The bit error rate can be measured and plotted in terms of Carrier/Noise ( C/N ), or it can be in terms of E b /N o..

Size: px
Start display at page:

Download "The bit error rate can be measured and plotted in terms of Carrier/Noise ( C/N ), or it can be in terms of E b /N o.."

Transcription

1 BER Testing - NRZ-MSB-Doubled 6/22/12 This report contains data obtained from measurements made in 2000 and 2004 using VMSK, MCM and NRZ-MSB ( degree ). New data is then added from June 2012 for NRZ-MSB doubled. Chapter 14. Modified from UNB Textbook Measuring Bit Error Rate ( BER ) The BER, or quality of the digital link, is calculated from the number of bits received in error related to the number of bits transmitted. BER= (Bits in Error)/(Total bits received) The bit error rate can be measured and plotted in terms of Carrier/Noise ( C/N ), or it can be in terms of E b /N o.. In order to obtain a level playing field for the comparison of digital modulation methods, engineers have adopted the E b /N o standard. That is - bit energy divided by the noise power that passes the bandpass of the filter. The bit energy E b is = (Signal Power)/(Data Rate (b/s) ** ) The noise power per Hz of bandwidth ( N o, or η ) is = (Noise Power)/(Noise Filter Bandwidth(Hz)) Noise /Hz must be multiplied by BW to obtain total noise power. SignalPower Eb BitRate Es NoisePower FilterBW Eb SignalPower C NoisePower N EQ. 1. ( If the bit rate and filter BW are equal ) If the noise BW equals the bit rate then E b /N o = C/N. The letter Tau is the time for 1IF cycle. Since the true bit rate on a cycle per cycle basis is equal to the IF frequency, which is equal to the sampling rate, which is equal to the zero group delay Nyquist filter bandwidth, the above equation is valid for MSB. ( BR = BW ). This is cycle by cycle calculation. Traditionally this is "Energy per Transmitted Symbol", where the sample is 1 symbol period. When using MSB modulation, this changes to "Energy per IF cycle, or energy per sample", since the zero group delay filter and synchronous detector sample at the IF frequency and not at the data symbol rate. The noise BW is also much smaller, but with a Nyquist BW equal to the IF. This is compensated for in the equations if the bit rate is assumed to be equal to the IF frequency instead of the actual bit rate, since theoretically, the sampling on each cycle could determine a new bit difference each IF sampled cycle. See post detection correction factor in Equation 7. 1

2 A 2 SignalPower SNR sin m Eq. 2 NoisePower Signal Power/Noise Power = SNR = C/N, for m = +-90 degree, or missing cycle modulation. The detector reference tuning can keep m at 90 degrees, which causes QPSK to have the same SNR as BPSK. ( Ref. 11 ). The same applies for 3PSK and NRZ-MSB The measurements of signal power and noise power are made with a True RMS voltmeter. The load impedance can be ignored since it is the same for both. The measured ratio is C/N, or (carrier volts)/(noise volts). The standard method used to measure E b /N o is to use a white noise generator having an output bandwidth at least 4 times the bandwidth of the receiver filter to insure uniform noise distribution. ( Ref. 3 ). Receiver Filter Noise Filter Measuring Eb/No Fig Title {T itle} Siz e D oc u ment N umber R ev {D o c } {R e v C ode } D ate: Sun day, D ec e mber 0 5, She et 1 of 1 If the measurements are made after the receiver filter, the measured C/N ratio can be used without bothering to calculate the actual values of E b, or N o. Fig Test Set Noise Generator Output. Note 5 db per div. scale. This is the noise spectrum utilized for MSB testing. The noise bandwidth spread in Fig is approximately 18 khz at the 3 db points, which is considered the same as a rectangular 2

3 filter BW, which is many times as wide as the 500 Hz 3dB noise bandwidth of the ultra narrow band filters The filter is a series emitter filter with ceramic resonator... ( The filter overload threshold from noise = -- approximately 16 db ). Filter overload - the reason for limiting noise BW, is discussed in Textbook Appendix 5. Do not measure with a fixed data pattern Carrier to Noise Ratio and erfc values db 4 db 6 db 8 db 10 db MCM-MSB BPSK-erfc Differential BPSK Measured for MSB ` Fig The Measured C/N for MCM or MSB and the theoretical value for BPSK. The MCM/MSB curve does not follow the BPSK curve due to the post detection factor The MSB curve applies to VMSK as well. The C/N measured here is the post detection C/N,( Eq. 7.) ( Ref 5 ). which accounts for the 3dB difference between this curve and Fig All UNB methods are 1 bit/sec./hz methods where C/N = E b /N o = SNR. ( Measurements - VMSK 1999, MCM 2000, NRZ-MSB 2004, NRZ-MSB doubled 2012 ). Measurements using either VMSK or MSB show this post detection value to be valid. A 10-6 BER when Q = 2.23 ( = 6.9 db ) instead of 3.28 is measured using RMS values for both E an N as shown in Fig See Fig Note slight difference in data here where 7.5 db = Q = E/N = It was found the LG - SA 7270 spectrum analyzer could be used instead of a true RMS voltmeter when set for 1 khz RBW and 10Hz VBW. 3

4 E/N E peak/n rms RMS/RMS 2 1 Post Det. RMS/RMS Figure The approximate Q values plotted for Signal E s and Noise. Note the convergence of Q probability toward zero for a 50% BER, whereas SNR would converge to 1.0. Q =.477 for 50% BER. The upper line ( Epeak/Nrms ) corresponds to the Q function table. The bit error rate for Ultra Narrow band modulation follows the Q probability curve. If the voltage measurements are Es peak and the noise is RMS, use the upper curve, which is the Q function plot. If both are RMS, as would be obtained from a true RMS meter, use the center curve. For post detection measurements, the E/N is.7 that for pre -detection, use the lower curve. See Eq. 7 at end. ( Eq ).( Ref 5 ) It makes little or no difference what the correction factor for Q is to obtain a BER above Shannon s Limit. Shannon s Limit is still E/N = 1, or 0 db SNR. ( Equations 15.1 and 15.9 ). P e = ½ erfc [SNR] ½ = ½ erfc [E s /N o ] ½ Eq. 3 These are power ratios, not voltage ratios for A/N as used below.. A 1 A Pe Q erfc 2 N = Probability of Error (BER ) Eq. 4. A = V signal voltage peak, σ = RMS noise voltage, N = peak noise voltage. 4

5 Note the correction for Peak or RMS above.( post detection 2E b /N o not included ). 1 z 1 z Q( z) 1 erf erfc erfc( z) 2Q 2 z ****** erf ( z) 12Q 2z **** see discrepancy note at end. z = peak signal voltage/rms noise voltage. Noise is assumed to be RMS., which becomes N = peak noise when multiplied by 1.4. See Figure 15.3 for measurements when both are RMS. Q is the Gaussian probability density function. erf is the error function. erfc is the complimentary error function.. The erfc curve is plotted in db in Fig and numerically as the center curve in There is a probability of error in using these equations if power and volts are mistakenly interchanged. P E 1 S volts erfc 2 N volts Eq. 5. Eb ( IF) E s E s BitRate Ns Ns Eq. 6. When using negative group delay filters, the Nyquist bandwidth for the noise filter BW is equal to the intermediate frequency. Bit rate = Sampling rate is also at the IF. All values are on a cycle by cycle basis. ( See Eq. 1 ). RMS voltage values are measured with a true RMS meter. Change this as necessary to get power levels. These changes are necessary for the exact P E. to match C/N. UNB modulation is end to end pulse width amplitude modulation. It is not phase modulation as normally produced and understood. The signal is generated by pulsing on phase one for a digital one and pulsing on phase 2 for a digital zero. If only ones are pulsed using phase one ( no signal = zero ), the signal is the same as and usable as ordinary AM pulsing. ( As in RADAR ). If both are pulsed using different phases, the signal becomes similar to BPSK. BPSK has no carrier, therefore the 90 degree phase modulation method of NRZ-MSB is used to keep the carrier. It is then doubled to obtain 180 degrees of phase shift. The C/N necessary for a 10-6 BER using AM with carrier is published as 13.5 db. The C/N necessary for 10-6 BER using BPSK ( Suppressed carrier ) is published as 10.5 db. When the sidebands are not used, the C/N for a given BER can be lower than for BPSK. VMSK for example, measures at 7.5 db for 10-6 BER., as do some other single frequency UNB methods. 5

6 Output of AD8306 as limiter and TRUE RMS measuring chip.. The AD8306 is used when the levels are too low for the HP3403 True RMS meter to read reliably. ( below 5 mv.) True RMS measurement is obtainable from the RSSI of the AD8306. The scale is 20 millivolts per db. Readings are available below those obtainable from the HP

7 erfc table to be used in calculating P E from P e = ½ erfc [SNR] ½ = ½ erfc [A/N] SNR is the power ratio. A/N is a voltage ratio. Both values measured as true RMS. 7

8 Apeak 1 A peak 1 A rms Pe Q erfc erfc rms 2 Npeak 2 Nrms Quote from Bellamy ( Ref. 5 ) on Post detection correction. Equation C.34 pp492. Since pre-detection SNRs are measured prior to band limiting the noise, a noise bandwidth must be hypothesized to establish a finite noise power. Commonly, a bit rate bandwidth 1/T s, or a Nyquist baseband bandwidth 1/2T s, is specified. The latter specification produces----. SNR = 2(E b / N 0 ), where SNR is measured at the detector. It is called post detection SNR because it is at the output of the signal processing circuitry. ( Bellamy [15.7] Eq. C34 ). Eb SNR (2) Since P e = ½ erfc [SNR] ½ the post detection level is improved 3 db. This can be seen in Figures 14.3 and Eq C.34 Eq. 7. 8

9 A way to visualize this is to note that a data pattern waveform has a frequency of 1/2 the sampling rate. O, the baseband bandwidth is 1/2 the RF bandwidth. Discrepancy.: Conversion from Q to erfc does not correspond to data entered. For BER = 10-3, Q = erfc = erfc x 1.4 = 3.05, or 3.05/1.4 =2.17 which matches formulas. ***** is from references. Epeak 1 Epeak 1 Epeak 1 Erms Q 1 erf erfc erfc Nrms 2 2N N rms Nrms rms erfc( z) 2Q 2 z ****** error erfc( z) Q / 2 Q 2 erfc( z) **** 2 x 3.05(1.4(z)) from references does not match erfc. Other formulas are correct. References: 1) K. Feher, Wireless Digital Communications, Prentice Hall 2) D. Pleasant, Practical Simulation of Bit Error Rates, Applied Microwaves & Wireless Magazine, Winter 94. 3) E. Franke & J. Wunderlich, Practical BER Measurements. Paper- R.F. Expo, West, Jan ) A.B. Carlson, Communications Systems, McGraw Hill M-ary OFDM 5) J.C. Bellamy, Digital telephony, John Wiley Details of Pre and Post detection. 6) H.R. Walker, Modulation Analysis Vol 13, Encyclopedia of Electrical and Electronic Engineering, John Wiley -also Applied Microwaves and Wireless magazine, July/Aug 1997 (7) Mischa Schwartz, Information Transmission, Modulation and Noise. McGraw Hill Sampling and Shannon Details. (8) Proakis and Saleh, Communications System Engineering Prentice Hall, (9) K. Feher, "Telecommunications Measurements, Analysis, and Instrumentation" Noble Publishing, Atlanta, Ga. (10) R. E. Best, "Phase Locked Loops" McGraw Hill. (11) B. Sklar, "Digital Communications", Prentice Hall, Equipment Used: 1)HP3780A Pattern Generator/Error Detector ( Useful to 50 Mb/s) 2)NoiseCom AWGN generator with output to 100 MHz. -5 dbm peak, 3)Series Emitter bandpass filter to reduce noise BW to prevent receiver filter overload.( Pegasus ) 4)AD8306 Test Board. 5) NRZ-MSB Doubled signal modulator driven by HP3780A. UNB with all sidebands reduced. 6) UNB receiver at 48 MHz with phase shift detection and sidebands reduced more than 26 db. Filter 3dB BW = 500 Hz.. ( filter overload threshold from noise = -- approximately 16 db ). 9

NRZ 1 NRZ 1 NRZ 0 NRZ 0 NRZ 0

NRZ 1 NRZ 1 NRZ 0 NRZ 0 NRZ 0 Minimum Sideband Keying with NRZ Input. GPSK/GMSK Equivalent without Sidebands Showing the effects of negative group delay filtering on abrupt phase change modulation H.R. Walker (Reviewed //0) Abstract:

More information

ECE 4600 Communication Systems

ECE 4600 Communication Systems ECE 4600 Communication Systems Dr. Bradley J. Bazuin Associate Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Course Topics Course Introduction

More information

Digital Modulation Schemes

Digital Modulation Schemes Digital Modulation Schemes 1. In binary data transmission DPSK is preferred to PSK because (a) a coherent carrier is not required to be generated at the receiver (b) for a given energy per bit, the probability

More information

Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators

Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Noise is an unwanted signal. In communication systems, noise affects both transmitter and receiver performance. It degrades

More information

D ata transmission at 320 kb/s in the bandwidth

D ata transmission at 320 kb/s in the bandwidth Using VPSK in a Digital Cordless Telephone/Videophone/ISDN Modem Variable Phase Shift Keying (VPSK) offers increased data rate over simpler modulation types with only a small increase in bandwidth, which

More information

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61)

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) Module 1 1. Explain Digital communication system with a neat block diagram. 2. What are the differences between digital and analog communication systems?

More information

1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function.

1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function. 1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function. Matched-Filter Receiver: A network whose frequency-response function maximizes

More information

Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel

Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel Oyetunji S. A 1 and Akinninranye A. A 2 1 Federal University of Technology Akure, Nigeria 2 MTN Nigeria Abstract The

More information

Effect of AWGN & Fading (Rayleigh & Rician) Channels on BER Performance of Free Space Optics (FSO) Communication Systems

Effect of AWGN & Fading (Rayleigh & Rician) Channels on BER Performance of Free Space Optics (FSO) Communication Systems Effect of AWGN & Fading (Rayleigh & Rician) Channels on BER Performance of Free Space Optics (FSO) Communication Systems Taissir Y. Elganimi Electrical and Electronic Engineering Department, University

More information

UNIT TEST I Digital Communication

UNIT TEST I Digital Communication Time: 1 Hour Class: T.E. I & II Max. Marks: 30 Q.1) (a) A compact disc (CD) records audio signals digitally by using PCM. Assume the audio signal B.W. to be 15 khz. (I) Find Nyquist rate. (II) If the Nyquist

More information

Sixth Semester B.E. Degree Examination, May/June 2010 Digital Communication Note: Answer any FIVEfull questions, selecting at least TWO questionsfrom each part. PART-A a. With a block diagram, explain

More information

University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2016

University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2016 University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2016 Title of Paper Course Number Time Allowed Instructions Digital Communication Systems

More information

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper Watkins-Johnson Company Tech-notes Copyright 1981 Watkins-Johnson Company Vol. 8 No. 6 November/December 1981 Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper All

More information

Optical Coherent Receiver Analysis

Optical Coherent Receiver Analysis Optical Coherent Receiver Analysis 7 Capella Court Nepean, ON, Canada K2E 7X1 +1 (613) 224-4700 www.optiwave.com 2009 Optiwave Systems, Inc. Introduction (1) Coherent receiver analysis Optical coherent

More information

EXPERIMENT WISE VIVA QUESTIONS

EXPERIMENT WISE VIVA QUESTIONS EXPERIMENT WISE VIVA QUESTIONS Pulse Code Modulation: 1. Draw the block diagram of basic digital communication system. How it is different from analog communication system. 2. What are the advantages of

More information

Dimensional analysis of the audio signal/noise power in a FM system

Dimensional analysis of the audio signal/noise power in a FM system Dimensional analysis of the audio signal/noise power in a FM system Virginia Tech, Wireless@VT April 11, 2012 1 Problem statement Jakes in [1] has presented an analytical result for the audio signal and

More information

OFDM Systems For Different Modulation Technique

OFDM Systems For Different Modulation Technique Computing For Nation Development, February 08 09, 2008 Bharati Vidyapeeth s Institute of Computer Applications and Management, New Delhi OFDM Systems For Different Modulation Technique Mrs. Pranita N.

More information

ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE Measurement Procedure for Noise Power Ratio

ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE Measurement Procedure for Noise Power Ratio ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 119 2006 Measurement Procedure for Noise Power Ratio NOTICE The Society of Cable Telecommunications Engineers

More information

Objectives. Presentation Outline. Digital Modulation Revision

Objectives. Presentation Outline. Digital Modulation Revision Digital Modulation Revision Professor Richard Harris Objectives To identify the key points from the lecture material presented in the Digital Modulation section of this paper. What is in the examination

More information

CH85CH2202-0/85/ $1.00

CH85CH2202-0/85/ $1.00 SYNCHRONIZATION AND TRACKING WITH SYNCHRONOUS OSCILLATORS Vasil Uzunoglu and Marvin H. White Fairchild Industries Germantown, Maryland Lehigh University Bethlehem, Pennsylvania ABSTRACT A Synchronous Oscillator

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

MSK has three important properties. However, the PSD of the MSK only drops by 10log 10 9 = 9.54 db below its midband value at ft b = 0.

MSK has three important properties. However, the PSD of the MSK only drops by 10log 10 9 = 9.54 db below its midband value at ft b = 0. Gaussian MSK MSK has three important properties Constant envelope (why?) Relatively narrow bandwidth Coherent detection performance equivalent to that of QPSK However, the PSD of the MSK only drops by

More information

Downloaded from 1

Downloaded from  1 VII SEMESTER FINAL EXAMINATION-2004 Attempt ALL questions. Q. [1] How does Digital communication System differ from Analog systems? Draw functional block diagram of DCS and explain the significance of

More information

Lecture 10 Performance of Communication System: Bit Error Rate (BER) EE4900/EE6720 Digital Communications

Lecture 10 Performance of Communication System: Bit Error Rate (BER) EE4900/EE6720 Digital Communications EE4900/EE6720: Digital Communications 1 Lecture 10 Performance of Communication System: Bit Error Rate (BER) Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video,

More information

MODULATION AND MULTIPLE ACCESS TECHNIQUES

MODULATION AND MULTIPLE ACCESS TECHNIQUES 1 MODULATION AND MULTIPLE ACCESS TECHNIQUES Networks and Communication Department Dr. Marwah Ahmed Outlines 2 Introduction Digital Transmission Digital Modulation Digital Transmission of Analog Signal

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference Large dynamic range required Many receivers must be capable

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

Estimation of Predetection SNR of LMR Analog FM Signals Using PL Tone Analysis

Estimation of Predetection SNR of LMR Analog FM Signals Using PL Tone Analysis Estimation of Predetection SNR of LMR Analog FM Signals Using PL Tone Analysis Akshay Kumar akshay2@vt.edu Steven Ellingson ellingson@vt.edu Virginia Tech, Wireless@VT May 2, 2012 Table of Contents 1 Introduction

More information

Year : TYEJ Sub: Digital Communication (17535) Assignment No. 1. Introduction of Digital Communication. Question Exam Marks

Year : TYEJ Sub: Digital Communication (17535) Assignment No. 1. Introduction of Digital Communication. Question Exam Marks Assignment 1 Introduction of Digital Communication Sr. Question Exam Marks 1 Draw the block diagram of the basic digital communication system. State the function of each block in detail. W 2015 6 2 State

More information

UWB Hardware Issues, Trends, Challenges, and Successes

UWB Hardware Issues, Trends, Challenges, and Successes UWB Hardware Issues, Trends, Challenges, and Successes Larry Larson larson@ece.ucsd.edu Center for Wireless Communications 1 UWB Motivation Ultra-Wideband Large bandwidth (3.1GHz-1.6GHz) Power spectrum

More information

Jitter Measurements using Phase Noise Techniques

Jitter Measurements using Phase Noise Techniques Jitter Measurements using Phase Noise Techniques Agenda Jitter Review Time-Domain and Frequency-Domain Jitter Measurements Phase Noise Concept and Measurement Techniques Deriving Random and Deterministic

More information

MODULATION METHODS EMPLOYED IN DIGITAL COMMUNICATION: An Analysis

MODULATION METHODS EMPLOYED IN DIGITAL COMMUNICATION: An Analysis International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 12 No: 03 85 MODULATION METHODS EMPLOYED IN DIGITAL COMMUNICATION: An Analysis Adeleke, Oluseye A. and Abolade, Robert O. Abstract

More information

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions

More information

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc.

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc. SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter Datasheet Rev 1.2 2017 SignalCore, Inc. support@signalcore.com P R O D U C T S P E C I F I C A T I O N S Definition of Terms The following terms are used

More information

Principles of Communications

Principles of Communications Principles of Communications Meixia Tao Shanghai Jiao Tong University Chapter 8: Digital Modulation Techniques Textbook: Ch 8.4 8.5, Ch 10.1-10.5 1 Topics to be Covered data baseband Digital modulator

More information

Wireless Communication Systems Laboratory Lab#1: An introduction to basic digital baseband communication through MATLAB simulation Objective

Wireless Communication Systems Laboratory Lab#1: An introduction to basic digital baseband communication through MATLAB simulation Objective Wireless Communication Systems Laboratory Lab#1: An introduction to basic digital baseband communication through MATLAB simulation Objective The objective is to teach students a basic digital communication

More information

Chapter 4 Radio Communication Basics

Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics RF Signal Propagation and Reception Basics and Keywords Transmitter Power and Receiver Sensitivity Power - antenna gain: G TX,

More information

Convolutional Coding Using Booth Algorithm For Application in Wireless Communication

Convolutional Coding Using Booth Algorithm For Application in Wireless Communication Available online at www.interscience.in Convolutional Coding Using Booth Algorithm For Application in Wireless Communication Sishir Kalita, Parismita Gogoi & Kandarpa Kumar Sarma Department of Electronics

More information

Columbia University. Principles of Communication Systems ELEN E3701. Spring Semester May Final Examination

Columbia University. Principles of Communication Systems ELEN E3701. Spring Semester May Final Examination 1 Columbia University Principles of Communication Systems ELEN E3701 Spring Semester- 2006 9 May 2006 Final Examination Length of Examination- 3 hours Answer All Questions Good Luck!!! I. Kalet 2 Problem

More information

ECE 440L. Experiment 1: Signals and Noise (1 week)

ECE 440L. Experiment 1: Signals and Noise (1 week) ECE 440L Experiment 1: Signals and Noise (1 week) I. OBJECTIVES Upon completion of this experiment, you should be able to: 1. Use the signal generators and filters in the lab to generate and filter noise

More information

S Transmission Methods in Telecommunication Systems (5 cr) Tutorial 4/2007 (Lectures 6 and 7)

S Transmission Methods in Telecommunication Systems (5 cr) Tutorial 4/2007 (Lectures 6 and 7) S-7.1140 Transmission Methods in Telecommunication Systems (5 cr) Tutorial 4/007 (Lectures 6 and 7) 1 1. Line Codes / Johtokoodit Sketch beneath each other line codes Manchester, Differential Manchester

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY 2 Basic Definitions Time and Frequency db conversion Power and dbm Filter Basics 3 Filter Filter is a component with frequency

More information

Fiber Optic Communication Link Design

Fiber Optic Communication Link Design Fiber Optic Communication Link Design By Michael J. Fujita, S.K. Ramesh, PhD, Russell L. Tatro Abstract The fundamental building blocks of an optical fiber transmission link are the optical source, the

More information

Key words: OFDM, FDM, BPSK, QPSK.

Key words: OFDM, FDM, BPSK, QPSK. Volume 4, Issue 3, March 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analyse the Performance

More information

Digital modulation techniques

Digital modulation techniques Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

Introduction to Single Chip Microwave PLLs

Introduction to Single Chip Microwave PLLs Introduction to Single Chip Microwave PLLs ABSTRACT Synthesizer and Phase Locked Loop (PLL) figures of merit including phase noise spurious output and lock time at microwave frequencies are examined Measurement

More information

Chapter 6: Power Amplifiers

Chapter 6: Power Amplifiers Chapter 6: Power Amplifiers Contents Class A Class B Class C Power Amplifiers Class A, B and C amplifiers are used in transmitters Tuned with a band width wide enough to pass all information sidebands

More information

Nyquist, Shannon and the information carrying capacity of signals

Nyquist, Shannon and the information carrying capacity of signals Nyquist, Shannon and the information carrying capacity of signals Figure 1: The information highway There is whole science called the information theory. As far as a communications engineer is concerned,

More information

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Code: 13A04404 R13 B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 70 PART A

More information

Noise by the Numbers

Noise by the Numbers Noise by the Numbers 1 What can I do with noise? The two primary applications for white noise are signal jamming/impairment and reference level comparison. Signal jamming/impairment is further divided

More information

Exercise 1: RF Stage, Mixer, and IF Filter

Exercise 1: RF Stage, Mixer, and IF Filter SSB Reception Analog Communications Exercise 1: RF Stage, Mixer, and IF Filter EXERCISE OBJECTIVE DISCUSSION On the circuit board, you will set up the SSB transmitter to transmit a 1000 khz SSB signal

More information

A Soft-Limiting Receiver Structure for Time-Hopping UWB in Multiple Access Interference

A Soft-Limiting Receiver Structure for Time-Hopping UWB in Multiple Access Interference 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications A Soft-Limiting Receiver Structure for Time-Hopping UWB in Multiple Access Interference Norman C. Beaulieu, Fellow,

More information

Fundamentals of Digital Communication

Fundamentals of Digital Communication Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

More information

Simulation Study and Performance Comparison of OFDM System with QPSK and BPSK

Simulation Study and Performance Comparison of OFDM System with QPSK and BPSK Simulation Study and Performance Comparison of OFDM System with QPSK and BPSK 1 Mr. Adesh Kumar, 2 Mr. Sudeep Singh, 3 Mr. Shashank, 4 Asst. Prof. Mr. Kuldeep Sharma (Guide) M. Tech (EC), Monad University,

More information

ITT Technical Institute. ET3330 Telecommunications Systems and Technology Onsite Course SYLLABUS

ITT Technical Institute. ET3330 Telecommunications Systems and Technology Onsite Course SYLLABUS ITT Technical Institute ET3330 Telecommunications Systems and Technology Onsite Course SYLLABUS Credit hours: 4.5 Contact/Instructional hours: 56 (34 Theory Hours, 22 Lab Hours) Prerequisite(s) and/or

More information

Spread Spectrum (SS) is a means of transmission in which the signal occupies a

Spread Spectrum (SS) is a means of transmission in which the signal occupies a SPREAD-SPECTRUM SPECTRUM TECHNIQUES: A BRIEF OVERVIEW SS: AN OVERVIEW Spread Spectrum (SS) is a means of transmission in which the signal occupies a bandwidth in excess of the minimum necessary to send

More information

Performance measurement of different M-Ary phase signalling schemes in AWGN channel

Performance measurement of different M-Ary phase signalling schemes in AWGN channel Research Journal of Engineering Sciences ISSN 2278 9472 Performance measurement of different M-Ary phase signalling schemes in AWGN channel Abstract Awadhesh Kumar Singh * and Nar Singh Department of Electronics

More information

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS FUNCTIONS OF A RADIO RECEIVER The main functions of a radio receiver are: 1. To intercept the RF signal by using the receiver antenna 2. Select the

More information

Digital Communication

Digital Communication Digital Communication (ECE4058) Electronics and Communication Engineering Hanyang University Haewoon Nam Lecture 15 1 Quadrature Phase Shift Keying Constellation plot BPSK QPSK 01 11 Bit 0 Bit 1 00 M-ary

More information

Research on DQPSK Carrier Synchronization based on FPGA

Research on DQPSK Carrier Synchronization based on FPGA Journal of Information Hiding and Multimedia Signal Processing c 27 ISSN 273-422 Ubiquitous International Volume 8, Number, January 27 Research on DQPSK Carrier Synchronization based on FPGA Shi-Jun Kang,

More information

Revision of Wireless Channel

Revision of Wireless Channel Revision of Wireless Channel Quick recap system block diagram CODEC MODEM Wireless Channel Previous three lectures looked into wireless mobile channels To understand mobile communication technologies,

More information

AMERICAN NATIONAL STANDARD

AMERICAN NATIONAL STANDARD Interface Practices Subcommittee AMERICAN NATIONAL STANDARD Measurement Procedure for Noise Power Ratio NOTICE The Society of Cable Telecommunications Engineers (SCTE) / International Society of Broadband

More information

A Multicarrier CDMA Based Low Probability of Intercept Network

A Multicarrier CDMA Based Low Probability of Intercept Network A Multicarrier CDMA Based Low Probability of Intercept Network Sayan Ghosal Email: sayanghosal@yahoo.co.uk Devendra Jalihal Email: dj@ee.iitm.ac.in Giridhar K. Email: giri@ee.iitm.ac.in Abstract The need

More information

PULSE CODE MODULATION TELEMETRY Properties of Various Binary Modulation Types

PULSE CODE MODULATION TELEMETRY Properties of Various Binary Modulation Types PULSE CODE MODULATION TELEMETRY Properties of Various Binary Modulation Types Eugene L. Law Telemetry Engineer Code 1171 Pacific Missile Test Center Point Mugu, CA 93042 ABSTRACT This paper discusses the

More information

Circular Polarization Modulation for Digital Communication Systems

Circular Polarization Modulation for Digital Communication Systems Circular Polarization Modulation for Digital Communication Systems Zain ul Abidin *1, Pei Xiao *2, Muhammad Amin 3, Vincent Fusco 4 * Centre for Communication Systems Research, University of Surrey, UK

More information

On-off keying, which consists of keying a sinusoidal carrier on and off with a unipolar binary signal

On-off keying, which consists of keying a sinusoidal carrier on and off with a unipolar binary signal Bandpass signalling Thus far only baseband signalling has been considered: an information source is usually a baseband signal. Some communication channels have a bandpass characteristic, and will not propagate

More information

Lecture 9: Spread Spectrum Modulation Techniques

Lecture 9: Spread Spectrum Modulation Techniques Lecture 9: Spread Spectrum Modulation Techniques Spread spectrum (SS) modulation techniques employ a transmission bandwidth which is several orders of magnitude greater than the minimum required bandwidth

More information

UNIVERSITY OF BAHRAIN COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY OF BAHRAIN COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING UNIVERSITY OF BAHRAIN COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EENG 373: DIGITAL COMMUNICATIONS EXPERIMENT NO. 5 BASEBAND MODULATION TECHIQUES Objective The main objectives

More information

EE470 Electronic Communication Theory Exam II

EE470 Electronic Communication Theory Exam II EE470 Electronic Communication Theory Exam II Open text, closed notes. For partial credit, you must show all formulas in symbolic form and you must work neatly!!! Date: November 6, 2013 Name: 1. [16%]

More information

Design of Complex Wavelet Pulses Enabling PSK Modulation for UWB Impulse Radio Communications

Design of Complex Wavelet Pulses Enabling PSK Modulation for UWB Impulse Radio Communications Design of Complex Wavelet Pulses Enabling PSK Modulation for UWB Impulse Radio Communications Limin Yu and Langford B. White School of Electrical & Electronic Engineering, The University of Adelaide, SA

More information

Introduction to ixblue RF drivers and amplifiers for optical modulators

Introduction to ixblue RF drivers and amplifiers for optical modulators Introduction to ixblue RF drivers and amplifiers for optical modulators Introduction : ixblue designs, produces and commercializes optical modulators intended for a variety of applications including :

More information

HY448 Sample Problems

HY448 Sample Problems HY448 Sample Problems 10 November 2014 These sample problems include the material in the lectures and the guided lab exercises. 1 Part 1 1.1 Combining logarithmic quantities A carrier signal with power

More information

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 Receiver Design Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 MW & RF Design / Prof. T. -L. Wu 1 The receiver mush be very sensitive to -110dBm

More information

Lecture #6: Analog-to-Digital Converter

Lecture #6: Analog-to-Digital Converter Lecture #6: Analog-to-Digital Converter All electrical signals in the real world are analog, and their waveforms are continuous in time. Since most signal processing is done digitally in discrete time,

More information

Chapter 3 Data and Signals 3.1

Chapter 3 Data and Signals 3.1 Chapter 3 Data and Signals 3.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Note To be transmitted, data must be transformed to electromagnetic signals. 3.2

More information

Swedish College of Engineering and Technology Rahim Yar Khan

Swedish College of Engineering and Technology Rahim Yar Khan PRACTICAL WORK BOOK Telecommunication Systems and Applications (TL-424) Name: Roll No.: Batch: Semester: Department: Swedish College of Engineering and Technology Rahim Yar Khan Introduction Telecommunication

More information

BIT SYNCHRONIZERS FOR PSK AND THEIR DIGITAL IMPLEMENTATION

BIT SYNCHRONIZERS FOR PSK AND THEIR DIGITAL IMPLEMENTATION BIT SYNCHRONIZERS FOR PSK AND THEIR DIGITAL IMPLEMENTATION Jack K. Holmes Holmes Associates, Inc. 1338 Comstock Avenue Los Angeles, California 90024 ABSTRACT Bit synchronizers play an important role in

More information

PAM Transmitter and Receiver Implementing Coherent Detection

PAM Transmitter and Receiver Implementing Coherent Detection OpenStax-CNX module: m18652 1 PAM Transmitter and Receiver Implementing Coherent Detection Ed Doering This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0

More information

Analyze BER Performance of Wireless FSK System

Analyze BER Performance of Wireless FSK System nalyze BER Performance of Wireless FSK System Microwaves & RF; Nov009, Vol. 48 Issue 11, p80 Hamood Shehab Hamid 1 Ekhlas Kadhum,,Widad Ismail 3, Mandeep Singh 4 1 School of Electrical and Electronics

More information

Filters And Waveform Shaping

Filters And Waveform Shaping Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

More information

6. Modulation and Multiplexing Techniques

6. Modulation and Multiplexing Techniques 6. Modulation and Multiplexing Techniques The quality of analog transmission is S/N (signal to noise ratio). signal power S/N = ---------------------------- baseband noise power S/N can be greater than

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics C5 - Synchronous demodulation» AM and FM demodulation» Coherent demodulation» Tone decoders AY 2015-16 19/03/2016-1

More information

Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface

Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface SPECIFICATIONS PXIe-5645 Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface Contents Definitions...2 Conditions... 3 Frequency...4 Frequency Settling Time... 4 Internal Frequency Reference...

More information

EITF25 Internet Techniques and Applications L2: Physical layer. Stefan Höst

EITF25 Internet Techniques and Applications L2: Physical layer. Stefan Höst EITF25 Internet Techniques and Applications L2: Physical layer Stefan Höst Data vs signal Data: Static representation of information For storage Signal: Dynamic representation of information For transmission

More information

The Real Facts of Life

The Real Facts of Life The Real Facts of Life Phil Karn, karn@ka9q.net June 13, 2001 The problems in Harold Walker s latest essay, amusingly titled The Facts of Life, start with his very first line: Digital Modulation is usually

More information

Study on modulation techniques free of orthogonality restriction

Study on modulation techniques free of orthogonality restriction Science in China Series F: Information Sciences 007 SCIENCE IN CHINA PRESS Springer Study on modulation techniques free of orthogonality restriction CAO QiSheng & LIANG DeQun Department of Information

More information

Fabricate a 2.4-GHz fractional-n synthesizer

Fabricate a 2.4-GHz fractional-n synthesizer University of Malaya From the SelectedWorks of Professor Mahmoud Moghavvemi Summer June, 2013 Fabricate a 2.4-GHz fractional-n synthesizer H Ameri Mahmoud Moghavvemi, University of Malaya a Attaran Available

More information

THE STUDY OF BIT ERROR RATE EVOLUTION IN A MOBILE COMMUNICATIONS SYSTEM USING DS CDMA TECHNOLOGY

THE STUDY OF BIT ERROR RATE EVOLUTION IN A MOBILE COMMUNICATIONS SYSTEM USING DS CDMA TECHNOLOGY Journal of Engineering Studies and Research Volume 18 (2012) No. 2 110 THE STUDY OF BIT ERROR RATE EVOLUTION IN A MOBILE COMMUNICATIONS SYSTEM USING DS CDMA TECHNOLOGY POPA ION * Technical University "Gheorghe

More information

Chapter 7. Multiple Division Techniques

Chapter 7. Multiple Division Techniques Chapter 7 Multiple Division Techniques 1 Outline Frequency Division Multiple Access (FDMA) Division Multiple Access (TDMA) Code Division Multiple Access (CDMA) Comparison of FDMA, TDMA, and CDMA Walsh

More information

Frequency Modulation

Frequency Modulation Frequency Modulation transferred to the microwave carrier by means of FM. Instead of being done in one step, this modulation usually takes place at an intermediate frequency. signal is then frequency multiplied

More information

ACTIVE MULTIPLIERS AND DIVIDERS TO SIMPLIFY SYNTHESIZERS

ACTIVE MULTIPLIERS AND DIVIDERS TO SIMPLIFY SYNTHESIZERS 7 COVER FEATURE ACTIVE MUTIPIERS & DIVIDERS ACTIVE MUTIPIERS AND DIVIDERS TO SIMPIFY SYNTHESIZERS M odern frequency synthesis uses a combination of frequency multiplication and frequency division to generate

More information

FM THRESHOLD AND METHODS OF LIMITING ITS EFFECT ON PERFORMANCE

FM THRESHOLD AND METHODS OF LIMITING ITS EFFECT ON PERFORMANCE FM THESHOLD AND METHODS OF LIMITING ITS EFFET ON PEFOMANE AHANEKU, M. A. Lecturer in the Department of Electronic Engineering, UNN ABSTAT This paper presents the outcome of the investigative study carried

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 8: Digital Modulation Techniques Textbook: Ch 8.4.8.7 2009/2010 Meixia Tao @ SJTU 1 Topics to be Covered data baseband Digital

More information

AN IMPROVED WINDOW BLOCK CORRELATION ALGORITHM FOR CODE TRACKING IN W-CDMA

AN IMPROVED WINDOW BLOCK CORRELATION ALGORITHM FOR CODE TRACKING IN W-CDMA Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 367-376, Year 01 AN IMPROVED WINDOW BLOCK CORRELATION ALGORITHM FOR CODE TRACKING IN W-CDMA Hassan A. Nasir, Department of Electrical Engineering,

More information

CS441 Mobile & Wireless Computing Communication Basics

CS441 Mobile & Wireless Computing Communication Basics Department of Computer Science Southern Illinois University Carbondale CS441 Mobile & Wireless Computing Communication Basics Dr. Kemal Akkaya E-mail: kemal@cs.siu.edu Kemal Akkaya Mobile & Wireless Computing

More information

PTX-0350 RF UPCONVERTER, MHz

PTX-0350 RF UPCONVERTER, MHz PTX-0350 RF UPCONVERTER, 300 5000 MHz OPERATING MODES I/Q upconverter RF = LO + IF upconverter RF = LO - IF upconverter Synthesizer 10 MHz REFERENCE INPUT/OUTPUT EXTERNAL LOCAL OSCILLATOR INPUT I/Q BASEBAND

More information

CT-516 Advanced Digital Communications

CT-516 Advanced Digital Communications CT-516 Advanced Digital Communications Yash Vasavada Winter 2017 DA-IICT Lecture 17 Channel Coding and Power/Bandwidth Tradeoff 20 th April 2017 Power and Bandwidth Tradeoff (for achieving a particular

More information

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM)

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) April 11, 2008 Today s Topics 1. Frequency-division multiplexing 2. Frequency modulation

More information

Antenna Measurements using Modulated Signals

Antenna Measurements using Modulated Signals Antenna Measurements using Modulated Signals Roger Dygert MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 Abstract Antenna test engineers are faced with testing increasingly

More information