time Link in Asia with All in View Improvement GPS Time Link in Asia with All in View Tadahiro Gotoh National Institute of Information and Communications Technology 1, Nukui-kita, Koganei, Tokyo 18 8795 Japan tara@nict.go.jp Abstract GPS

More information

BUREAU INTERNATIONAL DES POIDS ET MESURES

BUREAU INTERNATIONAL DES POIDS ET MESURES Rapport BIPM-2003/05 BUREAU INTERNATIONAL DES POIDS ET MESURES DETERMINATION OF THE DIFFERENTIAL TIME CORRECTIONS FOR GPS TIME EQUIPMENT LOCATED AT THE OP, NTSC, CRL, NMIJ, TL, and NML W. Lewandowski and

More information

ESTIMATING THE RECEIVER DELAY FOR IONOSPHERE-FREE CODE (P3) GPS TIME TRANSFER

ESTIMATING THE RECEIVER DELAY FOR IONOSPHERE-FREE CODE (P3) GPS TIME TRANSFER ESTIMATING THE RECEIVER DELAY FOR IONOSPHERE-FREE CODE (P3) GPS TIME TRANSFER Victor Zhang Time and Frequency Division National Institute of Standards and Technology Boulder, CO 80305, USA E-mail: vzhang@boulder.nist.gov

More information

Time Comparisons by GPS C/A, GPS P3, GPS L3 and TWSTFT at KRISS

Time Comparisons by GPS C/A, GPS P3, GPS L3 and TWSTFT at KRISS Time Comparisons by GPS C/A, GPS, GPS L3 and at KRISS Sung Hoon Yang, Chang Bok Lee, Young Kyu Lee Division of Optical Metrology Korea Research Institute of Standards and Science Daejeon, Republic of Korea

More information

Software configuration Precise antenna positioning. Software configuration Precise antenna positioning

Software configuration Precise antenna positioning. Software configuration Precise antenna positioning Precise antenna positioning 43 Precise antenna positioning 44 36 Precise antenna positioning 44 Precise antenna positioning 44 37 Precise antenna positioning The US National Oceanic and Atmospheric Administration

More information

USE OF GEODETIC RECEIVERS FOR TAI

USE OF GEODETIC RECEIVERS FOR TAI 33rdAnnual Precise Time and Time nterval (P77') Meeting USE OF GEODETC RECEVERS FOR TA P Defraigne' G Petit2and C Bruyninx' Observatory of Belgium Avenue Circulaire 3 B-1180 Brussels Belgium pdefraigne@omabe

More information

National time scale UTC(SU) and GLONASS system time scale: current status and perspectives

National time scale UTC(SU) and GLONASS system time scale: current status and perspectives State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements National time scale UTC(SU) and GLONASS system time scale: current

More information

Activity Report of Time and Frequency Laboratory, NMIM (formally known as NML-SIRIM), Malaysia

Activity Report of Time and Frequency Laboratory, NMIM (formally known as NML-SIRIM), Malaysia Activity Report of Time and Frequency Laboratory, NMIM (formally known as NML-SIRIM), Malaysia Dr. Mohd. Nasir Senior Principal Metrologist Ahmad Sahar Senior Metrologist Mohd Rafiq Metrologist Mohd Izzulfitri

More information

ABSOLUTE CALIBRATION OF TIME RECEIVERS WITH DLR'S GPS/GALILEO HW SIMULATOR

ABSOLUTE CALIBRATION OF TIME RECEIVERS WITH DLR'S GPS/GALILEO HW SIMULATOR ABSOLUTE CALIBRATION OF TIME RECEIVERS WITH DLR'S GPS/GALILEO HW SIMULATOR S. Thölert, U. Grunert, H. Denks, and J. Furthner German Aerospace Centre (DLR), Institute of Communications and Navigation, Oberpfaffenhofen,

More information

INITIAL TESTING OF A NEW GPS RECEIVER, THE POLARX2, FOR TIME AND FREQUENCY TRANSFER USING DUAL- FREQUENCY CODES AND CARRIER PHASES

INITIAL TESTING OF A NEW GPS RECEIVER, THE POLARX2, FOR TIME AND FREQUENCY TRANSFER USING DUAL- FREQUENCY CODES AND CARRIER PHASES INITIAL TESTING OF A NEW GPS RECEIVER, THE POLARX2, FOR TIME AND FREQUENCY TRANSFER USING DUAL- FREQUENCY CODES AND CARRIER PHASES P. Defraigne, C. Bruyninx, and F. Roosbeek Royal Observatory of Belgium

More information

ANALYSIS OF ONE YEAR OF ZERO-BASELINE GPS COMMON-VIEW TIME TRANSFER AND DIRECT MEASUREMENT USING TWO CO-LOCATED CLOCKS

ANALYSIS OF ONE YEAR OF ZERO-BASELINE GPS COMMON-VIEW TIME TRANSFER AND DIRECT MEASUREMENT USING TWO CO-LOCATED CLOCKS ANALYSIS OF ONE YEAR OF ZERO-BASELINE GPS COMMON-VIEW TIME TRANSFER AND DIRECT MEASUREMENT USING TWO CO-LOCATED CLOCKS Gerrit de Jong and Erik Kroon NMi Van Swinden Laboratorium P.O. Box 654, 2600 AR Delft,

More information

Time and frequency transfer methods based on GNSS. LIANG Kun, National Institute of Metrology(NIM), China

Time and frequency transfer methods based on GNSS. LIANG Kun, National Institute of Metrology(NIM), China Time and frequency transfer methods based on GNSS LIANG Kun, National Institute of Metrology(NIM), China Outline Remote time and frequency transfer GNSS time and frequency transfer methods Data and results

More information

THE DEVELOPMENT OF MULTI-CHANNEL GPS RECEIVERS AT THE CSIR - NATIONAL METROLOGY LABORATORY

THE DEVELOPMENT OF MULTI-CHANNEL GPS RECEIVERS AT THE CSIR - NATIONAL METROLOGY LABORATORY 32nd Annual Precise Time and Time Interval (PTTI) Meeting THE DEVELOPMENT OF MULTI-CHANNEL GPS RECEIVERS AT THE CSIR - NATIONAL METROLOGY LABORATORY E. L. Marais CSIR-NML, P.O. Box 395, Pretoria, 0001,

More information

Recent Time and Frequency Transfer Activities at the Observatoire de Paris

Recent Time and Frequency Transfer Activities at the Observatoire de Paris Recent Time and Frequency Transfer Activities at the Observatoire de Paris J. Achkar, P. Uhrich, P. Merck, and D. Valat LNE-SYRTE Observatoire de Paris 61 avenue de l Observatoire, F-75014 Paris, France

More information

STABILITY OF GEODETIC GPS TIME LINKS AND THEIR COMPARISON TO TWO-WAY TIME TRANSFER

STABILITY OF GEODETIC GPS TIME LINKS AND THEIR COMPARISON TO TWO-WAY TIME TRANSFER STABILITY OF GEODETIC GPS TIME LINKS AND THEIR COMPARISON TO TWO-WAY TIME TRANSFER G. Petit and Z. Jiang BIPM Pavillon de Breteuil, 92312 Sèvres Cedex, France E-mail: gpetit@bipm.org Abstract We quantify

More information

LONG-BASELINE COMPARISONS OF THE BRAZILIAN NATIONAL TIME SCALE TO UTC (NIST) USING NEAR REAL-TIME AND POSTPROCESSED SOLUTIONS

LONG-BASELINE COMPARISONS OF THE BRAZILIAN NATIONAL TIME SCALE TO UTC (NIST) USING NEAR REAL-TIME AND POSTPROCESSED SOLUTIONS LONG-BASELINE COMPARISONS OF THE BRAZILIAN NATIONAL TIME SCALE TO UTC (NIST) USING NEAR REAL-TIME AND POSTPROCESSED SOLUTIONS Michael A. Lombardi and Victor S. Zhang Time and Frequency Division National

More information

PRECISE RECEIVER CLOCK OFFSET ESTIMATIONS ACCORDING TO EACH GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) TIMESCALES

PRECISE RECEIVER CLOCK OFFSET ESTIMATIONS ACCORDING TO EACH GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) TIMESCALES ARTIFICIAL SATELLITES, Vol. 52, No. 4 DOI: 10.1515/arsa-2017-0009 PRECISE RECEIVER CLOCK OFFSET ESTIMATIONS ACCORDING TO EACH GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) TIMESCALES Thayathip Thongtan National

More information

The Study of GNSS System Time Differences Monitoring Jihai ZHANG, Haibo YUAN, Wei GUANG National Time Service Center of CAS, PR China

The Study of GNSS System Time Differences Monitoring Jihai ZHANG, Haibo YUAN, Wei GUANG National Time Service Center of CAS, PR China The Study of GNSS System Time Differences Monitoring Jihai ZHANG, Haibo YUAN, Wei GUANG National Time Service Center of CAS, PR China JULY 2017.Paris The Content of Report Background Principle of GNSS

More information

BUREAU INTERNATIONAL DES POIDS ET MESURES

BUREAU INTERNATIONAL DES POIDS ET MESURES Rapport BIPM-2004/06 BUREAU INTERNATIONAL DES POIDS ET MESURES DETERMINATION OF THE DIFFERENTIAL TIME CORRECTIONS FOR GPS TIME EQUIPMENT LOCATED AT THE OP, PTB, AOS, KRISS, CRL, NIST, USNO and APL W. Lewandowski

More information

Timing-oriented Processing of Geodetic GPS Data using a Precise Point Positioning (PPP) Approach

Timing-oriented Processing of Geodetic GPS Data using a Precise Point Positioning (PPP) Approach 6 th Meeting of Representatives of Laboratories Contributing to TAI BIPM, 31 March 2004 Timing-oriented Processing of Geodetic GPS Data using a Precise Point Positioning (PPP) Approach Patrizia TAVELLA,

More information

A Comparison of GPS Common-View Time Transfer to All-in-View *

A Comparison of GPS Common-View Time Transfer to All-in-View * A Comparison of GPS Common-View Time Transfer to All-in-View * M. A. Weiss Time and Frequency Division NIST Boulder, Colorado, USA mweiss@boulder.nist.gov Abstract All-in-view time transfer is being considered

More information

STATUS REPORT OF TIME AND FREQUENCY LAB. (VIETNAM METROLOGY INSTITUTE)

STATUS REPORT OF TIME AND FREQUENCY LAB. (VIETNAM METROLOGY INSTITUTE) STATUS REPORT OF TIME AND FREQUENCY LAB. (VIETNAM METROLOGY INSTITUTE) Trieu Viet Phuong Head of Time and Frequency Laboratory, VMI Email: phuongtv@vmi.gov.vn DA NANG 11-2016 About TFL Laboratory of time

More information

CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT

CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT A. Niessner 1, W. Mache 1, B. Blanzano, O. Koudelka, J. Becker 3, D. Piester 3, Z. Jiang 4, and F. Arias 4 1 Bundesamt für Eich- und Vermessungswesen,

More information

Report of the TC Time and Frequency. Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey

Report of the TC Time and Frequency. Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey Report of the TC Time and Frequency Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey Contents TC-TF meeting and T&F strategy EMRP Projects and future optical redefinition of the second Time scale generation

More information

MULTI-GNSS TIME TRANSFER

MULTI-GNSS TIME TRANSFER MULTI-GNSS TIME TRANSFER P. DEFRAIGNE Royal Observatory of Belgium Avenue Circulaire, 3, 118-Brussels e-mail: p.defraigne@oma.be ABSTRACT. Measurements from Global Navigation Satellite Systems (GNSS) are

More information

UNCERTAINTIES OF TIME LINKS USED FOR TAI

UNCERTAINTIES OF TIME LINKS USED FOR TAI UNCERTAINTIES OF TIME LINKS USED FOR TAI J. Azoubib and W. Lewandowski Bureau International des Poids et Mesures Sèvres, France Abstract There are three major elements in the construction of International

More information

Relative calibration of the GPS time link between CERN and LNGS

Relative calibration of the GPS time link between CERN and LNGS Report calibration CERN-LNGS 2011 Physikalisch-Technische Bundesanstalt Fachbereich 4.4 Bundesallee 100, 38116 Braunschweig thorsten.feldmann@ptb.de Relative calibration of the GPS time link between CERN

More information

Upgradation and Strengthening of National Time Scale of India

Upgradation and Strengthening of National Time Scale of India Upgradation and Strengthening of National Time Scale of India (ATF 2017) Ashish Agarwal, P. Thorat, M. P. Olaniya, S. Yadav, P. Kandpal, P. Arora, S. Panja, S. De, T. Bharadwaj, N. Sharma, S. Kazim, B.

More information

The Multi-Mode Time Transfer Based on GNSS

The Multi-Mode Time Transfer Based on GNSS The Multi-Mode Time Transfer Based on GNSS Shuhong ZHAO, Haibo YUAN National Time Service Center of CAS, PR China 2017.11 The Content of Report ü Background ü Principle of GNSS CV Time Transfer ü Results

More information

THE FIRST TWO-WAY TIME TRANSFER LINK BETWEEN ASIA AND EUROPE

THE FIRST TWO-WAY TIME TRANSFER LINK BETWEEN ASIA AND EUROPE 35 th Annual Precise Time and Time Interval (PTTI) Meeting THE FIRST TWO-WAY TIME TRANSFER LINK BETWEEN ASIA AND EUROPE H. T. Lin, W. H. Tseng, S. Y. Lin, H. M. Peng, C. S. Liao Telecommunication Laboratories,

More information

Clock Synchronization of Pseudolite Using Time Transfer Technique Based on GPS Code Measurement

Clock Synchronization of Pseudolite Using Time Transfer Technique Based on GPS Code Measurement , pp.35-40 http://dx.doi.org/10.14257/ijseia.2014.8.4.04 Clock Synchronization of Pseudolite Using Time Transfer Technique Based on GPS Code Measurement Soyoung Hwang and Donghui Yu* Department of Multimedia

More information

TIME STABILITY AND ELECTRICAL DELAY COMPARISON OF DUAL- FREQUENCY GPS RECEIVERS

TIME STABILITY AND ELECTRICAL DELAY COMPARISON OF DUAL- FREQUENCY GPS RECEIVERS TIME STABILITY AND ELECTRICAL DELAY COMPARISON OF DUAL- FREQUENCY GPS RECEIVERS A. Proia 1,2, G. Cibiel 1, and L. Yaigre 3 1 Centre National d Etudes Spatiales 18 Avenue Edouard Belin, 31401 Toulouse,

More information

Status Report on Time and Frequency Activities at CSIR-NPL India

Status Report on Time and Frequency Activities at CSIR-NPL India Status Report on Time and Frequency Activities at CSIR-NPL India (APMP -TCTF 2016) S. Panja, A. Agarwal, D. Chadha, P. Arora, P. Thorat, S. De, S. Yadav, P. Kandpal, M. P. Olaniya and V. N. Ojha (Da Nang,

More information

Traceability measurement results of accurate time and frequency in Bosnia and Herzegovina

Traceability measurement results of accurate time and frequency in Bosnia and Herzegovina INFOTEH-JAHORINA Vol. 11, March 2012. Traceability measurement results of accurate time and frequency in Bosnia and Herzegovina Osman Šibonjić, Vladimir Milojević, Fatima Spahić Institute of Metrology

More information

Comparison of Cesium Fountain Clocks in Europe and Asia

Comparison of Cesium Fountain Clocks in Europe and Asia APMP/TCTF workshop 214,Daejeon, Korea Comparison of Cesium Fountain Clocks in Europe and Asia Aimin Zhang National Institute of Metrology(NIM) Sep.2,214 Outline Introduction Setup of PFS comparison Comparison

More information

GPS based link calibration between BKG Wettzell and PTB

GPS based link calibration between BKG Wettzell and PTB Report calibration BKG-PTB 2011 Physikalisch-Technische Bundesanstalt Fachbereich 4.4 Bundesallee 100, 38116 Braunschweig GPS based link calibration between BKG Wettzell and PTB October 2011 Thorsten Feldmann,

More information

REPORT OF TIME AND FREQUENCY LABORATORY (VIETNAM METROLOGY INSTITUTE)

REPORT OF TIME AND FREQUENCY LABORATORY (VIETNAM METROLOGY INSTITUTE) Trieu Viet Phuong Deputy head of Time and Frequency Laboratory (TFL) Vietnam Metrology Institute (VMI) N 0 8, Hoang Quoc Viet Road, Caugiay District, Hanoi, Vietnam About Time & Frequency Laboratory (TFL)

More information

REPORT OF TIME AND FREQUENCY LABORATORY (VIETNAM METROLOGY INSTITUTE)

REPORT OF TIME AND FREQUENCY LABORATORY (VIETNAM METROLOGY INSTITUTE) Nguyen Bang Head of Time and Frequency Laboratory (TFL) Vietnam Metrology Institute (VMI) N 0 8, Hoang Quoc Viet Road, Caugiay District, Hanoi, Vietnam About Time & Frequency Laboratory (TFL) Time and

More information

NPLI Report. for. Technical workshop and inter-laboratory comparison exercise for GPS time-transfer and calibration techniques under MEDEA

NPLI Report. for. Technical workshop and inter-laboratory comparison exercise for GPS time-transfer and calibration techniques under MEDEA NPLI Report for Technical workshop and inter-laboratory comparison exercise for GPS time-transfer and calibration techniques under MEDEA Dr. V. N. Ojha, Dr. A. Agarwal, Mrs. D. Chaddha, Dr. S. Panja, Dr.

More information

GALILEO COMMON VIEW: FORMAT, PROCESSING, AND TESTS WITH GIOVE

GALILEO COMMON VIEW: FORMAT, PROCESSING, AND TESTS WITH GIOVE GALILEO COMMON VIEW: FORMAT, PROCESSING, AND TESTS WITH GIOVE Pascale Defraigne Royal Observatory of Belgium (ROB) Avenue Circulaire, 3, B-1180 Brussels, Belgium e-mail: p.defraigne@oma.be M. C. Martínez-Belda

More information

Nov.6-7,2014 DEC Workshop on Participation in Coordinated Universal Time. Aimin Zhang National Institute of Metrology (NIM)

Nov.6-7,2014 DEC Workshop on Participation in Coordinated Universal Time. Aimin Zhang National Institute of Metrology (NIM) Nov.6-7,2014 DEC Workshop on Participation in Coordinated Universal Time Aimin Zhang National Institute of Metrology (NIM) Introduction UTC(NIM) at old campus Setup of new UTC(NIM) Algorithm of UTC(NIM)

More information

PROGRESS REPORT OF CNES ACTIVITIES REGARDING THE ABSOLUTE CALIBRATION METHOD

PROGRESS REPORT OF CNES ACTIVITIES REGARDING THE ABSOLUTE CALIBRATION METHOD PROGRESS REPORT OF CNES ACTIVITIES REGARDING THE ABSOLUTE CALIBRATION METHOD A. Proia 1,2,3 and G. Cibiel 1, 1 Centre National d Etudes Spatiales 18 Avenue Edouard Belin, 31401 Toulouse, France 2 Bureau

More information

LIMITS ON GPS CARRIER-PHASE TIME TRANSFER *

LIMITS ON GPS CARRIER-PHASE TIME TRANSFER * LIMITS ON GPS CARRIER-PHASE TIME TRANSFER * M. A. Weiss National Institute of Standards and Technology Time and Frequency Division, 325 Broadway Boulder, Colorado, USA Tel: 303-497-3261, Fax: 303-497-6461,

More information

Relative Calibration of the Time Transfer Link between CERN and LNGS for Precise Neutrino Time of Flight Measurements

Relative Calibration of the Time Transfer Link between CERN and LNGS for Precise Neutrino Time of Flight Measurements Relative Calibration of the Time Transfer Link between CERN and LNGS for Precise Neutrino Time of Flight Measurements Thorsten Feldmann 1,*, A. Bauch 1, D. Piester 1, P. Alvarez 2, D. Autiero 2, J. Serrano

More information

CURRENT ACTIVITIES OF THE NATIONAL STANDARD TIME AND FREQUENCY LABORATORY OF THE TELECOMMUNICATION LABORATORIES, CHT TELECOM CO., LTD.

CURRENT ACTIVITIES OF THE NATIONAL STANDARD TIME AND FREQUENCY LABORATORY OF THE TELECOMMUNICATION LABORATORIES, CHT TELECOM CO., LTD. CURRENT ACTIVITIES OF THE NATIONAL STANDARD TIME AND FREQUENCY LABORATORY OF THE TELECOMMUNICATION LABORATORIES, CHT TELECOM CO., LTD., TAIWAN C. S. Liao, P. C. Chang, and S. S. Chen National Standard

More information

Satellite Bias Corrections in Geodetic GPS Receivers

Satellite Bias Corrections in Geodetic GPS Receivers Satellite Bias Corrections in Geodetic GPS Receivers Demetrios Matsakis, The U.S. Naval Observatory (USNO) Stephen Mitchell, The U.S. Naval Observatory Edward Powers, The U.S. Naval Observatory BIOGRAPHY

More information

TIME DISTRIBUTION CAPABILITIES OF THE WIDE AREA AUGMENTATION SYSTEM (WAAS)

TIME DISTRIBUTION CAPABILITIES OF THE WIDE AREA AUGMENTATION SYSTEM (WAAS) 33rdAnnual Precise Time and Time Interval (PZTI) Meeting TIME DISTRIBUTION CAPABILITIES OF THE WIDE AREA AUGMENTATION SYSTEM (WAAS) William J. Klepczynski IS1 Pat Fenton NovAtel Corp. Ed Powers U.S. Naval

More information

THE TIMING ACTIVITIES OF THE NATIONAL TIME AND FREQUENCY STANDARD LABORATORY OF THE TELECOMMUNICATION LABORATORIES, CHT CO. LTD.

THE TIMING ACTIVITIES OF THE NATIONAL TIME AND FREQUENCY STANDARD LABORATORY OF THE TELECOMMUNICATION LABORATORIES, CHT CO. LTD. THE TIMING ACTIVITIES OF THE NATIONAL TIME AND FREQUENCY STANDARD LABORATORY OF THE TELECOMMUNICATION LABORATORIES, CHT CO. LTD., TAIWAN P. C. Chang, J. L. Wang, H. T. Lin, S. Y. Lin, W. H. Tseng, C. C.

More information

HOW TO RECEIVE UTC AND HOW TO PROVE ACCURACY

HOW TO RECEIVE UTC AND HOW TO PROVE ACCURACY HOW TO RECEIVE UTC AND HOW TO PROVE ACCURACY Marc Weiss, Ph.D. Independent Consultant to Booz Allen Hamilton Weiss_Marc@ne.bah.com Innovation center, Washington, D.C. JANUARY 23, 2018 HOW DO YOU GET UTC

More information

CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT

CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT A. Niessner 1, W. Mache 1, B. Blanzano, O. Koudelka, J. Becker 3, D. Piester 3, Z. Jiang 4, and F. Arias 4 1 Bundesamt für Eich- und Vermessungswesen,

More information

THE STABILITY OF GPS CARRIER-PHASE RECEIVERS

THE STABILITY OF GPS CARRIER-PHASE RECEIVERS THE STABILITY OF GPS CARRIER-PHASE RECEIVERS Lee A. Breakiron U.S. Naval Observatory 3450 Massachusetts Ave. NW, Washington, DC, USA 20392, USA lee.breakiron@usno.navy.mil Abstract GPS carrier-phase (CP)

More information

STABILITY OF GEODETIC GPS TIME LINKS AND THEIR COMPARISON TO TWO-WAY TIME TRANSFER

STABILITY OF GEODETIC GPS TIME LINKS AND THEIR COMPARISON TO TWO-WAY TIME TRANSFER STABILITY OF GEODETIC GPS TIME LINKS AND THEIR COMPARISON TO TWO-WAY TIME TRANSFER G. Petit and Z. Jiang BIPM Pavillon de Breteuil, 92312 Sèvres Cedex, France E-mail: gpetit@bipm.org Abstract We quantify

More information

UNCERTAINTIES OF TIME LINKS USED FOR TAI

UNCERTAINTIES OF TIME LINKS USED FOR TAI UNCERTAINTIES OF TIME LINKS USED FOR TAI J. Azoubib and W. Lewandowski Bureau International des Poids et Mesures Sèvres, France Abstract There are three major elements in the construction of International

More information

Haruo Saito. National Institute of Information and Communications Technology

Haruo Saito. National Institute of Information and Communications Technology Calibration system at NICT Haruo Saito National Institute of Information and Communications Technology Organization of NICT Content Calibration system Calibration system Carried in system and remote system

More information

Status Report on Time and Frequency Activities at National Physical Laboratory India

Status Report on Time and Frequency Activities at National Physical Laboratory India Status Report on Time and Frequency Activities at National Physical Laboratory India (TCTF 2015) Ashish Agarwal *, S. Panja. P. Arora, P. Thorat, S. De, S. Yadav, P. Kandpal, M. P. Olaniya, S S Rajput,

More information

Modelling GPS Observables for Time Transfer

Modelling GPS Observables for Time Transfer Modelling GPS Observables for Time Transfer Marek Ziebart Department of Geomatic Engineering University College London Presentation structure Overview of GPS Time frames in GPS Introduction to GPS observables

More information

Enabling Accurate Differential Calibration of Modern GPS Receivers

Enabling Accurate Differential Calibration of Modern GPS Receivers Enabling Accurate Differential Calibration of Modern GPS Receivers S. Römisch, V. Zhang, T. E. Parker, and S. R. Jefferts NIST Time and Frequency Division, Boulder, CO USA romisch@boulder.nist.gov Abstract

More information

EGNOS NETWORK TIME AND ITS RELATIONSHIPS TO UTC AND GPS TIME

EGNOS NETWORK TIME AND ITS RELATIONSHIPS TO UTC AND GPS TIME EGNOS NETWORK TIME AND ITS RELATIONSHIPS TO UTC AND GPS TIME Jérôme Delporte, Norbert Suard CNES, French Space Agency 18, avenue Edouard Belin 3141 Toulouse cedex 9 France E-mail: jerome.delporte@cnes.fr

More information

A CALIBRATION OF GPS EQUIPMENT IN JAPAN*

A CALIBRATION OF GPS EQUIPMENT IN JAPAN* A CALIBRATION OF GPS EQUIPMENT IN JAPAN* M. Weiss and D. Davis National Institute of Standards and Technology Abstract With the development of common view time comparisons using GPS satellites the Japanese

More information

CONTINUED EVALUATION OF CARRIER-PHASE GNSS TIMING RECEIVERS FOR UTC/TAI APPLICATIONS

CONTINUED EVALUATION OF CARRIER-PHASE GNSS TIMING RECEIVERS FOR UTC/TAI APPLICATIONS CONTINUED EVALUATION OF CARRIER-PHASE GNSS TIMING RECEIVERS FOR UTC/TAI APPLICATIONS Jeff Prillaman U.S. Naval Observatory 3450 Massachusetts Avenue, NW Washington, D.C. 20392, USA Tel: +1 (202) 762-0756

More information

Status Report on Time and Frequency Activities at NPL India

Status Report on Time and Frequency Activities at NPL India Status Report on Time and Frequency Activities at NPL India (APMP TCTF 2013) A. Sen Gupta, A. Chatterjee, A. K. Suri, A. Agarwal, S. Panja P. Arora, S. De, P. Thorat, S. Yadav, P. Kandpal, M. P. Olaniya

More information

Expert Site Visit Report

Expert Site Visit Report Expert Site Visit Report Time and Frequency Metrology Sub Division Research Center for Metrology Indonesian Institute of Sciences RCM LIPI Metrology Enabling Developing Economies in Asia, MEDEA Project

More information

Impact of multi-gnss on international timekeeping

Impact of multi-gnss on international timekeeping Impact of multi-gnss on international timekeeping Elisa Felicitas Arias and Wlodek Lewandowski 5th ICG Meeting Torino (Italy), 18-22 October 2010 Outline Time scale contruction, case of UTC Role of GNSS

More information

The Timing Group Delay (TGD) Correction and GPS Timing Biases

The Timing Group Delay (TGD) Correction and GPS Timing Biases The Timing Group Delay (TGD) Correction and GPS Timing Biases Demetrios Matsakis, United States Naval Observatory BIOGRAPHY Dr. Matsakis received his PhD in Physics from the University of California. Since

More information

BUREAU INTERNATIONAL DES POIDS ET MESURES

BUREAU INTERNATIONAL DES POIDS ET MESURES Rapport BIPM-2008/03 BUREAU INTERNATIONAL DES POIDS ET MESURES DETERMINATION OF THE DIFFERENTIAL TIME CORRECTIONS FOR GPS TIME EQUIPMENT LOCATED AT THE OP, TCC, ONBA, IGMA and CNMP W. Lewandowski and L.

More information

Towards Accurate Optical Fiber Time Transfer for UTC GenerationV3

Towards Accurate Optical Fiber Time Transfer for UTC GenerationV3 Towards Accurate Optical Fiber Time Transfer for UTC GenerationV3 Z. Jiang and E.F. Arias Time Department Bureau International des Poids et Mesures Outline 1/2 Recommendation ATFT (draft) to CCTF2015 the

More information

Broadcasting System Time Scales Offsets in Navigation Messages. Assessment of Feasibility

Broadcasting System Time Scales Offsets in Navigation Messages. Assessment of Feasibility Broadcasting System Time Scales Offsets in Navigation Messages. Assessment of Feasibility A. Druzhin, A. Tyulyakov. A. Pokhaznikov Working Group A ICG-8, Dubai, United Arab Emirates 2 Rastrelli Square,

More information

Time and Frequency Activities at NICT, Japan

Time and Frequency Activities at NICT, Japan Time and Frequency Activities at NICT, Japan Yasuhiro Koyama, Kuniyasu Imamura, Tsukasa Iwama, Shin'ichi Hama, Jun Amagai, Ryuichi Ichikawa, and Mizuhiko Hosokawa National Institute of Information and

More information

The Inter-American Metrology System (SIM) Common-View GPS Comparison Network

The Inter-American Metrology System (SIM) Common-View GPS Comparison Network The Inter-American Metrology System (SIM) Common-View GPS Comparison Network Michael A. Lombardi and Andrew N. Novick National Institute of Standards and Technology (NIST) * Boulder, Colorado, United States

More information

Pendulum Instruments AB Sorterargatan 26 SE VÄLLINGBY SWEDEN

Pendulum Instruments AB Sorterargatan 26 SE VÄLLINGBY SWEDEN Ã Pendulum Instruments AB Sorterargatan 26 SE-162 15 VÄLLINGBY SWEDEN Handläggare, enhet / +DQGOHGÃE\ÃGHSDUWPHQW Datum / 'DWH Beteckning / 5HIHUHQFH Sida / 3DJH Kenneth Jaldehag, Fysik och Elteknik 2000-09-04

More information

Pilot study on the validation of the Software- Defined Radio Receiver for TWSTFT

Pilot study on the validation of the Software- Defined Radio Receiver for TWSTFT University of Colorado Boulder From the SelectedWorks of Jian Yao 2017 Pilot study on the validation of the Software- Defined Radio Receiver for TWSTFT Available at: https://works.bepress.com/jian-yao/11/

More information

LONG-TERM INSTABILITY OF GPS-BASED TIME TRANSFER AND PROPOSALS FOR IMPROVEMENTS

LONG-TERM INSTABILITY OF GPS-BASED TIME TRANSFER AND PROPOSALS FOR IMPROVEMENTS LONG-TERM INSTABILITY OF GPS-BASED TIME TRANSFER AND PROPOSALS FOR IMPROVEMENTS Z. Jiang 1, D. Matsakis 2, S. Mitchell 2, L. Breakiron 2, A. Bauch 3, D. Piester 3, H. Maeno 4, and L. G. Bernier 5 1 Bureau

More information

Synchronization between Remote Sites for the MINOS Experiment

Synchronization between Remote Sites for the MINOS Experiment Synchronization between Remote Sites for the MINOS Experiment S. Römisch 1, S. R.Jefferts 1, V. Zhang 1, T. E. Parker 1, N. Ashby 1, P. Adamson 2, G. Barr 3, A. Habig 4, J. Meier 4, C. James 2, R. Nicol

More information

LONG-BASELINE TWSTFT BETWEEN ASIA AND EUROPE

LONG-BASELINE TWSTFT BETWEEN ASIA AND EUROPE LONG-BASELINE TWSTFT BETWEEN ASIA AND EUROPE M. Fujieda, T. Gotoh, M. Aida, J. Amagai, H. Maeno National Institute of Information and Communications Technology Tokyo, Japan E-mail: miho@nict.go.jp D. Piester,

More information

OPTICAL LINK TIME TRANSFER BETWEEN IPE AND BEV

OPTICAL LINK TIME TRANSFER BETWEEN IPE AND BEV OPTICAL LINK TIME TRANSFER BETWEEN IPE AND BEV Vladimír Smotlacha CESNET, z.s.p.o Zikova 4, Prague 6, 160 00, The Czech Republic vs@cesnet.cz Alexander Kuna Institute of Photonics and Electronics AS CR,

More information

UNIT 1 - introduction to GPS

UNIT 1 - introduction to GPS UNIT 1 - introduction to GPS 1. GPS SIGNAL Each GPS satellite transmit two signal for positioning purposes: L1 signal (carrier frequency of 1,575.42 MHz). Modulated onto the L1 carrier are two pseudorandom

More information

Time Traceability for the Finance Sector Fact Sheet

Time Traceability for the Finance Sector Fact Sheet Time Traceability for the Finance Sector Fact Sheet Version 1.4 14 March 2016 NPL Management Ltd is a company registered in England and Wales No. 2937881 Registered Office: NPL Management Ltd, Hampton

More information

Rapid UTC: a step forward for enhancing GNSS system times Elisa Felicitas Arias

Rapid UTC: a step forward for enhancing GNSS system times Elisa Felicitas Arias Rapid UTC: a step forward for enhancing GNSS system times Elisa Felicitas Arias Eighth Meeting of the International Committee on Global Navigation Satellite Systems (ICG) Dubai, United Arab Emirates 9-14

More information

STABILITY AND ACCURACY OF THE REALIZATION OF TIME SCALE IN SINGAPORE

STABILITY AND ACCURACY OF THE REALIZATION OF TIME SCALE IN SINGAPORE 90th Annual Precise Time and Time Interval (PTTI) Meeting STABILITY AND ACCURACY OF THE REALIZATION OF TIME SCALE IN SINGAPORE Dai Zhongning, Chua Hock Ann, and Neo Hoon Singapore Productivity and Standards

More information

Article Number: 457 Rating: Unrated Last Updated: Wed, Sep 2, 2009 at 3:46 PM

Article Number: 457 Rating: Unrated Last Updated: Wed, Sep 2, 2009 at 3:46 PM T opcon GB-1000 - Receiver Board Firmware Version 3.4 Article Number: 457 Rating: Unrated Last Updated: Wed, Sep 2, 2009 at 3:46 PM Topcon has recently released GNSS receiver board firmware version 3.4

More information

Research Article Accurate GLONASS Time Transfer for the Generation of the Coordinated Universal Time

Research Article Accurate GLONASS Time Transfer for the Generation of the Coordinated Universal Time International Journal of Navigation and Observation Volume 2012, Article ID 353961, 14 pages doi:10.1155/2012/353961 Research Article Accurate GLONASS Time Transfer for the Generation of the Coordinated

More information

Evaluation of timing GPS receivers for industrial applications

Evaluation of timing GPS receivers for industrial applications 12th IMEKO TC1 Workshop on Technical Diagnostics June 6-7, 213, Florence, Italy Evaluation of timing GPS receivers for industrial applications Vojt ch Vigner 1, Jaroslav Rozto il 2, Blanka emusová 3 1,

More information

Long-term instability in UTC time links

Long-term instability in UTC time links Long-term instability in UTC time links Zhiheng Jiang 1, Demetrios Matsakis 2 and Victor Zhang 3 1 BIPM, Bureau International des Poids et Mesures 2 USNO, United States Naval Observatory, 3450 Massachusetts

More information

BUREAU INTERNATIONAL DES POIDS ET MESURES

BUREAU INTERNATIONAL DES POIDS ET MESURES Rapport BIPM-97/1 BUREAU INTERNATIONAL DES POIDS ET MESURES DETERMINATION OF THE DIFFERENTIAL TIME CORRECTIONS BETWEEN GPS TIME EQUIPMENT LOCATED AT THE OBSERVATOIRE DE PARIS, PARIS, FRANCE, THE NATIONAL

More information

w. Lewandowski and P. Moussay

w. Lewandowski and P. Moussay Rapport BIPM-97/5 BUREAU INTERNATIONAL DES POIDS ET MESURES DETERMINATION OF THE DIFFERENTIAL TIME CORRECTIONS BETWEEN GPS TIME EQUIPMENT LOCATED AT THE OP, NPL, VSL, DTAG, PTB, TUG, IEN AND OCA w. Lewandowski

More information

The Inter-American Metrology System (SIM) Common-View GPS Comparison Network

The Inter-American Metrology System (SIM) Common-View GPS Comparison Network The Inter-American Metrology System (SIM) Common-View GPS Comparison Network Michael A. Lombardi and Andrew N. Novick National Institute of Standards and Technology (NIST) * Boulder, Colorado, United States

More information

Calibration schedule 2016/9/29

Calibration schedule 2016/9/29 Outline Time links calibration Equipment calibration NIM calibrator: Equipment, characteristics NIM calibrator: Operation Calibration campaign: Data and results 51 Calibration schedule 52 NTSC calibration

More information

Clock Comparisons: Present and Future Approaches

Clock Comparisons: Present and Future Approaches Clock Comparisons: Present and Future Approaches Introduction I. Dissemination of Legal Time II. Comparisons of Time Scales III. Comparisons of Primary Clocks MicrowaveTime & Frequency Comparisons GPS

More information

Recent Calibrations of UTC(NIST) - UTC(USNO)

Recent Calibrations of UTC(NIST) - UTC(USNO) Recent Calibrations of UTC(NIST) - UTC(USNO) Victor Zhang 1, Thomas E. Parker 1, Russell Bumgarner 2, Jonathan Hirschauer 2, Angela McKinley 2, Stephen Mitchell 2, Ed Powers 2, Jim Skinner 2, and Demetrios

More information

Time and Frequency Activities at NICT, Japan

Time and Frequency Activities at NICT, Japan Time and Frequency Activities at NICT, Japan Yasuhiro Koyama, Kuniyasu Imamura, Tsukasa Iwama, Shin'ichi Hama, Jun Amagai, Ryuichi Ichikawa, Yuko Hanado, and Mizuhiko Hosokawa National Institute of Information

More information

EGNOS timing performances

EGNOS timing performances EGNOS timing performances ICG-12 05/12/2017 Jérôme DELPORTE - CNES The views expressed in this presentation are those of the authors and do not necessarily reflect the official position of the GSA/EC The

More information

Remote Time Calibrations via the NIST Time Measurement and Analysis Service

Remote Time Calibrations via the NIST Time Measurement and Analysis Service Remote Time Calibrations via the NIST Time Measurement and Analysis Service Michael A. Lombardi and Andrew N. Novick Abstract: The National Institute of Standards and Technology (NIST) now offers a new

More information