Digital communications - week 1 1

Size: px
Start display at page:

Download "Digital communications - week 1 1"

Transcription

1 Digital communications - week 1 1

2 A new signal alternative is sent every Ts. Ts = the signaling (or symbol) time. t new signal sent new signal sent new signal sent 0 Ts 2Ts 3Ts The signaling (or symbol) rate = Rs = 1/Ts [symbols/s]. A signal alternative carries k information bits, and Note: T=pulse duration, Tb=bit time, Ts=symbol time=k*tb Digital communications - week 1 2

3 Average signal energy and signal power Digital communications - week 1 3

4 M=2: Antipodal signals are better then orthogonal signals Digital communications - week 1 4

5 Digital communications - week 1 5

6 4-ary PSK Digital communications - week 1 6

7 4-ary FSK (orthogonal) Digital communications - week 1 7

8 Digital communications - week 1 8

9 16-ary QAM with Gray-coding Digital communications - week 1 9

10 Orthogonal Frequency-Division Multiplex (OFDM) OFDM = the sum of N orthogonal QAM signals. Example: N= ary QAM in each QAM signal Then an QFDM signal carries bits! How can this be built? An OFDM signal alternative? Digital communications - week 1 10

11 The bandwidth W of a signal is the width of the frequency interval where most of the signal energy (or power) is located. f [Hz] W Digital communications - week 2 11

12 How large is the bandwidth W [Hz] for a given information bit rate Rb [bps]? Digital communications - week 2 12

13 Digital communications - week 2 13

14 G(f+fc) is left shift. G(f-fc) is right shift. Digital communications - week 2 14

15 Digital communications - week 2 15

16 Consequently, to find the bandwidth we need to find R(f) for the given set of M signal alternatives. Digital communications - week 2 16

17 Useful for: M=2 and equally likely antipodal signals! Remember Appendix D! Digital communications - week 2 17

18 Digital communications - week 2 18

19 Bandpass case. Digital communications - week 2 19

20 VERY USEFUL! Digital communications - week 2 20

21 Consequently, Table 2.1 can be used also in this M-ary PAM case! Digital communications - week 2 21

22 Consequently, Table 2.1 can also be used for: M-ary QAM M-ary PSK M-ary bandpass PAM Digital communications - week 2 22

23 Digital communications - week 2 23

24 Consequently, the bandwidth efficiency is bad for large M! Digital communications - week 2 24

25 General bandpass: A practical implementation is therefore: Digital communications - week 3 25

26 Digital communications - week 3 26

27 Common challenge in both Wireless and Wireline applications! Remember the training bits in the GSM-example! Digital communications - week 3 27

28 This will cause overlapping signals unless Tb is increased to 3 s! Digital communications - week 3 28

29 The noise power is equally distributed over all frequencies. Digital communications - week 3 29

30 What is the probability that the output noise is above a critical level A ( bit-error )? Gaussian probability distribution: Digital communications - week 3 30

31 Very useful tables! Digital communications - week 3 31

32 Sent message (k bits): Decided message: Digital communications - week 3 32

33 Digital communications - week 3 33

34 ML receiver when M=2. Digital communications - week 4 34

35 FUNDAMENTAL RESULT! Digital communications - week 4 35

36 How much received energy per bit is required for a given Pb? d2 measures energy efficiency: the larger the better. Digital communications - week 4 36

37 Digital communications - week 4 37

38 Digital communications - week 4 38

39 A typical problem formulation. Consequences: Note! The received signal power Pz decreases with communication distance. Digital communications - week 4 39

40 The union bound is an upper bound and it is especially good at high signal-to-noise ratios. In that case it is also easy to calculate! Assume 4-PAM: Then 3 different distances exist. So, the minimium Euclidean distance is very important! Digital communications - week 4 40

41 Digital communications - week 4 41

42 Digital communications - week 4 42

43 Digital communications - week 4 43

44 Digital communications - week 4 44

45 Digital communications - week 4 45

46 Digital communications - week 4 46

47 Digital communications - week 4 47

48 Digital communications - week 4 48

49 Digital communications - week 4 49

50 Digital communications - week 4 50

51 Digital communications - week 5 51

52 Digital communications - week 5 52

53 Digital communications - week 5 53

54 How large is ISI? Is it too large? Can we make ISI=0? Digital communications - week 5 54

55 Digital communications - week 5 55

56 Digital communications - week 5 56

57 Digital communications - week 5 57

58 Digital communications - week 5 58

59 Digital communications - week 6 59

60 Digital communications - week 6 60

61 How can we get better Pb than binary antipodal signals? PAM, PSK, QAM, PWM, PPM, FSK? Uncoded: memoryless, i.e. no dependency between sent signal alternatives. Coding: In a clever way introduce memory (dependency, redundancy) between the sent signal alternatives! The memory can be used by the receiver to significantly reduce Pb! Digital communications - week 6 61

62 Digital communications - week 6 62

63 Adaptive coding and modulation! Digital communications - week 6 63

EITG05 Digital Communications

EITG05 Digital Communications Fourier transform EITG05 Digital Communications Lecture 4 Bandwidth of Transmitted Signals Michael Lentmaier Thursday, September 3, 08 X(f )F{x(t)} x(t) e jπ ft dt X Re (f )+jx Im (f ) X(f ) e jϕ(f ) x(t)f

More information

Digital modulation techniques

Digital modulation techniques Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

Modulation and Coding Tradeoffs

Modulation and Coding Tradeoffs 0 Modulation and Coding Tradeoffs Contents 1 1. Design Goals 2. Error Probability Plane 3. Nyquist Minimum Bandwidth 4. Shannon Hartley Capacity Theorem 5. Bandwidth Efficiency Plane 6. Modulation and

More information

TSEK02: Radio Electronics Lecture 3: Modulation (II) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 3: Modulation (II) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 3: Modulation (II) Ted Johansson, EKS, ISY An Overview of Modulation Techniques chapter 3.3.2 3.3.6 2 Constellation Diagram (3.3.2) Quadrature Modulation Higher Order

More information

DEPARTMENT OF COMPUTER GCE@Bodi_ SCIENCE GCE@Bodi_ AND ENIGNEERING GCE@Bodi_ GCE@Bodi_ GCE@Bodi_ Analog and Digital Communication GCE@Bodi_ DEPARTMENT OF CsE Subject Name: Analog and Digital Communication

More information

Lecture #11 Overview. Vector representation of signal waveforms. Two-dimensional signal waveforms. 1 ENGN3226: Digital Communications L#

Lecture #11 Overview. Vector representation of signal waveforms. Two-dimensional signal waveforms. 1 ENGN3226: Digital Communications L# Lecture #11 Overview Vector representation of signal waveforms Two-dimensional signal waveforms 1 ENGN3226: Digital Communications L#11 00101011 Geometric Representation of Signals We shall develop a geometric

More information

Digital Modulation Schemes

Digital Modulation Schemes Digital Modulation Schemes 1. In binary data transmission DPSK is preferred to PSK because (a) a coherent carrier is not required to be generated at the receiver (b) for a given energy per bit, the probability

More information

Mobile Communication An overview Lesson 03 Introduction to Modulation Methods

Mobile Communication An overview Lesson 03 Introduction to Modulation Methods Mobile Communication An overview Lesson 03 Introduction to Modulation Methods Oxford University Press 2007. All rights reserved. 1 Modulation The process of varying one signal, called carrier, according

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 8: Digital Modulation Techniques Textbook: Ch 8.4.8.7 2009/2010 Meixia Tao @ SJTU 1 Topics to be Covered data baseband Digital

More information

Department of Electronics and Communication Engineering 1

Department of Electronics and Communication Engineering 1 UNIT I SAMPLING AND QUANTIZATION Pulse Modulation 1. Explain in detail the generation of PWM and PPM signals (16) (M/J 2011) 2. Explain in detail the concept of PWM and PAM (16) (N/D 2012) 3. What is the

More information

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Detection and Estimation of Signals in Noise Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Vancouver, August 24, 2010 2 Contents 1 Basic Elements

More information

Principles of Communications

Principles of Communications Principles of Communications Meixia Tao Shanghai Jiao Tong University Chapter 8: Digital Modulation Techniques Textbook: Ch 8.4 8.5, Ch 10.1-10.5 1 Topics to be Covered data baseband Digital modulator

More information

Content. Chapter 6 PASSBAND DATA TRANSMISSION. Dr. Samir Alghadhban 11/22/13

Content. Chapter 6 PASSBAND DATA TRANSMISSION. Dr. Samir Alghadhban 11/22/13 Chapter 6 PASSBAND DATA TRANSMISSION Dr. Samir Alghadhban 1 Content Different methods of digital modula3on, namely, phase- shi8 keying, quadrature- amplitude modula3on, and frequency- shi8 keying, and

More information

Amplitude Frequency Phase

Amplitude Frequency Phase Chapter 4 (part 2) Digital Modulation Techniques Chapter 4 (part 2) Overview Digital Modulation techniques (part 2) Bandpass data transmission Amplitude Shift Keying (ASK) Phase Shift Keying (PSK) Frequency

More information

CSE4214 Digital Communications. Bandpass Modulation and Demodulation/Detection. Bandpass Modulation. Page 1

CSE4214 Digital Communications. Bandpass Modulation and Demodulation/Detection. Bandpass Modulation. Page 1 CSE414 Digital Communications Chapter 4 Bandpass Modulation and Demodulation/Detection Bandpass Modulation Page 1 1 Bandpass Modulation n Baseband transmission is conducted at low frequencies n Passband

More information

Fundamentals of Digital Communication

Fundamentals of Digital Communication Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

More information

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications DIGITAL COMMUNICATIONS SYSTEMS MSc in Electronic Technologies and Communications Bandpass binary signalling The common techniques of bandpass binary signalling are: - On-off keying (OOK), also known as

More information

Outline / Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation

Outline / Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation Outline 18-452/18-750 Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM Name: UNIVERSIY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Professor David se EECS 121 FINAL EXAM 21 May 1997, 5:00-8:00 p.m. Please write answers on

More information

ENGG2310-B Principles of Communication Systems Last Lecture

ENGG2310-B Principles of Communication Systems Last Lecture ENGG2310-B Principles of Communication Systems Last Lecture Wing-Kin Ma Department of Electronic Engineering The Chinese University of Hong Kong, Hong Kong November 28 29, 2017 Recap on ISI model: y(t)

More information

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2) 192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

More information

Digital Modulators & Line Codes

Digital Modulators & Line Codes Digital Modulators & Line Codes Professor A. Manikas Imperial College London EE303 - Communication Systems An Overview of Fundamental Prof. A. Manikas (Imperial College) EE303: Dig. Mod. and Line Codes

More information

Combined Transmitter Diversity and Multi-Level Modulation Techniques

Combined Transmitter Diversity and Multi-Level Modulation Techniques SETIT 2005 3rd International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 27 3, 2005 TUNISIA Combined Transmitter Diversity and Multi-Level Modulation Techniques

More information

UNIT 2 DIGITAL COMMUNICATION DIGITAL COMMUNICATION-Introduction The techniques used to modulate digital information so that it can be transmitted via microwave, satellite or down a cable pair is different

More information

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model M. Prem Anand 1 Rudrashish Roy 2 1 Assistant Professor 2 M.E Student 1,2 Department of Electronics & Communication

More information

ENSC327 Communication Systems 27: Digital Bandpass Modulation. (Ch. 7) Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communication Systems 27: Digital Bandpass Modulation. (Ch. 7) Jie Liang School of Engineering Science Simon Fraser University ENSC37 Communication Systems 7: Digital Bandpass Modulation (Ch. 7) Jie Liang School of Engineering Science Simon Fraser University 1 Outline 7.1 Preliminaries 7. Binary Amplitude-Shift Keying (BASK) 7.3

More information

Lecture 10. Digital Modulation

Lecture 10. Digital Modulation Digital Modulation Lecture 10 On-Off keying (OOK), or amplitude shift keying (ASK) Phase shift keying (PSK), particularly binary PSK (BPSK) Frequency shift keying Typical spectra Modulation/demodulation

More information

QUESTION BANK EC 1351 DIGITAL COMMUNICATION YEAR / SEM : III / VI UNIT I- PULSE MODULATION PART-A (2 Marks) 1. What is the purpose of sample and hold

QUESTION BANK EC 1351 DIGITAL COMMUNICATION YEAR / SEM : III / VI UNIT I- PULSE MODULATION PART-A (2 Marks) 1. What is the purpose of sample and hold QUESTION BANK EC 1351 DIGITAL COMMUNICATION YEAR / SEM : III / VI UNIT I- PULSE MODULATION PART-A (2 Marks) 1. What is the purpose of sample and hold circuit 2. What is the difference between natural sampling

More information

Objectives. Presentation Outline. Digital Modulation Revision

Objectives. Presentation Outline. Digital Modulation Revision Digital Modulation Revision Professor Richard Harris Objectives To identify the key points from the lecture material presented in the Digital Modulation section of this paper. What is in the examination

More information

Fund. of Digital Communications Ch. 3: Digital Modulation

Fund. of Digital Communications Ch. 3: Digital Modulation Fund. of Digital Communications Ch. 3: Digital Modulation Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of Technology November

More information

MSK has three important properties. However, the PSD of the MSK only drops by 10log 10 9 = 9.54 db below its midband value at ft b = 0.

MSK has three important properties. However, the PSD of the MSK only drops by 10log 10 9 = 9.54 db below its midband value at ft b = 0. Gaussian MSK MSK has three important properties Constant envelope (why?) Relatively narrow bandwidth Coherent detection performance equivalent to that of QPSK However, the PSD of the MSK only drops by

More information

Principles and Experiments of Communications

Principles and Experiments of Communications 1 Principles and Experiments of Communications Weiyao Lin Dept. of Electronic Engineering Shanghai Jiao Tong University Textbook: Chapter 11 Lecture 06: Multicarrier modulation and OFDM Multicarrier Modulation

More information

Chapter 4. Part 2(a) Digital Modulation Techniques

Chapter 4. Part 2(a) Digital Modulation Techniques Chapter 4 Part 2(a) Digital Modulation Techniques Overview Digital Modulation techniques Bandpass data transmission Amplitude Shift Keying (ASK) Phase Shift Keying (PSK) Frequency Shift Keying (FSK) Quadrature

More information

Columbia University. Principles of Communication Systems ELEN E3701. Spring Semester May Final Examination

Columbia University. Principles of Communication Systems ELEN E3701. Spring Semester May Final Examination 1 Columbia University Principles of Communication Systems ELEN E3701 Spring Semester- 2006 9 May 2006 Final Examination Length of Examination- 3 hours Answer All Questions Good Luck!!! I. Kalet 2 Problem

More information

TCM-coded OFDM assisted by ANN in Wireless Channels

TCM-coded OFDM assisted by ANN in Wireless Channels 1 Aradhana Misra & 2 Kandarpa Kumar Sarma Dept. of Electronics and Communication Technology Gauhati University Guwahati-781014. Assam, India Email: aradhana66@yahoo.co.in, kandarpaks@gmail.com Abstract

More information

Detection, Estimation, and Modulation Theory

Detection, Estimation, and Modulation Theory Detection, Estimation, and Modulation Theory Part II. Nonlinear Modulation Theory HARRY L. VAN TREES George Mason University.WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION 1 Introduction 1

More information

OptiSystem applications: Digital modulation analysis (PSK)

OptiSystem applications: Digital modulation analysis (PSK) OptiSystem applications: Digital modulation analysis (PSK) 7 Capella Court Nepean, ON, Canada K2E 7X1 +1 (613) 224-4700 www.optiwave.com 2009 Optiwave Systems, Inc. Introduction PSK modulation Digital

More information

Introduction to Communications Part Two: Physical Layer Ch5: Analog Transmission. Goals of This Class. Warm Up. Outline of the Class

Introduction to Communications Part Two: Physical Layer Ch5: Analog Transmission. Goals of This Class. Warm Up. Outline of the Class Introduction to Communications Part Two: Physical Layer Ch5: Analog Transmission Kuang Chiu Huang TCM NCKU Spring/2008 2009/4/11 KuangChiu Huang 1 Goals of This Class Through the lecture of analog transmission,

More information

University of Manchester. CS3282: Digital Communications 06. Section 9: Multi-level digital modulation & demodulation

University of Manchester. CS3282: Digital Communications 06. Section 9: Multi-level digital modulation & demodulation University of Manchester CS3282: Digital Communications 06 Section 9: Multi-level digital modulation & demodulation 2/05/06 CS3282 Sectn 9 1 9.1. Introduction: So far, mainly binary signalling using ASK,

More information

Lecture 13. Introduction to OFDM

Lecture 13. Introduction to OFDM Lecture 13 Introduction to OFDM Ref: About-OFDM.pdf Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme,

More information

Constant-Envelope Variations of OFDM and OFDM-CDMA

Constant-Envelope Variations of OFDM and OFDM-CDMA Constant-Envelope Variations of OFDM and OFDM-CDMA J. W. Nieto Harris Corporation RF Communications Division HFIA 2008, #1 Presentation Overview OFDM and OFDM-CDMA Waveforms Constant-Envelope (CE) Variations

More information

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY CS6304- ANALOG AND DIGITAL COMMUNICATION BE-CSE/IT SEMESTER III REGULATION 2013 Faculty

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY CS6304- ANALOG AND DIGITAL COMMUNICATION BE-CSE/IT SEMESTER III REGULATION 2013 Faculty DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY CS6304- ANALOG AND DIGITAL COMMUNICATION BE-CSE/IT SEMESTER III REGULATION 2013 Faculty Name: S.Kalpana, AP/ECE QUESTION BANK UNIT I ANALOG

More information

Adaptive communications techniques for the underwater acoustic channel

Adaptive communications techniques for the underwater acoustic channel Adaptive communications techniques for the underwater acoustic channel James A. Ritcey Department of Electrical Engineering, Box 352500 University of Washington, Seattle, WA 98195 Tel: (206) 543-4702,

More information

Digital Communication Digital Modulation Schemes

Digital Communication Digital Modulation Schemes Digital Communication Digital Modulation Schemes Yabo Li Fall, 2013 Chapter Outline Representation of Digitally Modulated Signals Linear Modulation PAM PSK QAM Multi-Dimensional Signal Non-linear Modulation

More information

Chapter 6 Passband Data Transmission

Chapter 6 Passband Data Transmission Chapter 6 Passband Data Transmission Passband Data Transmission concerns the Transmission of the Digital Data over the real Passband channel. 6.1 Introduction Categories of digital communications (ASK/PSK/FSK)

More information

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system 1 2 TSTE17 System Design, CDIO Introduction telecommunication OFDM principle How to combat ISI How to reduce out of band signaling Practical issue: Group definition Project group sign up list will be put

More information

Mobile Radio Systems OPAM: Understanding OFDM and Spread Spectrum

Mobile Radio Systems OPAM: Understanding OFDM and Spread Spectrum Mobile Radio Systems OPAM: Understanding OFDM and Spread Spectrum Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of Technology

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

EC 6501 DIGITAL COMMUNICATION UNIT - IV PART A

EC 6501 DIGITAL COMMUNICATION UNIT - IV PART A EC 6501 DIGITAL COMMUNICATION UNIT - IV PART A 1. Distinguish coherent vs non coherent digital modulation techniques. [N/D-16] a. Coherent detection: In this method the local carrier generated at the receiver

More information

Outline. EECS 3213 Fall Sebastian Magierowski York University. Review Passband Modulation. Constellations ASK, FSK, PSK.

Outline. EECS 3213 Fall Sebastian Magierowski York University. Review Passband Modulation. Constellations ASK, FSK, PSK. EECS 3213 Fall 2014 L12: Modulation Sebastian Magierowski York University 1 Outline Review Passband Modulation ASK, FSK, PSK Constellations 2 1 Underlying Idea Attempting to send a sequence of digits through

More information

Chapter 7 Multiple Division Techniques for Traffic Channels

Chapter 7 Multiple Division Techniques for Traffic Channels Introduction to Wireless & Mobile Systems Chapter 7 Multiple Division Techniques for Traffic Channels Outline Introduction Concepts and Models for Multiple Divisions Frequency Division Multiple Access

More information

EXPERIMENT WISE VIVA QUESTIONS

EXPERIMENT WISE VIVA QUESTIONS EXPERIMENT WISE VIVA QUESTIONS Pulse Code Modulation: 1. Draw the block diagram of basic digital communication system. How it is different from analog communication system. 2. What are the advantages of

More information

Digital Communications: A Discrete-Time Approach M. Rice. Errata

Digital Communications: A Discrete-Time Approach M. Rice. Errata Digital Communications: A Discrete-Time Approach M. Rice Errata Foreword Page xiii, first paragraph, bare witness should be bear witness Page xxi, last paragraph, You know who you. should be You know who

More information

Waveform Design Choices for Wideband HF

Waveform Design Choices for Wideband HF Waveform Design Choices for Wideband HF J. W. Nieto Harris Corporation RF Communications Division HFIA 2009, #1 Presentation Overview Motivation Waveforms Design Objectives Waveform Choices Summary HFIA

More information

Outline : Wireless Networks Lecture 6: Physical Layer Coding and Modulation 1. Basic Modulation Techniques. From Signals to Packets.

Outline : Wireless Networks Lecture 6: Physical Layer Coding and Modulation 1. Basic Modulation Techniques. From Signals to Packets. Outline 18-759 : Wireless Networks Leure 6: Physial Layer Coding and Modulation 1 Peter Steenkiste Departments of Computer Siene and Elerial and Computer Engineering Spring Semester 2016 http://www.s.mu.edu/~prs/wirelesss16/

More information

Radio Technology and Architectures. 1 ENGN4521/ENGN6521: Embedded Wireless L#1

Radio Technology and Architectures. 1 ENGN4521/ENGN6521: Embedded Wireless L#1 Radio Technology and Architectures 1 ENGN4521/ENGN6521: Embedded Wireless L#1 Radio (Architectures) Spectrum plan and legal issues Radio Architectures and components 2 ENGN4521/ENGN6521: Embedded Wireless

More information

Recap of Last 2 Classes

Recap of Last 2 Classes Recap of Last 2 Classes Transmission Media Analog versus Digital Signals Bandwidth Considerations Attentuation, Delay Distortion and Noise Nyquist and Shannon Analog Modulation Digital Modulation What

More information

UNIVERSITY OF BAHRAIN COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY OF BAHRAIN COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING UNIVERSITY OF BAHRAIN COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EENG 373: DIGITAL COMMUNICATIONS EXPERIMENT NO. 5 BASEBAND MODULATION TECHIQUES Objective The main objectives

More information

Communication Systems Lab

Communication Systems Lab LAB MANUAL Communication Systems Lab (EE-226-F) Prepared by: Varun Sharma (Lab In-charge) Dayal C. Sati (Faculty In-charge) B R C M CET BAHAL DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING Page

More information

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time.

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time. END-OF-YEAR EXAMINATIONS 2005 Unit: Day and Time: Time Allowed: ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time. Total Number of Questions:

More information

Modulations Analog Modulations Amplitude modulation (AM) Linear modulation Frequency modulation (FM) Phase modulation (PM) cos Angle modulation FM PM Digital Modulations ASK FSK PSK MSK MFSK QAM PAM Etc.

More information

Revision of Lecture 3

Revision of Lecture 3 Revision of Lecture 3 Modulator/demodulator Basic operations of modulation and demodulation Complex notations for modulation and demodulation Carrier recovery and timing recovery This lecture: bits map

More information

ECE 4203: COMMUNICATIONS ENGINEERING LAB II

ECE 4203: COMMUNICATIONS ENGINEERING LAB II DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING ECE 4203: COMMUNICATIONS ENGINEERING LAB II SEMESTER 2, 2017/2018 DIGITAL MODULATIONS INTRODUCTION In many digital communication systems, cable (as for data

More information

ECE 4600 Communication Systems

ECE 4600 Communication Systems ECE 4600 Communication Systems Dr. Bradley J. Bazuin Associate Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Course Topics Course Introduction

More information

SPREAD SPECTRUM (SS) SIGNALS FOR DIGITAL COMMUNICATIONS

SPREAD SPECTRUM (SS) SIGNALS FOR DIGITAL COMMUNICATIONS Dr. Ali Muqaibel SPREAD SPECTRUM (SS) SIGNALS FOR DIGITAL COMMUNICATIONS VERSION 1.1 Dr. Ali Hussein Muqaibel 1 Introduction Narrow band signal (data) In Spread Spectrum, the bandwidth W is much greater

More information

OptiSystem applications: Digital modulation analysis (FSK)

OptiSystem applications: Digital modulation analysis (FSK) OptiSystem applications: Digital modulation analysis (FSK) 7 Capella Court Nepean, ON, Canada K2E 7X1 +1 (613) 224-4700 www.optiwave.com 2009 Optiwave Systems, Inc. Introduction FSK modulation Digital

More information

Chapter 14 MODULATION INTRODUCTION

Chapter 14 MODULATION INTRODUCTION Chapter 14 MODULATION INTRODUCTION As we have seen in previous three chapters, different types of media need different types of electromagnetic signals to carry information from the source to the destination.

More information

Near-Optimal Low Complexity MLSE Equalization

Near-Optimal Low Complexity MLSE Equalization Near-Optimal Low Complexity MLSE Equalization Abstract An iterative Maximum Likelihood Sequence Estimation (MLSE) equalizer (detector) with hard outputs, that has a computational complexity quadratic in

More information

DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR

DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR COMMUNICATION SYSTEMS Abstract M. Chethan Kumar, *Sanket Dessai Department of Computer Engineering, M.S. Ramaiah School of Advanced

More information

EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS

EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS Manjeet Singh (ms308@eng.cam.ac.uk) Ian J. Wassell (ijw24@eng.cam.ac.uk) Laboratory for Communications Engineering

More information

SYSTEM ARCHITECTURE ADVANCED SYSTEM ARCHITECTURE LUO Chapter18.1 and Introduction to OFDM

SYSTEM ARCHITECTURE ADVANCED SYSTEM ARCHITECTURE LUO Chapter18.1 and Introduction to OFDM SYSTEM ARCHITECTURE ADVANCED SYSTEM ARCHITECTURE LUO Chapter18.1 and 18.2 Introduction to OFDM 2013/Fall-Winter Term Monday 12:50 Room# 1-322 or 5F Meeting Room Instructor: Fire Tom Wada, Professor 12/9/2013

More information

Chapter 5 Analog Transmission

Chapter 5 Analog Transmission 5-1 DIGITAL-TO-ANALOG CONVERSION Chapter 5 Analog Transmission Digital-to-analog conversion is the process of changing one of the characteristics of an analog signal depending on the information in digital

More information

a) Abasebanddigitalcommunicationsystemhasthetransmitterfilterg(t) thatisshowninthe figure, and a matched filter at the receiver.

a) Abasebanddigitalcommunicationsystemhasthetransmitterfilterg(t) thatisshowninthe figure, and a matched filter at the receiver. DIGITAL COMMUNICATIONS PART A (Time: 60 minutes. Points 4/0) Last Name(s):........................................................ First (Middle) Name:.................................................

More information

ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS

ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS 1 Ali A. Ghrayeb New Mexico State University, Box 30001, Dept 3-O, Las Cruces, NM, 88003 (e-mail: aghrayeb@nmsu.edu) ABSTRACT Sandia National Laboratories

More information

Theory of Telecommunications Networks

Theory of Telecommunications Networks TT S KE M T Theory of Telecommunications Networks Anton Čižmár Ján Papaj Department of electronics and multimedia telecommunications CONTENTS Preface... 5 1 Introduction... 6 1.1 Mathematical models for

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS i i i i i iv v vi ix xi xiv 1 INTRODUCTION 1 1.1

More information

Digital Communications I: Modulation and Coding Course. Term Catharina Logothetis Lecture 13

Digital Communications I: Modulation and Coding Course. Term Catharina Logothetis Lecture 13 Digital Communications I: Modulation and Coding Course Term 3-28 Catharina Logothetis Lecture 13 Last time, we talked aout: The properties of Convolutional codes. We introduced interleaving as a means

More information

Advanced Digital Communication Trainer

Advanced Digital Communication Trainer Model: DMT-1000 CYBER NOMADS Cyber Nomads making it happen... 11,Indrapuri, 101, Prabhdeep Indore - 452 017 Ph.:+91-731-4048492, 9993018479 E-mail: anitag@cyber-nomads.com Model: DMT-1000 1. Introduction

More information

Near-Optimal Low Complexity MLSE Equalization

Near-Optimal Low Complexity MLSE Equalization Near-Optimal Low Complexity MLSE Equalization HC Myburgh and Jan C Olivier Department of Electrical, Electronic and Computer Engineering, University of Pretoria RSA Tel: +27-12-420-2060, Fax +27 12 362-5000

More information

Year : TYEJ Sub: Digital Communication (17535) Assignment No. 1. Introduction of Digital Communication. Question Exam Marks

Year : TYEJ Sub: Digital Communication (17535) Assignment No. 1. Introduction of Digital Communication. Question Exam Marks Assignment 1 Introduction of Digital Communication Sr. Question Exam Marks 1 Draw the block diagram of the basic digital communication system. State the function of each block in detail. W 2015 6 2 State

More information

Real and Complex Modulation

Real and Complex Modulation Real and Complex Modulation TIPL 4708 Presented by Matt Guibord Prepared by Matt Guibord 1 What is modulation? Modulation is the act of changing a carrier signal s properties (amplitude, phase, frequency)

More information

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Amr Shehab Amin 37-20200 Abdelrahman Taha 31-2796 Yahia Mobasher 28-11691 Mohamed Yasser

More information

DESIGN OF QAM MODULATOR AND GENERATION OF QAM SEQUENCE FOR ISI FREE COMMUNICATION Chethan B 1, Ravisimha B N 2, Dr. M Z Kurian 3

DESIGN OF QAM MODULATOR AND GENERATION OF QAM SEQUENCE FOR ISI FREE COMMUNICATION Chethan B 1, Ravisimha B N 2, Dr. M Z Kurian 3 International Journal of Computer Engineering and Applications, Volume VI, Issue I, April 14 www.ijcea.com ISSN 2321 3469 DESIGN OF QAM MODULATOR AND GENERATION OF QAM SEQUENCE FOR ISI FREE COMMUNICATION

More information

ELEC 7073 Digital Communication III

ELEC 7073 Digital Communication III ELEC 7073 Digital Communication III Lecturers: Dr. S. D. Ma and Dr. Y. Q. Zhou (sdma@eee.hku.hk; yqzhou@eee.hku.hk) Date & Time: Tuesday: 7:00-9:30pm Place: CYC Lecture Room A Notes can be obtained from:

More information

3. 3. Noncoherent Binary Modulation Techniques

3. 3. Noncoherent Binary Modulation Techniques 3. 3. Noncoherent Binary Modulation Techniques A digital communication receiver with no provision make for carrier phase recovery is said to be noncoherent. A. Noncoherent Orthogonal Modulation Scheme.

More information

Orthogonal Frequency Division Multiplexing (OFDM)

Orthogonal Frequency Division Multiplexing (OFDM) Orthogonal Frequency Division Multiplexing (OFDM) Presenter: Engr. Dr. Noor M. Khan Professor Department of Electrical Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN

More information

Summary of Basic Concepts

Summary of Basic Concepts Transmission Summary of Basic Concepts Sender Channel Receiver Dr. Christian Rohner Encoding Modulation Demodulation Decoding Bits Symbols Noise Terminology Communications Research Group Bandwidth [Hz]

More information

Performance Analysis Of OFDM Using 4 PSK, 8 PSK And 16 PSK

Performance Analysis Of OFDM Using 4 PSK, 8 PSK And 16 PSK Performance Analysis Of OFDM Using 4 PSK, 8 PSK And 16 PSK Virat Bhambhe M.Tech. Student, Electrical and Electronics Engineering Gautam Buddh Technical University (G.B.T.U.), Lucknow (U.P.), India Dr.

More information

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy Outline 18-452/18-750 Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Multi-carrier Modulation and OFDM

Multi-carrier Modulation and OFDM 3/28/2 Multi-carrier Modulation and OFDM Prof. Luiz DaSilva dasilval@tcd.ie +353 896-366 Multi-carrier systems: basic idea Typical mobile radio channel is a fading channel that is flat or frequency selective

More information

Annex. 1.3 Measuring information

Annex. 1.3 Measuring information Annex This appendix discusses the interrelated concepts of information, information source, channel capacity, and bandwidth. The first three concepts relate to a digital channel, while bandwidth concerns

More information

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1 Announcements 18-759: Wireless Networks Lecture 3: Physical Layer Please start to form project teams» Updated project handout is available on the web site Also start to form teams for surveys» Send mail

More information

ECE230X Lectures 10-11

ECE230X Lectures 10-11 ECE230X Lectures 10-11 Data and Computer Communications Eighth Edition By William Stallings Section 5.2 Digital Data, Analog Signals D. Richard Brown III Worcester Polytechnic Institute Electrical and

More information

AN INTRODUCTION OF ANALOG AND DIGITAL MODULATION TECHNIQUES IN COMMUNICATION SYSTEM

AN INTRODUCTION OF ANALOG AND DIGITAL MODULATION TECHNIQUES IN COMMUNICATION SYSTEM AN INTRODUCTION OF ANALOG AND DIGITAL MODULATION TECHNIQUES IN COMMUNICATION SYSTEM Rashmi Pandey Vedica Institute of Technology, Bhopal Department of Electronics & Communication rashmipandey07@rediffmail.com

More information

Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation

Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation FUTEBOL Federated Union of Telecommunications Research Facilities for an EU-Brazil Open Laboratory Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation The content of these slides

More information

Selected answers * Problem set 6

Selected answers * Problem set 6 Selected answers * Problem set 6 Wireless Communications, 2nd Ed 243/212 2 (the second one) GSM channel correlation across a burst A time slot in GSM has a length of 15625 bit-times (577 ) Of these, 825

More information

College of information Technology Department of Information Networks Telecommunication & Networking I Chapter 5. Analog Transmission

College of information Technology Department of Information Networks Telecommunication & Networking I Chapter 5. Analog Transmission Analog Transmission 5.1 DIGITAL-TO-ANALOG CONVERSION Digital-to-analog conversion is the process of changing one of the characteristics of an analog signal based on the information in digital data. The

More information

Exam in 1TT850, 1E275. Modulation, Demodulation and Coding course

Exam in 1TT850, 1E275. Modulation, Demodulation and Coding course Exam in 1TT850, 1E275 Modulation, Demodulation and Coding course EI, TF, IT programs 16th of August 2004, 14:00-19:00 Signals and systems, Uppsala university Examiner Sorour Falahati office: 018-471 3071

More information

Principles of Communication Systems Part II Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur

Principles of Communication Systems Part II Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur Principles of Communication Systems Part II Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture 22 M-ary QAM (Quadrature Amplitude Modulation)

More information

Signal Encoding Techniques

Signal Encoding Techniques 2 Techniques ITS323: to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information