Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation

Size: px
Start display at page:

Download "Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation"

Transcription

1 FUTEBOL Federated Union of Telecommunications Research Facilities for an EU-Brazil Open Laboratory Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation The content of these slides is based on the OFDM Chapter: Domingue, J., Mikroyannidis, A., Gomez-Goiri, A., Smith, A., Pareit, D., Gerwen, J. V.-V., Tranoris, C., Lampropoulos, K., Jourjon, G., Fourmaux, O., Rahman, M. Y., Collins, D., Marquez-Barja, J. M., Blumm, C., Kaminski, N., Dasilva, L. A., Sutton, P. & Gomez, I. (2015) Forging Online Education through FIRE: ipad Edition. ISBN:

2 Relevance of OFDM Wireless: Wireless Personal Area Network (WPAN): WiMEdia Wireless Local Area Network (WLAN): IEEE802.11a/g/n/ac/ad, IEEE g, HiperLAN/2 Broadcast: DAB, DVB-T/-T2, DVB-H, ISDB-T Wireless Metropolitan Area Network (WMAN): IEEE WiMAX Mobile telephony: LTE (3.9G), LTE Advanced (4G) Wired: Power-Line-Communication Broadcast: DVB-C2 ADSL/-2/-2+ May 25, 2017 Some Footer Note 2

3 From FDM to OFDM Orthogonal signals do not interfere with each other Sub-spectra may overlap in frequency domain More efficient use of available spectrum Greater data rates achievable FDM f OFDM + Mathematical definition of orthogonal base signals: ψ p t ψ q t dt = t= 1: p = q 0: p q f 3

4 OFDM subcarrier functions 4 Generation of orthogonal carrier functions: Basis is a rect-function with symbol duration T 0 Spectrum of rect-function is a sinc-function ,, rect 1 S S S T T T S S t t T t T -T S /2 T S /2 1/T S t S S S ft T t T sinc rect 1 f 1 Zeros at f = n/t S, n = -3, -2, -1, 1, 2, 3

5 OFDM subcarrier functions Generation a set of orthogonal basis functions k : Shifting sinc-functions in frequency domain by multiplication with complex carriers In frequency domain: Ψ 0 f f k Ψ 6 f j2f t 1 k t e rect TS t T S Subcarrier spacing f = 1 T S f 5

6 Loading data on subcarrier functions Visualization of base function for three subcarriers in time domain: cos ψ 1 ψ 2 ψ 3 ψ 1 + ψ 2 + ψ 3 sin T S -3 0 T S 6

7 Loading data on subcarrier functions OFDM symbol for 1024 carriers loaded with random binary data symbols (+1 or -1): OFDM signals with many subcarriers in time-domain look like noise signals! 7

8 OFDM transmission via fading channels What happens to a continuous sine wave that is transmitted on a fading channel? TX RX s(t) h(t, τ) r(t) = s(t) h(t, τ) t t s k t Transmitted Signal Channel Impulse Response Received Signal t j2f j2f k k X e k k r k t X k k e Continuous sine waves experience only amplitude and phase variation! (applies to every carrier in the OFDM symbol) 8

9 Cyclic prefix against multipath distortion Amplitude and phase variations of continuous sine waves can easily be corrected at receiver by means of pilot signals and channel equalization BUT: We want to transmit data no continuous sine signals T S T S T S OFDM-Symbol 1 OFDM-Symbol 2 OFDM-Symbol 3 Discontinuities between OFDM symbols will lead to inter-symbol-interferences (ISI) inter-carrier-interferences (ICI) due to loss of sub-carrier orthogonality when transmitted on a fading channel 9

10 Cyclic prefix against multipath distortion Avoidance of ISI and ICI by introduction of Cyclic Prefix (CP): OFDM symbol is cyclically extended at its beginning T CP T S Frame still contains discontinuities, but system is tuned in at payload part of symbol CP gets corrupted by ISI, FFT-Payload remains intact (only constant amplitude and phase shift) CP can make OFDM transmissions completely immune against ISI created by multipath propagation when CP length T CP is longer than the delay spread: T CP στ h(t, τ) στ 10 t

11 Using discrete Fourier transforms Digital signal processing: time discrete signals s( t) s( n Tsample) s( n) Sample time T sample = 1/f sample Time-discrete notion of an OFDM modulator: Time-discrete notion of an OFDM demodulator: N C 1 s n = X k e j2π k n N C Y K = k=0 N C 1 n=0 s(n) e j2π k N C n N C IDFT X k DFT s n OFDM modulation / de-modulation equals the IDFT transformation / DFT transformation! If number of sub-carriers N C is chosen as a power of 2 (2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 ), the IDFT can be replaced by an IFFT, yielding a very efficient implementation of a OFDM modulator (FFT for demodulator at receiver) 11

12 Using discrete Fourier transforms Block Diagram of OFDM Modulator and Demodulator based on IFFT / FFT X 0,m Y 0,m X k,m Serial to Parallel X 1,m... IFFT Parallel to Serial... s(n) D A s(t) r(t) A D r(n) Serial to Parallel... FFT Y 1,m... Parallel to Serial Y k,m X NC 1,m Y NC 1,m Modulat or Demodulator 12

13 Using discrete Fourier transforms Up-conversion to carrier frequency (using quadrature modulator) X 0 X 1 X 2 IFFT R s(n) = I cos 2πf c t sin 2πf c t X 15 I s(n) = Q f f c 1 2 f s f c f c f s 13

14 Lower Guard Band DC Carrier Upper Guard Band Using discrete Fourier transforms Usable sub-carriers Example for 16-bin FFT 0 X 1 X 2 X 3 X 4 X 5 X X 10 X 11 X 12 X 13 X 14 X 15 DC Carrier IFFT Upper Guard Band Lower Guard Band 14

15 The OFDM system model Scrambler Transmitter Receiver De-Scrambler Source Code Source De-Code Interleaving De-Interleav. Mapper De- Mapper Pilot Insertion Channel Equal. IFFT FFT CP Payload Extract. TX FE RX FE Channel 15

16 Symbol mapping / de-mapping Scrambler Transmitter Receiver De-Scrambler Source Code Source De-Code Interleaving De-Interleav. Mapper De- Mapper Pilot Insertion Channel Equal. IFFT FFT CP Payload Extract. TX FE RX FE Channel 16

17 Symbol mapping / de-mapping Loading data bits on the OFDM subcarriers IFFT accepts complex input data use complex subcarrier modulations (QAM, PSK, ) Q Q I I 0-1 BPSK (Binary Phase Shift Keying): 1 bit per sub-carrier per symbol

18 Symbol mapping / de-mapping Gray Mapping: neighboring constellation points only differ in one bit Reduction of bit error ratio Q Q I I QPSK (Quadrature Phase Shift Keying) / 4-QAM (Quadrature Amplitude Modulation): 18 2 bit per sub-carrier per symbol

19 Symbol mapping / de-mapping Q Q / /3 1/3 +1-1/ I I QAM : 4 bit per sub-carrier per symbol 64-QAM : 6 bit per sub-carrier per symbol 19

20 Channel equalization Scrambler Transmitter Receiver De-Scrambler Source Code Source De-Code Interleaving De-Interleav. Mapper De- Mapper Pilot Insertion Channel Equal. IFFT FFT CP Payload Extract. TX FE RX FE Channel 20

21 Channel equalization Channel Equalization Insertion of known symbols (pilots) in the OFDM frame to get to know the channel impulse response Evaluating their distortions at the receiver Assuming a relatively static channel, data symbols can be equalized Zero Forcing (ZF) Equalizer equalizes phase offset and amplitude distortion in OFDM systems Easy to implement in frequency domain, assuming flat fading for each OFDM subcarrier Drawback: Amplification of noise for carriers with deep fades Approach: Y Pilot = X Pilot H Channel H Channel = Y Pilot X Pilot 1 H ZF = H Channel Y Data = X Data H Channel X Data = Y Data H ZF 21

22 Channel equalization Example of magnitude and phase distortion in a wireless channel Received constellation points Rel. signal power [db] Signal amplitude [V] Received signal in time domain and frequency domain t [s] f [MHz] 22

23 Subcarrier 8 Subcarrier 16 Phase: arg(h) Magnitude: abs(h) Channel equalization Transfer function H of wireless channel in magnitude and phase as estimated by the channel equalizer Resulting IQ vector distortion = =58.2 FFT Index 23

24 Data Rate Approximation Bits Bits per Symbol Data Rate = = Time Interval Symbol Duration N = Mod N Carr Assumption: 1 N f sample FFT + N CP 10 % of the potential carriers used for guard band (N Carr = 0.9 N FFT ) N Data Rate = N Mod f sample 0.9 FFT N FFT + N CP Example: Sampling frequency: f sample = 10 MHz 16-QAM on subcarriers: N Mod = 4 CP length: N CP = 16 samples Doubling subcarriers in used bandwidth does not double the data rate! Subcarrier spacing f = 1 T S = f sample N FFT Subcarr. Spacing FFT Size N FFT f Data Rate MHz 12 Mbit/s khz 18 Mbit/s khz 24 Mbit/s khz 28.8 Mbit/s khz 32 Mbit/s khz 33.9 Mbit/s khz 34.9 Mbit/s khz 35.4 Mbit/s 24

25 OFDM Orthogonal Frequency Division Multiplexing (OFDM) is a high-performant modulation technology for a great number of current and next-generation communication standards Idea: Information is transmitted via an orthogonal set of subcarrier functions Benefits: High spectral efficiency Robustness in multipath channels (Cyclic prefix!) Efficient implementation based on IFFT/FFT Simple channel equalization in frequency domain Drawbacks: Time and frequency synchronization is very important Peak-to-average problem reduces the power efficiency of RF amplifier at the transmitter 25

26 Thank You! Questions? Comments? Presenter Name FUTEBOL has received funding from the European Union's Horizon 2020 for research, technological development, and demonstration under grant agreement no (FUTEBOL), as well from the Brazilian Ministry of Science, Technology, Innovation, and Communication (MCTIC) through RNP and CTIC.

27 Running the exercises We will use FORGE tools to access the USRPs in the TCD testbed: Accounts: group02, group03, group04, group05 Password (the same for all acounts): May 25, 2017 Some Footer Note 27 one.brazil

28 Running at home Use php?course_id=180 Wait for the machines to be provisioned (up to 10 minutes) May 25, 2017 Some Footer Note 28

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system 1 2 TSTE17 System Design, CDIO Introduction telecommunication OFDM principle How to combat ISI How to reduce out of band signaling Practical issue: Group definition Project group sign up list will be put

More information

Multi-carrier Modulation and OFDM

Multi-carrier Modulation and OFDM 3/28/2 Multi-carrier Modulation and OFDM Prof. Luiz DaSilva dasilval@tcd.ie +353 896-366 Multi-carrier systems: basic idea Typical mobile radio channel is a fading channel that is flat or frequency selective

More information

Orthogonal frequency division multiplexing (OFDM)

Orthogonal frequency division multiplexing (OFDM) Orthogonal frequency division multiplexing (OFDM) OFDM was introduced in 1950 but was only completed in 1960 s Originally grew from Multi-Carrier Modulation used in High Frequency military radio. Patent

More information

Lecture 13. Introduction to OFDM

Lecture 13. Introduction to OFDM Lecture 13 Introduction to OFDM Ref: About-OFDM.pdf Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme,

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

Chapter 5 OFDM. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30

Chapter 5 OFDM. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30 Chapter 5 OFDM 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 2 OFDM: Overview Let S 1, S 2,, S N be the information symbol. The discrete baseband OFDM modulated symbol can be expressed

More information

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates? Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 7: Physical Layer OFDM Peter Steenkiste Carnegie Mellon University RF introduction Modulation and multiplexing Channel capacity Antennas

More information

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM 1 Drakshayini M N, 2 Dr. Arun Vikas Singh 1 drakshayini@tjohngroup.com, 2 arunsingh@tjohngroup.com

More information

Orthogonal Frequency Division Multiplexing & Measurement of its Performance

Orthogonal Frequency Division Multiplexing & Measurement of its Performance Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 5, Issue. 2, February 2016,

More information

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2) 192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

More information

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Abstract A Orthogonal Frequency Division Multiplexing (OFDM) scheme offers high spectral efficiency and better resistance to

More information

Orthogonal Frequency Division Multiplexing (OFDM)

Orthogonal Frequency Division Multiplexing (OFDM) Orthogonal Frequency Division Multiplexing (OFDM) Presenter: Engr. Dr. Noor M. Khan Professor Department of Electrical Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN

More information

S PG Course in Radio Communications. Orthogonal Frequency Division Multiplexing Yu, Chia-Hao. Yu, Chia-Hao 7.2.

S PG Course in Radio Communications. Orthogonal Frequency Division Multiplexing Yu, Chia-Hao. Yu, Chia-Hao 7.2. S-72.4210 PG Course in Radio Communications Orthogonal Frequency Division Multiplexing Yu, Chia-Hao chyu@cc.hut.fi 7.2.2006 Outline OFDM History OFDM Applications OFDM Principles Spectral shaping Synchronization

More information

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model M. Prem Anand 1 Rudrashish Roy 2 1 Assistant Professor 2 M.E Student 1,2 Department of Electronics & Communication

More information

Fading & OFDM Implementation Details EECS 562

Fading & OFDM Implementation Details EECS 562 Fading & OFDM Implementation Details EECS 562 1 Discrete Mulitpath Channel P ~ 2 a ( t) 2 ak ~ ( t ) P a~ ( 1 1 t ) Channel Input (Impulse) Channel Output (Impulse response) a~ 1( t) a ~2 ( t ) R a~ a~

More information

SYSTEM ARCHITECTURE ADVANCED SYSTEM ARCHITECTURE LUO Chapter18.1 and Introduction to OFDM

SYSTEM ARCHITECTURE ADVANCED SYSTEM ARCHITECTURE LUO Chapter18.1 and Introduction to OFDM SYSTEM ARCHITECTURE ADVANCED SYSTEM ARCHITECTURE LUO Chapter18.1 and 18.2 Introduction to OFDM 2013/Fall-Winter Term Monday 12:50 Room# 1-322 or 5F Meeting Room Instructor: Fire Tom Wada, Professor 12/9/2013

More information

Introduction to OFDM Systems

Introduction to OFDM Systems Introduction to OFDM Systems Dr. Prapun Suksompong prapun@siit.tu.ac.th June 23, 2010 1 Outline 1. Overview of OFDM technique 2. Wireless Channel 3. Multi-carrier Transmission 4. Implementation: DFT and

More information

OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK

OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK Akshita Abrol Department of Electronics & Communication, GCET, Jammu, J&K, India ABSTRACT With the rapid growth of digital wireless communication

More information

Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation

Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation J. Bangladesh Electron. 10 (7-2); 7-11, 2010 Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation Md. Shariful Islam *1, Md. Asek Raihan Mahmud 1, Md. Alamgir Hossain

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

Performance analysis of OFDM with QPSK using AWGN and Rayleigh Fading Channel

Performance analysis of OFDM with QPSK using AWGN and Rayleigh Fading Channel Performance analysis of OFDM with QPSK using AWGN and Rayleigh Fading Channel 1 V.R.Prakash* (A.P) Department of ECE Hindustan university Chennai 2 P.Kumaraguru**(A.P) Department of ECE Hindustan university

More information

Multipath can be described in two domains: time and frequency

Multipath can be described in two domains: time and frequency Multipath can be described in two domains: and frequency Time domain: Impulse response Impulse response Frequency domain: Frequency response f Sinusoidal signal as input Frequency response Sinusoidal signal

More information

Principles and Experiments of Communications

Principles and Experiments of Communications 1 Principles and Experiments of Communications Weiyao Lin Dept. of Electronic Engineering Shanghai Jiao Tong University Textbook: Chapter 11 Lecture 06: Multicarrier modulation and OFDM Multicarrier Modulation

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

SC - Single carrier systems One carrier carries data stream

SC - Single carrier systems One carrier carries data stream Digital modulation SC - Single carrier systems One carrier carries data stream MC - Multi-carrier systems Many carriers are used for data transmission. Data stream is divided into sub-streams and each

More information

Design and Simulation of COFDM for High Speed Wireless Communication and Performance Analysis

Design and Simulation of COFDM for High Speed Wireless Communication and Performance Analysis Design and Simulation of COFDM for High Speed Wireless Communication and Performance Analysis Arun Agarwal ITER College, Siksha O Anusandhan University Department of Electronics and Communication Engineering

More information

Differential Modulation

Differential Modulation Data Detection and Channel Estimation of OFDM Systems Using Differential Modulation A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the

More information

OFDM system: Discrete model Spectral efficiency Characteristics. OFDM based multiple access schemes. OFDM sensitivity to synchronization errors

OFDM system: Discrete model Spectral efficiency Characteristics. OFDM based multiple access schemes. OFDM sensitivity to synchronization errors Introduction - Motivation OFDM system: Discrete model Spectral efficiency Characteristics OFDM based multiple access schemes OFDM sensitivity to synchronization errors 4 OFDM system Main idea: to divide

More information

Performance Analysis of ICI in OFDM systems using Self-Cancellation and Extended Kalman Filtering

Performance Analysis of ICI in OFDM systems using Self-Cancellation and Extended Kalman Filtering Performance Analysis of ICI in OFDM systems using Self-Cancellation and Extended Kalman Filtering C.Satya Haritha, K.Prasad Abstract - Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier

More information

IMPROVED CHANNEL ESTIMATION FOR OFDM BASED WLAN SYSTEMS. G.V.Rangaraj M.R.Raghavendra K.Giridhar

IMPROVED CHANNEL ESTIMATION FOR OFDM BASED WLAN SYSTEMS. G.V.Rangaraj M.R.Raghavendra K.Giridhar IMPROVED CHANNEL ESTIMATION FOR OFDM BASED WLAN SYSTEMS GVRangaraj MRRaghavendra KGiridhar Telecommunication and Networking TeNeT) Group Department of Electrical Engineering Indian Institute of Technology

More information

SHIV SHAKTI International Journal of in Multidisciplinary and Academic Research (SSIJMAR) Vol. 3, No. 4, August-September (ISSN )

SHIV SHAKTI International Journal of in Multidisciplinary and Academic Research (SSIJMAR) Vol. 3, No. 4, August-September (ISSN ) SHIV SHAKTI International Journal of in Multidisciplinary and Academic Research (SSIJMAR) Vol. 3, No. 4, August-September (ISSN 2278 5973) Orthogonal Frequency Division Multiplexing: Issues and Applications

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes Volume 4, Issue 6, June (016) Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes Pranil S Mengane D. Y. Patil

More information

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary M.Tech Scholar, ECE Department,SKIT, Jaipur, Abstract Orthogonal Frequency Division

More information

Basic idea: divide spectrum into several 528 MHz bands.

Basic idea: divide spectrum into several 528 MHz bands. IEEE 802.15.3a Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Overview of Multi-band OFDM Basic idea: divide spectrum into several

More information

Evaluation of BER and PAPR by using Different Modulation Schemes in OFDM System

Evaluation of BER and PAPR by using Different Modulation Schemes in OFDM System International Journal of Computer Networks and Communications Security VOL. 3, NO. 7, JULY 2015, 277 282 Available online at: www.ijcncs.org E-ISSN 2308-9830 (Online) / ISSN 2410-0595 (Print) Evaluation

More information

Underwater communication implementation with OFDM

Underwater communication implementation with OFDM Indian Journal of Geo-Marine Sciences Vol. 44(2), February 2015, pp. 259-266 Underwater communication implementation with OFDM K. Chithra*, N. Sireesha, C. Thangavel, V. Gowthaman, S. Sathya Narayanan,

More information

Outline Chapter 4: Orthogonal Frequency Division Multiplexing

Outline Chapter 4: Orthogonal Frequency Division Multiplexing Outline Chapter 4: Orthogonal Frequency Division Multiplexing Fading Channel Flat fading channel Frequency selective channel ISI Single Carrier Equalization Orthogonal Frequency Division Multiplexing Principle

More information

Receiver Designs for the Radio Channel

Receiver Designs for the Radio Channel Receiver Designs for the Radio Channel COS 463: Wireless Networks Lecture 15 Kyle Jamieson [Parts adapted from C. Sodini, W. Ozan, J. Tan] Today 1. Delay Spread and Frequency-Selective Fading 2. Time-Domain

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

A Cyclic Prefix OFDM System with BPSK Modulation By Er. V ipin Mittal & Prof. S.R. Mittal Indus Institute of Engineering and Technology

A Cyclic Prefix OFDM System with BPSK Modulation By Er. V ipin Mittal & Prof. S.R. Mittal Indus Institute of Engineering and Technology Global Journal of Researches in Engineering Electrical and Electronics Engineering Volume 12 Issue 7 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Principles of Multicarrier Modulation and OFDM a

Principles of Multicarrier Modulation and OFDM a Principles of Multicarrier Modulation and OFDM a Lie-Liang Yang Communications Research Group Faculty of Physical and Applied Sciences, University of Southampton, SO17 1BJ, UK. Tel: +44 23 8059 3364, Fax:

More information

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Amr Shehab Amin 37-20200 Abdelrahman Taha 31-2796 Yahia Mobasher 28-11691 Mohamed Yasser

More information

Anju 1, Amit Ahlawat 2

Anju 1, Amit Ahlawat 2 Orthogonal Frequency Division Multiplexing Anju 1, Amit Ahlawat 2 1 Hindu College of Engineering, Sonepat 2 Shri Baba Mastnath Engineering College Rohtak Abstract: OFDM was introduced in the 1950s but

More information

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context 4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context Mohamed.Messaoudi 1, Majdi.Benzarti 2, Salem.Hasnaoui 3 Al-Manar University, SYSCOM Laboratory / ENIT, Tunisia 1 messaoudi.jmohamed@gmail.com,

More information

Performance Analysis of OFDM System with QPSK for Wireless Communication

Performance Analysis of OFDM System with QPSK for Wireless Communication IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 3, Ver. I (May-Jun.2016), PP 33-37 www.iosrjournals.org Performance Analysis

More information

Broadband OFDM-FDMA System for the Uplink of a Wireless LAN

Broadband OFDM-FDMA System for the Uplink of a Wireless LAN Broadband OFDM-FDMA System for the Uplink of a Wireless LAN Dirk Galda and Hermann Rohling Department of Telecommunications,TU of Hamburg-Harburg Eißendorfer Straße 40, 21073 Hamburg, Germany Elena Costa,

More information

ENHANCING BER PERFORMANCE FOR OFDM

ENHANCING BER PERFORMANCE FOR OFDM RESEARCH ARTICLE OPEN ACCESS ENHANCING BER PERFORMANCE FOR OFDM Amol G. Bakane, Prof. Shraddha Mohod Electronics Engineering (Communication), TGPCET Nagpur Electronics & Telecommunication Engineering,TGPCET

More information

ANALYSIS OF BER AND SEP OF QPSK SIGNAL FOR MULTIPLE ANENNAS

ANALYSIS OF BER AND SEP OF QPSK SIGNAL FOR MULTIPLE ANENNAS ANALYSIS OF BER AND SEP OF QPSK SIGNAL FOR MULTIPLE ANENNAS Suganya.S 1 1 PG scholar, Department of ECE A.V.C College of Engineering Mannampandhal, India Karthikeyan.T 2 2 Assistant Professor, Department

More information

Major Leaps in Evolution of IEEE WLAN Technologies

Major Leaps in Evolution of IEEE WLAN Technologies Major Leaps in Evolution of IEEE 802.11 WLAN Technologies Thomas A. KNEIDEL Rohde & Schwarz Product Management Mobile Radio Tester WLAN Mayor Player in Wireless Communications Wearables Smart Homes Smart

More information

PAPR Reduction techniques in OFDM System Using Clipping & Filtering and Selective Mapping Methods

PAPR Reduction techniques in OFDM System Using Clipping & Filtering and Selective Mapping Methods PAPR Reduction techniques in OFDM System Using Clipping & Filtering and Selective Mapping Methods Okello Kenneth 1, Professor Usha Neelakanta 2 1 P.G. Student, Department of Electronics & Telecommunication

More information

MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS

MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS International Journal on Intelligent Electronic System, Vol. 8 No.. July 0 6 MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS Abstract Nisharani S N, Rajadurai C &, Department of ECE, Fatima

More information

June 09, 2014 Document Version: 1.1.0

June 09, 2014 Document Version: 1.1.0 DVB-T2 Analysis Toolkit Data Sheet An ideal solution for SFN network planning, optimization, maintenance and Broadcast Equipment Testing June 09, 2014 Document Version: 1.1.0 Contents 1. Overview... 3

More information

OFDM (Orthogonal Frequency Division Multiplexing) SIMULATION USING MATLAB Neha Pathak MTech Scholar, Shri am Institute of Technology

OFDM (Orthogonal Frequency Division Multiplexing) SIMULATION USING MATLAB Neha Pathak MTech Scholar, Shri am Institute of Technology OFDM (Orthogonal Frequency Division Multiplexing) SIMULATION USING MATLAB Neha Pathak MTech Scholar, Shri am Institute of Technology ABSTRACT This paper discusses the design and implementation of an OFDM

More information

Simulation and Performance Analysis of Orthogonal Frequency Division Multiplexing (OFDM) for Digital Communication. Yap Kok Cheong

Simulation and Performance Analysis of Orthogonal Frequency Division Multiplexing (OFDM) for Digital Communication. Yap Kok Cheong Simulation and Performance Analysis of Orthogonal Frequency Division Multiplexing (OFDM) for Digital Communication Yap Kok Cheong School of Science and Technology Thesis submitted to SIM University In

More information

High Performance Fbmc/Oqam System for Next Generation Multicarrier Wireless Communication

High Performance Fbmc/Oqam System for Next Generation Multicarrier Wireless Communication IOSR Journal of Engineering (IOSRJE) ISS (e): 50-0, ISS (p): 78-879 PP 5-9 www.iosrjen.org High Performance Fbmc/Oqam System for ext Generation Multicarrier Wireless Communication R.Priyadharshini, A.Savitha,

More information

Pilot-based channel estimation in OFDM system

Pilot-based channel estimation in OFDM system The University of Toledo The University of Toledo Digital Repository Theses and Dissertations 2011 Pilot-based channel estimation in OFDM system Fei Wang The University of Toledo Follow this and additional

More information

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS 44 CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS 3.1 INTRODUCTION A unique feature of the OFDM communication scheme is that, due to the IFFT at the transmitter and the FFT

More information

Error Probability of Different Modulation Schemes for OFDM based WLAN standard IEEE a

Error Probability of Different Modulation Schemes for OFDM based WLAN standard IEEE a Error Probability of Different Modulation Schemes for OFDM based WLAN standard IEEE 802.11a Sanjeev Kumar Asst. Professor/ Electronics & Comm. Engg./ Amritsar college of Engg. & Technology, Amritsar, 143001,

More information

Channel Estimation in Wireless OFDM Systems

Channel Estimation in Wireless OFDM Systems Estimation in Wireless OFDM Systems Govind Patidar M. Tech. Scholar, Electronics & Communication Engineering Mandsaur Institute of Technology Mandsaur,India gp.patidar10@gmail.com Abstract Orthogonal frequency

More information

Performance analysis of MISO-OFDM & MIMO-OFDM Systems

Performance analysis of MISO-OFDM & MIMO-OFDM Systems Performance analysis of MISO-OFDM & MIMO-OFDM Systems Kavitha K V N #1, Abhishek Jaiswal *2, Sibaram Khara #3 1-2 School of Electronics Engineering, VIT University Vellore, Tamil Nadu, India 3 Galgotias

More information

Chapter 0 Outline. NCCU Wireless Comm. Lab

Chapter 0 Outline. NCCU Wireless Comm. Lab Chapter 0 Outline Chapter 1 1 Introduction to Orthogonal Frequency Division Multiplexing (OFDM) Technique 1.1 The History of OFDM 1.2 OFDM and Multicarrier Transmission 1.3 The Applications of OFDM 2 Chapter

More information

Fundamentals of OFDM Communication Technology

Fundamentals of OFDM Communication Technology Fundamentals of OFDM Communication Technology Fuyun Ling Rev. 1, 04/2013 1 Outline Fundamentals of OFDM An Introduction OFDM System Design Considerations Key OFDM Receiver Functional Blocks Example: LTE

More information

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU Part 3. Multiple Access Methods p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU Review of Multiple Access Methods Aim of multiple access To simultaneously support communications between

More information

Comparative Study of OFDM & MC-CDMA in WiMAX System

Comparative Study of OFDM & MC-CDMA in WiMAX System IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. IV (Jan. 2014), PP 64-68 Comparative Study of OFDM & MC-CDMA in WiMAX

More information

Comparison of BER for Various Digital Modulation Schemes in OFDM System

Comparison of BER for Various Digital Modulation Schemes in OFDM System ISSN: 2278 909X Comparison of BER for Various Digital Modulation Schemes in OFDM System Jaipreet Kaur, Hardeep Kaur, Manjit Sandhu Abstract In this paper, an OFDM system model is developed for various

More information

DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR

DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR COMMUNICATION SYSTEMS Abstract M. Chethan Kumar, *Sanket Dessai Department of Computer Engineering, M.S. Ramaiah School of Advanced

More information

With a lot of material from Rich Nicholls, CTL/RCL and Kurt Sundstrom, of unknown whereabouts

With a lot of material from Rich Nicholls, CTL/RCL and Kurt Sundstrom, of unknown whereabouts Signal Processing for OFDM Communication Systems Eric Jacobsen Minister of Algorithms, Intel Labs Communication Technology Laboratory/ Radio Communications Laboratory July 29, 2004 With a lot of material

More information

Single Carrier Multi-Tone Modulation Scheme

Single Carrier Multi-Tone Modulation Scheme Single Carrier Multi-Tone Modulation Scheme Roman M. Vitenberg Guarneri Communications Ltd, Israel roman@guarneri-communications.com Abstract In this paper, we propose a modulation scheme, which can improve

More information

ATSC 3.0 Physical Layer Overview

ATSC 3.0 Physical Layer Overview ATSC 3.0 Physical Layer Overview Agenda Terminology Real world concerns Technology to combat those concerns Summary Basic Terminology What is OFDM? What is FEC? What is Shannon s Theorem? What does BER

More information

Fourier Transform Time Interleaving in OFDM Modulation

Fourier Transform Time Interleaving in OFDM Modulation 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications Fourier Transform Time Interleaving in OFDM Modulation Guido Stolfi and Luiz A. Baccalá Escola Politécnica - University

More information

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 OFDMA PHY for EPoC: a Baseline Proposal Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 Supported by Jorge Salinger (Comcast) Rick Li (Cortina) Lup Ng (Cortina) PAGE 2 Outline OFDM: motivation

More information

An OFDM Transmitter and Receiver using NI USRP with LabVIEW

An OFDM Transmitter and Receiver using NI USRP with LabVIEW An OFDM Transmitter and Receiver using NI USRP with LabVIEW Saba Firdose, Shilpa B, Sushma S Department of Electronics & Communication Engineering GSSS Institute of Engineering & Technology For Women Abstract-

More information

Lecture 5: Simulation of OFDM communication systems

Lecture 5: Simulation of OFDM communication systems Lecture 5: Simulation of OFDM communication systems March 28 April 9 28 Yuping Zhao (Doctor of Science in technology) Professor, Peking University Beijing, China Yuping.zhao@pku.edu.cn Single carrier communcation

More information

From OFDM to LTE. Fabrizio Tomatis (ST-E) Based on slides from Andrea Ancora (ST-E)

From OFDM to LTE. Fabrizio Tomatis (ST-E) Based on slides from Andrea Ancora (ST-E) From OFDM to LTE Fabrizio Tomatis (ST-E) Based on slides from Andrea Ancora (ST-E) Introduction OFDM History Principles of Wireless Communications OFDM principles Serial-to-parallel conversion Cyclic prefix

More information

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont.

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont. TSTE17 System Design, CDIO Lecture 5 1 General project hints 2 Project hints and deadline suggestions Required documents Modulation, cont. Requirement specification Channel coding Design specification

More information

Performance Analysis of OFDM System in Multipath Fading Environment

Performance Analysis of OFDM System in Multipath Fading Environment Performance Analysis of OFDM System in Multipath Fading Environment Kratika Gupta riyagupta180@yahoo.com Pratibha Nagaich pratibha.nagaich@trubainstitute.ac.in Abstract A detailed study of the OFDM technique

More information

Point-to-Point Communications

Point-to-Point Communications Point-to-Point Communications Key Aspects of Communication Voice Mail Tones Alphabet Signals Air Paper Media Language English/Hindi English/Hindi Outline of Point-to-Point Communication 1. Signals basic

More information

Forschungszentrum Telekommunikation Wien

Forschungszentrum Telekommunikation Wien Forschungszentrum Telekommunikation Wien OFDMA/SC-FDMA Basics for 3GPP LTE (E-UTRA) T. Zemen April 24, 2008 Outline Part I - OFDMA and SC/FDMA basics Multipath propagation Orthogonal frequency division

More information

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels Prashanth G S 1 1Department of ECE, JNNCE, Shivamogga ---------------------------------------------------------------------***----------------------------------------------------------------------

More information

OFDMA and MIMO Notes

OFDMA and MIMO Notes OFDMA and MIMO Notes EE 442 Spring Semester Lecture 14 Orthogonal Frequency Division Multiplexing (OFDM) is a digital multi-carrier modulation technique extending the concept of single subcarrier modulation

More information

2.

2. PERFORMANCE ANALYSIS OF STBC-MIMO OFDM SYSTEM WITH DWT & FFT Shubhangi R Chaudhary 1,Kiran Rohidas Jadhav 2. Department of Electronics and Telecommunication Cummins college of Engineering for Women Pune,

More information

Performance Analysis of MIMO-OFDM based IEEE n using Different Modulation Techniques

Performance Analysis of MIMO-OFDM based IEEE n using Different Modulation Techniques IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 2 August 26 ISSN (online): 2349-784X Performance Analysis of MIMO-OFDM based IEEE 82.n using Different Modulation Techniques

More information

Improving Data Transmission Efficiency over Power Line Communication (PLC) System Using OFDM

Improving Data Transmission Efficiency over Power Line Communication (PLC) System Using OFDM Improving Data Transmission Efficiency over Power Line Communication (PLC) System Using OFDM Charles U. Ndujiuba 1, Samuel N. John 1, Oladimeji Ogunseye 2 1 Electrical & Information Engineering, Covenant

More information

WAVELET OFDM WAVELET OFDM

WAVELET OFDM WAVELET OFDM EE678 WAVELETS APPLICATION ASSIGNMENT WAVELET OFDM GROUP MEMBERS RISHABH KASLIWAL rishkas@ee.iitb.ac.in 02D07001 NACHIKET KALE nachiket@ee.iitb.ac.in 02D07002 PIYUSH NAHAR nahar@ee.iitb.ac.in 02D07007

More information

Space Time Block Coding - Spatial Modulation for Multiple-Input Multiple-Output OFDM with Index Modulation System

Space Time Block Coding - Spatial Modulation for Multiple-Input Multiple-Output OFDM with Index Modulation System Space Time Block Coding - Spatial Modulation for Multiple-Input Multiple-Output OFDM with Index Modulation System Ravi Kumar 1, Lakshmareddy.G 2 1 Pursuing M.Tech (CS), Dept. of ECE, Newton s Institute

More information

Wireless Networks (PHY)

Wireless Networks (PHY) 802.11 Wireless Networks (PHY) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica 2016.03.18 CSIE, NTU Reference 1. OFDM Tutorial online: http://home.iitj.ac.in/~ramana/ofdmtutorial.pdf 2. OFDM Wireless LWNs: A

More information

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document. Mansor, Z. B., Nix, A. R., & McGeehan, J. P. (2011). PAPR reduction for single carrier FDMA LTE systems using frequency domain spectral shaping. In Proceedings of the 12th Annual Postgraduate Symposium

More information

Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement

Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement Channel Estimation DFT Interpolation Special Articles on Multi-dimensional MIMO Transmission Technology The Challenge

More information

Chapter 7 Multiple Division Techniques for Traffic Channels

Chapter 7 Multiple Division Techniques for Traffic Channels Introduction to Wireless & Mobile Systems Chapter 7 Multiple Division Techniques for Traffic Channels Outline Introduction Concepts and Models for Multiple Divisions Frequency Division Multiple Access

More information

Introduction to OFDM

Introduction to OFDM Introduction to OFDM Fire Tom Wada Professor, Information Engineering, Univ. of the Ryukyus Chief Scientist at Magna Design Net, Inc wada@ie.u-ryukyu.ac.jp http://www.ie.u-ryukyu.ac.jp/~wada/ 11/2/29 1

More information

Fund. of Digital Communications Ch. 3: Digital Modulation

Fund. of Digital Communications Ch. 3: Digital Modulation Fund. of Digital Communications Ch. 3: Digital Modulation Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of Technology November

More information

ANALYSIS AND STUDY OF MULTI-SYMBOL ENCAPSULATED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

ANALYSIS AND STUDY OF MULTI-SYMBOL ENCAPSULATED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING ANALYSIS AND STUDY OF MULTI-SYMBOL ENCAPSULATED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Technology In Electronics

More information

Carrier Frequency Offset Estimation Algorithm in the Presence of I/Q Imbalance in OFDM Systems

Carrier Frequency Offset Estimation Algorithm in the Presence of I/Q Imbalance in OFDM Systems Carrier Frequency Offset Estimation Algorithm in the Presence of I/Q Imbalance in OFDM Systems K. Jagan Mohan, K. Suresh & J. Durga Rao Dept. of E.C.E, Chaitanya Engineering College, Vishakapatnam, India

More information

BER Comparison of DCT-based OFDM and FFT-based OFDM using BPSK Modulation over AWGN and Multipath Rayleigh Fading Channel

BER Comparison of DCT-based OFDM and FFT-based OFDM using BPSK Modulation over AWGN and Multipath Rayleigh Fading Channel BER Comparison of DCT-based and FFT-based using BPSK Modulation over AWGN and Multipath Rayleigh Channel Lalchandra Patidar Department of Electronics and Communication Engineering, MIT Mandsaur (M.P.)-458001,

More information

Survey on Effective OFDM Technology for 4G

Survey on Effective OFDM Technology for 4G Survey on Effective OFDM Technology for 4G Kanchan Vijay Patil, 2 R D Patane, Lecturer, 2 Professor, Electronics and Telecommunication, ARMIET, Shahpur, India 2 Terna college of engineering, Nerul, India

More information

Performance Evaluation of IEEE STD d Transceiver

Performance Evaluation of IEEE STD d Transceiver IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735. Volume 6, Issue 2 (May. - Jun. 2013), PP 21-26 Performance Evaluation of IEEE STD 802.16d Transceiver

More information

Design and Implementation of OFDM System and Reduction of Inter-Carrier Interference at Different Variance

Design and Implementation of OFDM System and Reduction of Inter-Carrier Interference at Different Variance Design and Implementation of OFDM System and Reduction of Inter-Carrier Interference at Different Variance Gaurav Verma 1, Navneet Singh 2 1 Research Scholar, JCDMCOE, Sirsa, Haryana, India 2 Assistance

More information

Clipping and Filtering Technique for reducing PAPR In OFDM

Clipping and Filtering Technique for reducing PAPR In OFDM IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719, Volume 2, Issue 9 (September 2012), PP 91-97 Clipping and Filtering Technique for reducing PAPR In OFDM Saleh Albdran 1, Ahmed

More information

Self-interference Handling in OFDM Based Wireless Communication Systems

Self-interference Handling in OFDM Based Wireless Communication Systems Self-interference Handling in OFDM Based Wireless Communication Systems Tevfik Yücek yucek@eng.usf.edu University of South Florida Department of Electrical Engineering Tampa, FL, USA (813) 974 759 Tevfik

More information