Industrial Electricity

Size: px
Start display at page:

Download "Industrial Electricity"

Transcription

1 Industrial Electricity Name DUE //7 or //7 (Your next lab day) Prelab: efer to the tables on Page 5. Show work neatly and completely on separate paper for any entry labeled calculated. You do not need to show calculations for entries marked theoretical, but you still need to complete those entries. You will need to show this (semi-completed) page to the lab instructor before beginning the lab exercise. Attach your sheet of calculations to the lab prior to turning it in for grading. Lab 6: Investigating Parallel Circuits Introduction By definition, devices wired in parallel are configured in such a way that they all have the same voltage applied across them. Branch currents E T I I I I T By virtue of this fact, each individual device draws current from the supply based solely on that device s resistance independent of the other devices in the circuit. The amount of current required for the circuit is, then, the sum of the individual branch currents. For the circuit above, we can write I T I I I Using Ohm s Law we can substitute I E / for each of the branch currents giving, I T E E E E The quantity in parenthesis is often referred to as the conductance of the circuit and is equivalent to the reciprocal of the total resistance of the circuit. That is, We can solve this expression for T flowing through it. 07 David S. Mack. All rights reserved. T to develop an expression for the total resistance of the circuit, T As there is only one voltage in a parallel circuit, Ohm s Law proves that the current through an individual resistor will be inversely proportional to the value of the resistance. The highest resistance will have the lowest current flowing through it and the lowest resistance will have the highest current

2 Objectives In this lab you will: Establish that voltage is the same across all components of a parallel circuit Observe the laws of current divider action in a parallel circuit Verify the law which governs resistances connected in parallel Verify Kirchoff s Current Law by measurement of parallel circuit currents Investigate the function of a photocell in an electrical circuit Equipment () Power Supply () DMM; Digital Multimeter () Breadboard Components esistors: each 0Ω, 470Ω, kω () LEDs, red, green, yellow (~0) Jumper wires When measuring current in a parallel circuit, care must be taken that the ammeter is connected in series, not in parallel with a resistor. The circuit path must be broken where current is to be measured. The ammeter is then connected to the two ends of the break, keeping the positive test lead of the ammeter on the side of the break closest to the positive side of the voltage source. An open-circuited resistor in a parallel circuit will cause the current through that branch to be zero amps. Voltage will still be available across other components of the parallel circuit, however, so current will continue to flow through the other branches. No power is consumed by the open-circuited resistor and the power dissipated by the other resistors will remain constant. If one resistor in a parallel circuit becomes open, the total resistance of the circuit increases, resulting in lower total current and total power from the supply. A short-circuited resistor in a parallel circuit will also be a short circuit directly across the power supply resulting in a blown fuse in the supply. For this reason, short circuits will not be investigated in this experiment. The total power dissipated by the components in a parallel circuit is equal to the power supplied by the voltage source. Since the power dissipated by a resistor is the square of the voltage divided by the resistance, the power dissipated by parallel-connected resistors will be inversely proportional to resistance. Figure 4- Parallel Circuit 07 David S. Mack. All rights reserved.

3 Procedure. efer to Figure 4- on page. Use the nominal (color code) resistance values to calculate the parallel resistance combinations required for Table 4-.. Measure each resistor s value and record them in Table 4-. Note that the double slash marks in the table means parallel and are read in parallel with, e.g., // means one in parallel with two. Temporarily connect only and in parallel and measure the parallel resistance with an ohmmeter. You may want to use the breadboard to facilitate this measurement. ecord this measurement in Table 4-. NOTE: The circuit (shown below) is a little tricky in that it involves series too. Keep that in mind when fill in the table. P o w e r = = 0Ω 0Ω = 470Ω = 470Ω = = KΩ kω ed LED Yellow LED Green LED Figure 4-4. Now temporarily connect in parallel with and. Measure the parallel resistance of this three-resistor combination and record that measurement in Table 4-. emove the temporary connections at this time. 5. Construct the circuit shown in Figure 4-, including the LEDs. 6. If you stare at the circuit that you just built, and reflect for a moment about what you have learned about series and parallel circuits you should be able to fill in the first column of Table 4-. (You should see both parallel and series sections within your circuit). Please get the lab instructor s initials before continuing Initials: 7. You will be using a 0V power supply for the circuit of Figure 4-. Calculate the theoretical current flowing through each branch of the circuit (using Ohm s Law) and the total current supplied to the circuit using I T = I + I + I.. ecord these currents in Table David S. Mack. All rights reserved.

4 8. Apply 0V to the circuit of Figure 4- and measure the voltage across a) the power supply, b) each resistor and LED combination and c) the voltages across each resistor and LED separately. ecord these measured values in Table Turn off the power supply and open the parallel branch that contains and the red LED. I would suggest removing the leg of that connects to the LED and move it to an adjacent (but vacant) hole in the bread board. 0. eenergize the circuit and configure the DMM to measure current.. Measure the current through the branch and record this value in Table 4-. Verify that the measured value is close to the calculated value.. Turn off the power supply and reconnect the circuit.. epeat steps 9 to for the other two branches. 4. Make certain that the circuit is once again properly and completely connected. 5. Measure the current being supplied to the circuit and record this value in Table With the ammeter still in place to measure the supply current, remove from the circuit. ecord the measured current value in Table With the ammeter still in place, put back into the circuit and then remove. ecord the measured current value in Table With the ammeter still in place, put back into the circuit and remove. ecord the measured current value in Table David S. Mack. All rights reserved. 4

5 Table 4-: Parallel esistance Measurements *Calculated esistance from Figure 4- (Theoretical for individual,, & ) Measured esistance from Figure 4- * // * // // Table 4-: Parallel DC Voltage Measurements Supply Voltage Theoretical Voltage Measured Voltage Voltage across (0Ω) Voltage across (470Ω) Voltage across (kω) Voltage across red LED Voltage across yellow LED Voltage across green LED Voltage across combination of & red LED Voltage across combination of & yellow LED Voltage across combination of & green LED Table 4-: Parallel DC Current Measurements Calculated Current Measured Current Supply Through Through Through Table 4-4: Changing Parallel esistance Values Measured Supply Current removed removed removed Follow-up Questions 07 David S. Mack. All rights reserved. 5

6 . It is said that the total resistance in a parallel circuit is lower than the lowest resistance value in circuit. Is that true for this circuit? Use your measured data to prove or refute this statement.. As more branches are added to a parallel circuit, will the total resistance increase or decrease? Support your answer with a reasoned explanation and/or a simple example.. If any single resistance in a parallel circuit were increased, what would be the effect on the total resistance of the circuit? What about the current supplied by the power source? Support your answers with reasoned explanation/s and/or simple example/s. 4. If burned up (opened) how would the current through the other branches be affected? See Table If something caused to short circuit, what would be the most likely observed effect on the other branches? The circuit as a whole? 6. efer to Table 4-. Comment on the relationship between the voltages measured across the red LED and the 0Ω resistor separately, and the voltage measured across the combination of the two. 07 David S. Mack. All rights reserved. 6

Resistance and Ohm s Law

Resistance and Ohm s Law esistance and Ohm s Law Name D TA Partners Date Section Please be careful about the modes of the multimeter. When you measure a voltage, you are not allowed to use current mode (A), and vice versa. Otherwise,

More information

Lab #1: Electrical Measurements I Resistance

Lab #1: Electrical Measurements I Resistance Lab #: Electrical Measurements I esistance Goal: Learn to measure basic electrical quantities; study the effect of measurement apparatus on the quantities being measured by investigating the internal resistances

More information

High School Physics Laboratory UNB Electrical & Computer Engineering Circuits Experiment

High School Physics Laboratory UNB Electrical & Computer Engineering Circuits Experiment Mark High School Physics Laboratory UNB Electrical & Computer Engineering Circuits Experiment Name: Purpose: To investigate circuits connected in series and parallel. pparatus: 2V Power Supply 5 x Digital

More information

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Laboratory 2 nstrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor 2.1 Objectives This exercise is designed to acquaint you with the

More information

Laboratory 2 (drawn from lab text by Alciatore)

Laboratory 2 (drawn from lab text by Alciatore) Laboratory 2 (drawn from lab text by Alciatore) Instrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Objectives This exercise is designed

More information

I. Objectives Upon completion of this experiment, the student should be able to: Ohm s Law

I. Objectives Upon completion of this experiment, the student should be able to: Ohm s Law EENG-201 Experiment # 1 Series Circuit and Parallel Circuits I. Objectives Upon completion of this experiment, the student should be able to: 1. ead and use the resistor color code. 2. Use the digital

More information

The Art of Electrical Measurements

The Art of Electrical Measurements The Art of Electrical Measurements Purpose: Introduce fundamental electrical test and measurement tools and the art of making electrical measurements. Equipment Required Prelab 1 Digital Multimeter 1 -

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

Exercise 3: Ohm s Law Circuit Voltage

Exercise 3: Ohm s Law Circuit Voltage Ohm s Law DC Fundamentals Exercise 3: Ohm s Law Circuit Voltage EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine voltage by using Ohm s law. You will verify your

More information

Lab #2 Voltage and Current Division

Lab #2 Voltage and Current Division In this experiment, we will be investigating the concepts of voltage and current division. Voltage and current division is an application of Kirchoff s Laws. Kirchoff s Voltage Law Kirchoff s Voltage Law

More information

PHYS 1402 General Physics II Experiment 5: Ohm s Law

PHYS 1402 General Physics II Experiment 5: Ohm s Law PHYS 1402 General Physics II Experiment 5: Ohm s Law Student Name Objective: To investigate the relationship between current and resistance for ordinary conductors known as ohmic conductors. Theory: For

More information

2. Meter Measurements and Loading Effects in Resistance Circuits

2. Meter Measurements and Loading Effects in Resistance Circuits 2. Meter Measurements and Loading Effects in Resistance Circuits 2.1. Purpose 1. To measure and predict the affects of multimeter(s) on a circuit when measuring electrical quantities. 2. To make use of

More information

Unit 8 Combination Circuits

Unit 8 Combination Circuits Unit 8 Combination Circuits Objectives: Define a combination circuit. List the rules for parallel circuits. List the rules for series circuits. Solve for combination circuit values. Characteristics There

More information

EE283 Laboratory Exercise 1-Page 1

EE283 Laboratory Exercise 1-Page 1 EE283 Laboratory Exercise # Basic Circuit Concepts Objectives:. To become familiar with the DC Power Supply unit, analog and digital multi-meters, fixed and variable resistors, and the use of solderless

More information

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction.

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction. By substituting the definition for resistance into the formula for conductance, the reciprocal formula for resistance in parallel circuits is obtained: In parallel circuits, there are junctions where two

More information

Electrical Measurements

Electrical Measurements Electrical Measurements. OBJECTIES: This experiment covers electrical measurements, including use of the volt-ohmmeter and oscilloscope. Concepts including Ohm's Law, Kirchoff's Current and oltage Laws,

More information

Oregon State University Lab Session #1 (Week 3)

Oregon State University Lab Session #1 (Week 3) Oregon State University Lab Session #1 (Week 3) ENGR 201 Electrical Fundamentals I Equipment and Resistance Winter 2016 EXPERIMENTAL LAB #1 INTRO TO EQUIPMENT & OHM S LAW This set of laboratory experiments

More information

Engineering Laboratory Exercises (Electric Circuits Module) Prepared by

Engineering Laboratory Exercises (Electric Circuits Module) Prepared by Engineering 1040 Laboratory Exercises (Electric Circuits Module) Prepared by Eric W. Gill FALL 2008 2 EXP 1040-EL1 VOLTAGE, CURRENT, RESISTANCE AND POWER PURPOSE To (i) investigate the relationship between

More information

Exercise 2: Current in a Series Resistive Circuit

Exercise 2: Current in a Series Resistive Circuit DC Fundamentals Series Resistive Circuits Exercise 2: Current in a Series Resistive Circuit EXERCISE OBJECTIVE circuit by using a formula. You will verify your results with a multimeter. DISCUSSION Electric

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

Direct Current Circuits

Direct Current Circuits PC1143 Physics III Direct Current Circuits 1 Objectives Apply Kirchhoff s rules to several circuits, solve for the currents in the circuits and compare the theoretical values predicted by Kirchhoff s rule

More information

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V Physics 310 Lab 1: DC Circuits Equipment: Digital Multimeter, 5V Supply, Breadboard, two 1 kω, 2.7 kω, 5.1 kω, 10 kω, two, Decade Resistor Box, potentiometer, 10 kω Thermistor, Multimeter Owner s Manual

More information

II. Experimental Procedure

II. Experimental Procedure Ph 122 July 27, 2006 Ohm's Law http://www.physics.sfsu.edu/~manuals/ph122/ I. Theory In this lab we will make detailed measurements on one resistor to see if it obeys Ohm's law. We will also verify the

More information

Lab 2.4 Arduinos, Resistors, and Circuits

Lab 2.4 Arduinos, Resistors, and Circuits Lab 2.4 Arduinos, Resistors, and Circuits Objectives: Investigate resistors in series and parallel and Kirchoff s Law through hands-on learning Get experience using an Arduino hat you need: Arduino Kit:

More information

Aim: To learn the resistor color codes and building a circuit on a BreadBoard. Equipment required: Resistances, millimeter, power supply

Aim: To learn the resistor color codes and building a circuit on a BreadBoard. Equipment required: Resistances, millimeter, power supply Understanding the different components Aim: To learn the resistor color codes and building a circuit on a BreadBoard Equipment required: Resistances, millimeter, power supply Resistors are color coded

More information

Exercise 3: Power in a Series/Parallel Circuit

Exercise 3: Power in a Series/Parallel Circuit DC Fundamentals Power in DC Circuits Exercise 3: Power in a Series/Parallel Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the power dissipated in a series/

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 NETWORK ANALYSIS OBJECTIVES The purpose of this experiment is to mathematically analyze a circuit

More information

Experiment #3: Experimenting with Resistor Circuits

Experiment #3: Experimenting with Resistor Circuits Name/NetID: Experiment #3: Experimenting with Resistor Circuits Laboratory Outline During the semester, the lecture will provide some of the mathematical underpinnings of circuit theory. The laboratory

More information

Lab #6: Op Amps, Part 1

Lab #6: Op Amps, Part 1 Fall 2013 EELE 250 Circuits, Devices, and Motors Lab #6: Op Amps, Part 1 Scope: Study basic Op-Amp circuits: voltage follower/buffer and the inverting configuration. Home preparation: Review Hambley chapter

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel Electrical Circuits I (ENG 2405) Chapter 2 Ohm s Law, KCL, KVL, esistors in Series/Parallel esistivity Materials tend to resist the flow of electricity through them. This property is called resistance

More information

Configurations of Resistors

Configurations of Resistors Configurations of Resistors Safety and Equipment Multimeter with probes or banana leads. Two of 50Ω and one of 100Ω resistors 5 connecting wires with double alligator clips Introduction There are two basic

More information

Experiment 3 Ohm s Law

Experiment 3 Ohm s Law Experiment 3 Ohm s Law The goals of Experiment 3 are: To identify resistors based upon their color code. To construct a two-resistor circuit using proper wiring techniques. To measure the DC voltages and

More information

Multimeter Introduction

Multimeter Introduction Multimeter Introduction Abstract The general aim of this lab is to introduce you to the proper use of a digital multimeter with its associated uncertainties and to show how to propagate those uncertainties.

More information

EE1020 Diodes and Resistors in Electrical Circuits Spring 2018

EE1020 Diodes and Resistors in Electrical Circuits Spring 2018 PURPOSE The purpose of this project is for you to become familiar with some of the language, parts, and tools used in electrical engineering. You will also be introduced to some simple rule and laws. MATERIALS

More information

Series and Parallel Resistors

Series and Parallel Resistors Series and Parallel Resistors Today you will investigate how connecting resistors in series and in parallel affects the properties of a circuit. You will assemble several circuits and measure the voltage

More information

Experiment 1 Basic Resistive Circuit Parameters

Experiment 1 Basic Resistive Circuit Parameters Experiment 1 Basic Resistive Circuit Parameters Report Due In-class on Wed., Mar. 14, 2018 Note: (1) The Prelab section must be completed prior to the lab period. (2) All submitted lab reports should have

More information

Lab #1 Help Document. This lab will be completed in room 335 CTB. You will need to partner up for this lab in groups of two.

Lab #1 Help Document. This lab will be completed in room 335 CTB. You will need to partner up for this lab in groups of two. Lab #1 Help Document This help document will be structured as a walk-through of the lab. We will include instructions about how to write the report throughout this help document. This lab will be completed

More information

ECE 53A: Fundamentals of Electrical Engineering I

ECE 53A: Fundamentals of Electrical Engineering I ECE 53A: Fundamentals of Electrical Engineering I Laboratory Assignment #1: Instrument Operation, Basic Resistor Measurements and Kirchhoff s Laws Fall 2007 General Guidelines: - Record data and observations

More information

EE 448 Fall Lab Experiment No. 3 04/04/2008. Transformer Experiment

EE 448 Fall Lab Experiment No. 3 04/04/2008. Transformer Experiment EE 8 Laboratory Experiment 3 EE 8 Fall 2008 Lab Experiment No. 3 0/0/2008 1 I. INTRODUCTION OBJECTIVES: EE 8 Laboratory Experiment 3 1. To learn how real world transformers operate under ideal conditions.

More information

EET140/3 ELECTRIC CIRCUIT I

EET140/3 ELECTRIC CIRCUIT I SCHOOL OF ELECTRICAL SYSTEM ENGINEERING UNIVERSITI MALAYSIA PERLIS EET140/3 ELECTRIC CIRCUIT I MODULE 1 PART I: INTRODUCTION TO BASIC LABORATORY EQUIPMENT PART II: OHM S LAW PART III: SERIES PARALEL CIRCUIT

More information

Lab 1: Basic Lab Equipment and Measurements

Lab 1: Basic Lab Equipment and Measurements Abstract: Lab 1: Basic Lab Equipment and Measurements This lab exercise introduces the basic measurement instruments that will be used throughout the course. These instruments include multimeters, oscilloscopes,

More information

Unit 7 Parallel Circuits

Unit 7 Parallel Circuits Unit 7 Parallel Circuits Objectives: Unit 7 Parallel Circuits Discuss the characteristics of parallel circuits. State the three rules for solving electrical values of resistance for parallel circuits.

More information

Lab. 1: Simple Linear Circuit Analysis

Lab. 1: Simple Linear Circuit Analysis Lab. 1: Simple Linear Circuit Analysis Philippe Piot (February 9th, 27) 1. Ohm's Law The circuit shown in Figure 1 was built with resistance R=1 and then 1 kω. For these two values of the resistance, the

More information

Lab Equipment. PES 2160 Prelab Questions. Name: Lab Station: 005

Lab Equipment. PES 2160 Prelab Questions. Name: Lab Station: 005 ** Disclaimer: This prelab is not to be copied, duplicated, and/or distributed, in whole or in part, unless approval is received from the University of Colorado at Colorado Springs Physics Department AND

More information

ENGR 120 LAB #2 Electronic Tools and Ohm s Law

ENGR 120 LAB #2 Electronic Tools and Ohm s Law ENGR 120 LAB #2 Electronic Tools and Ohm s Law Objectives Understand how to use a digital multi-meter, power supply and proto board and apply that knowledge to constructing circuits to demonstrate ohm

More information

Electric Circuits. Have you checked out current events today?

Electric Circuits. Have you checked out current events today? Electric Circuits Have you checked out current events today? Circuit Symbolism We can simplify this circuit by using symbols All circuits have an energy source and a load, with wires completing the loop

More information

Materials: resistors: (5) 1 kω, (4) 2 kω, 2.2 kω, 3 kω, 3.9 kω digital multimeter (DMM) power supply w/ leads breadboard, jumper wires

Materials: resistors: (5) 1 kω, (4) 2 kω, 2.2 kω, 3 kω, 3.9 kω digital multimeter (DMM) power supply w/ leads breadboard, jumper wires Lab 6: Electrical Engineering Technology References: 1. Resistor (electronic) color code: http://en.wikipedia.org/wiki/electronic_color_code 2. Resistor color code tutorial: http://www.michaels-electronics-lessons.com/resistor-color-code.html

More information

Lab 2: DC Circuits Lab Assignment

Lab 2: DC Circuits Lab Assignment 2 class days 1. I-V curve for various components Source: Curtis, 1.2.1. (HH 1.1, 1.2, 1.3) Lab 2: DC Circuits Lab Assignment A passive element is a two-contact device that contains no source of power or

More information

EECS 100/43 Lab 1 Sources and Resistive Circuits

EECS 100/43 Lab 1 Sources and Resistive Circuits 1. Objective EECS 100/43 Lab 1 Sources and Resistive Circuits In this lab, you learn how to use the basic equipment on your workbench: the breadboard, power supply and multimeter. You use the breadboard

More information

EET 1150 Lab 6 Ohm s Law

EET 1150 Lab 6 Ohm s Law Name EQUIPMENT and COMPONENTS Digital Multimeter Trainer with Breadboard Resistors: 220, 1 k, 1.2 k, 2.2 k, 3.3 k, 4.7 k, 6.8 k Red light-emitting diode (LED) EET 1150 Lab 6 Ohm s Law In this lab you ll

More information

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Fundamentals of Electric Circuits Chapter 2 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Overview This chapter will introduce Ohm s law: a central concept

More information

Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The

Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The 1 Lab 1a Input and Output Impedance Fig. 1: (a) Complicated circuit. (b) Its Thévenin equivalent Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The circuit

More information

R V I P. i 1 = i 2 = I total. Kirchoff s Laws and Their Use for Circuit Analysis. Equations. Kirchoff s Laws. V=IR i

R V I P. i 1 = i 2 = I total. Kirchoff s Laws and Their Use for Circuit Analysis. Equations. Kirchoff s Laws. V=IR i Kirchoff s Laws and Their Use for Circuit Analysis Equations s i V=I i P=IV p i i Kirchoff s Laws Loop Law The total potential change around a closed circuit equals zero. Current Law for a Point For an

More information

Check out from stockroom:! Servo! DMM (Digital Multi-meter)

Check out from stockroom:! Servo! DMM (Digital Multi-meter) Objectives 1 Teach the student to keep an engineering notebook. 2 Talk about lab practices, check-off, and grading. 3 Introduce the lab bench equipment. 4 Teach wiring techniques. 5 Show how voltmeters,

More information

LABORATORY MODULE. ENT 163 Fundamental of Electrical Engineering Semester 1 (2006/2007) EXPERIMENT 4: Thevenin s and Norton s Theorem

LABORATORY MODULE. ENT 163 Fundamental of Electrical Engineering Semester 1 (2006/2007) EXPERIMENT 4: Thevenin s and Norton s Theorem LABORATORY MODULE ENT 163 Fundamental of Electrical Engineering Semester 1 (2006/2007) EXPERIMENT 4: Thevenin s and Norton s Theorem Name Matrix No. : : School of Mechatronic Engineering Northern Malaysia

More information

DC Circuits. Date: Introduction

DC Circuits. Date: Introduction Group # Date: Names: DC Circuits Introduction In this experiment you will examine how to make simple DC measurements that involve current, voltage, and resistance. The current I through a resistor R with

More information

Lab 3: Kirchhoff's Laws and Basic Instrumentation

Lab 3: Kirchhoff's Laws and Basic Instrumentation Lab 3: Kirchhoff's Laws and Basic Instrumentation By: Gary A. Ybarra Christopher E. Cramer Duke Universty Department of Electrical and Computer Engineering Durham, NC 1. Purpose The purpose of this exercise

More information

Exercise 2: Ohm s Law Circuit Current

Exercise 2: Ohm s Law Circuit Current Exercise 2: Circuit Current EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine current by using Ohm s law. You will verify your results with a multimeter. DISCUSSION

More information

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME GTA S SIGNATURE LAB MEETING TIME Objectives: To correctly operate the

More information

Experiment 2 Electric Circuit Fundamentals

Experiment 2 Electric Circuit Fundamentals Experiment 2 Electric Circuit Fundamentals Introduction This experiment has two parts. Each part will have to be carried out using the Multisim Electronics Workbench software. The experiment will then

More information

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS The purpose of this document is to guide students through a few simple activities to increase familiarity with basic electronics

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C03 TUTORIAL 4 ELECTRICAL RESISTANCE On completion of this tutorial you should be able to do the following. Explain resistance and resistors. Explain

More information

Lab 2 Electrical Safety, Breadboards, Using a DMM

Lab 2 Electrical Safety, Breadboards, Using a DMM Lab 2 Electrical Safety, Breadboards, Using a DMM Objectives concepts 1. Safety hazards related to household electricity and electronics equipment 2. Differences between schematic and breadboard representations

More information

San Francisco State University. School of Engineering

San Francisco State University. School of Engineering 1 San Francisco State University School of Engineering ENGR 300 ENGR EXPERIMENATION Final Project: MULTI SOURCE CIRCUITS ANALYSIS TECHNIQUES Submitted By: Kuan Keong Austin Yiu Yin Yin Wu March 8, 2005

More information

(%) ex Blue-Black-Brown-Gold 600 Ω ± 5% ± 30 1

(%) ex Blue-Black-Brown-Gold 600 Ω ± 5% ± 30 1 ** Disclaimer: This Lab is not to be copied, duplicated, and/or distributed, in whole or in part, unless approval is received from the University of Colorado at Colorado Springs Physics Department AND

More information

Lab 5 Kirchhoff s Laws and Superposition

Lab 5 Kirchhoff s Laws and Superposition Lab 5 Kirchhoff s Laws and Superposition In this lab, Kirchhoff s laws will be investigated using a more complex circuit than in the previous labs. Two voltage sources and seven resistors are included

More information

1 xx refers to the Figure number; 1 for Figure 1, 2 for Figure 2, etc.

1 xx refers to the Figure number; 1 for Figure 1, 2 for Figure 2, etc. Lab Experiment No. Voltage and Current Maps I. Introduction The purpose of this lab is to gain additional familiarity with making measurements on electrical networks. The experiments involved in this lab

More information

Lab Exercise # 9 Operational Amplifier Circuits

Lab Exercise # 9 Operational Amplifier Circuits Objectives: THEORY Lab Exercise # 9 Operational Amplifier Circuits 1. To understand how to use multiple power supplies in a circuit. 2. To understand the distinction between signals and power. 3. To understand

More information

Lab 3 DC CIRCUITS AND OHM'S LAW

Lab 3 DC CIRCUITS AND OHM'S LAW 43 Name Date Partners Lab 3 DC CIRCUITS AND OHM'S LAW AMPS + - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit. To understand

More information

Introduction to the Laboratory

Introduction to the Laboratory Memorial University of Newfoundland Department of Physics and Physical Oceanography Physics 2055 Laboratory Introduction to the Laboratory The purpose of this lab is to introduce you to some of the equipment

More information

BME 3511 Bioelectronics I - Laboratory Exercise #2. Series Resistive Circuits

BME 3511 Bioelectronics I - Laboratory Exercise #2. Series Resistive Circuits BME 3511 Bioelectronics I - Laboratory Exercise #2 Series Resistive Circuits Introduction: Electrical measurements are essential techniques for trouble shooting electronic equipment/circuits. The three

More information

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits 1. Objective AC Circuits In this lab, the student will study sinusoidal voltages and currents in order to understand frequency, period, effective value, instantaneous power and average power. Also, the

More information

Electric Circuit Experiments

Electric Circuit Experiments Electric Circuit Experiments 1. Using the resistor on the 5-resistor block, vary the potential difference across it in approximately equal increments for eight different values (i.e. use one to eight D-

More information

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE LABORATORY 6: INTRODUCTION TO BREADBOARDS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOAL: This section introduces

More information

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M 2.4 Laboratory Procedure / Summary Sheet Group: Names: (1) Select five separate resistors whose nominal values are listed below. Record the band colors for each resistor in the table below. Then connect

More information

vi. Apply 3V DC to your circuit network and measure the current through each resistor vii. Verify Kirchhoff s Current Law

vi. Apply 3V DC to your circuit network and measure the current through each resistor vii. Verify Kirchhoff s Current Law Lab Experiment No. EE1106, Fall 201 Connections I. Introduction In this lab exercise, you will learn how to read schematic diagrams of electronic networks, how to transform schematics into actual element

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering -

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - Electrical Engineering Science Laboratory Manual Table of Contents Safety Rules and Operating Procedures... 3 Troubleshooting Hints... 4 Experiment

More information

DC CIRCUITS AND OHM'S LAW

DC CIRCUITS AND OHM'S LAW July 15, 2008 DC Circuits and Ohm s Law 1 Name Date Partners DC CIRCUITS AND OHM'S LAW AMPS - VOLTS OBJECTIVES OVERVIEW To learn to apply the concept of potential difference (voltage) to explain the action

More information

Prelab 4 Millman s and Reciprocity Theorems

Prelab 4 Millman s and Reciprocity Theorems Prelab 4 Millman s and Reciprocity Theorems I. For the circuit in figure (4-7a) and figure (4-7b) : a) Calculate : - The voltage across the terminals A- B with the 1kΩ resistor connected. - The current

More information

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Spring 2006 Date: Lab Section #: Lab #2

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Spring 2006 Date: Lab Section #: Lab #2 EE 101 Spring 2006 Date: Lab Section #: Lab #2 Name: Ohm s and Kirchhoff s Circuit Laws Abstract Rev. 20051222JPB Partner: Electrical circuits can be described with mathematical expressions. In fact, it

More information

Unit 3.C Electrical Theory, Circuits Essential Fundamentals of Electrical Theory, Circuits

Unit 3.C Electrical Theory, Circuits Essential Fundamentals of Electrical Theory, Circuits Unit 3.C Electrical Theory, Circuits Essential Fundamentals of Electrical Theory, Circuits Early Booklet E.C.: + 1 Unit 3.C Hwk. Pts.: / 36 Unit 3.C Lab Pts.: / 50 Late, Incomplete, No Work, No Units Fees?

More information

EK307 Introduction to the Lab

EK307 Introduction to the Lab EK307 Introduction to the Lab Learning to Use the Test Equipment Laboratory Goal: Become familiar with the test equipment in the electronics laboratory (PHO105). Learning Objectives: Voltage source and

More information

Experiment A3 Electronics I Procedure

Experiment A3 Electronics I Procedure Experiment A3 Electronics I Procedure Deliverables: Checked lab notebook, Brief technical memo Overview Most of the transducers used in modern engineering applications are electronic, meaning they convert

More information

HANDS-ON ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND WIRING DIRECTIONS

HANDS-ON ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND WIRING DIRECTIONS ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND Make sure you read the background in Activity 3 before doing this activity. WIRING DIRECTIONS Materials per group of two: one or two D-cells

More information

Lecture Week 4. Homework Voltage Divider Equivalent Circuit Observation Exercise

Lecture Week 4. Homework Voltage Divider Equivalent Circuit Observation Exercise Lecture Week 4 Homework Voltage Divider Equivalent Circuit Observation Exercise Homework: P6 Prove that the equation relating change in potential energy to voltage is dimensionally consistent, using the

More information

Circuit Models. Lab 5

Circuit Models. Lab 5 Circuit Models Lab 5 1 Equipment List DC power supply Decade resistance box (2) 1.5kΩ, 2.2kΩ, 560Ω 2 Circuit Models Any circuit can be modeled by either a Thevenin or a Norton model Any circuit whose output

More information

iv. Obtain this resistor from the lab GTA and connect it into the network.

iv. Obtain this resistor from the lab GTA and connect it into the network. Lab Experiment No. esistor Connections I. Introduction In this lab exercise, you will learn how to read schematic diagrams of electronic networks, how to transform schematics into actual element connections,

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 2 BASIC CIRCUIT ELEMENTS OBJECTIVES The purpose of this experiment is to familiarize the student with

More information

Notes on Experiment #3

Notes on Experiment #3 Notes on Experiment #3 This week you learn to measure voltage, current, and resistance with the digital multimeter (DMM) You must practice measuring each of these quantities (especially current) as much

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 1 MAXIMUM POWER TRANSFER OBJECTIVES In this experiment the student will investigate the circuit requirements

More information

Lightbulbs and Dimmer Switches: DC Circuits

Lightbulbs and Dimmer Switches: DC Circuits Introduction It is truly amazing how much we rely on electricity, and especially on devices operated off of DC current. Your PDA, cell phone, laptop computer and calculator are all examples of DC electronics.

More information

+ A Supply B. C Load D

+ A Supply B. C Load D 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory PC1222 Fundamentals of Physics II Basic Circuits 1 Objectives Investigate the relationship among three variables (resistance, current and voltage) in direct current circuits. Investigate the behaviours

More information

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax Revision: Jan 29, 2011 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The purpose of this lab assignment is to provide users with an introduction to some of the equipment which

More information

Pre-Lab for Batteries and Bulbs

Pre-Lab for Batteries and Bulbs Pre-Lab for Batteries and Bulbs Complex circuits composed of resistors can be simplified by using the concept of equivalent resistors. For example if resistors R 1, R 2, and R 3 are connected in series,

More information

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit.

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit. OHM S LW OBJECTIES: PRT : 1) Become familiar with the use of ammeters and voltmeters to measure DC voltage and current. 2) Learn to use wires and a breadboard to build circuits from a circuit diagram.

More information

Electric Circuit I Lab Manual Session # 2

Electric Circuit I Lab Manual Session # 2 Electric Circuit I Lab Manual Session # 2 Name: ----------- Group: -------------- 1 Breadboard and Wiring Objective: The objective of this experiment is to be familiar with breadboard and connection made

More information

RESISTANCE & OHM S LAW (PART I

RESISTANCE & OHM S LAW (PART I RESISTANCE & OHM S LAW (PART I and II) Objectives: To understand the relationship between potential and current in a resistor and to verify Ohm s Law. To understand the relationship between potential and

More information

Instrument Usage in Circuits Lab

Instrument Usage in Circuits Lab Instrument Usage in Circuits Lab This document contains descriptions of the various components and instruments that will be used in Circuit Analysis laboratory. Descriptions currently exist for the following

More information