A CORRELATION OF CMOS CIRCUIT STRATEGIES: DIFFERENTIAL CASCODE VOLTAGE SWITCH RATIONALE VERSUS ORDINARY RATIONALE

Size: px
Start display at page:

Download "A CORRELATION OF CMOS CIRCUIT STRATEGIES: DIFFERENTIAL CASCODE VOLTAGE SWITCH RATIONALE VERSUS ORDINARY RATIONALE"

Transcription

1 A CORRELATION OF CMOS CIRCUIT STRATEGIES: DIFFERENTIAL CASCODE VOLTAGE SWITCH RATIONALE VERSUS ORDINARY RATIONALE D.SUMANTH 1*, K.NAGA LAKSHMI 2* 1. II.M.Tech, Dept of ECE, AM Reddy Memorial College of Engineering & Technology, Petlurivaripalem. 2. Asst. Prof, Dept. of ECE, AM Reddy Memorial College of Engineering & Technology, Petlurivaripalem. ABSTRACT In this paper, we display Energy effective CMOS full viper, which is one of the fundamental building squares of a cutting edge electronic frameworks outline. Vitality Efficiency is a standout amongst the most required components in computerized electronic frameworks for superior and/or convenient applications which mean PDP, it quantifies the vitality devoured per exchanging occasion. This paper demonstrates that correlative CMOS is the rationale style of decision for the execution of combinational circuits, if low voltage, low power, and little power-delay items are of worry with generally low territory. Keywords: Adders, CMOS Full Adder, Low power, VLSI, High-Speed, Low-range I. INTRODUCTION In the today's universe of VLSI framework, for example, application particular DSP architectures, chip, FIR channel and systolic cluster outline there is necessity of principal operations, for example, expansion. In this manner Full adders are the center of numerous number juggling operations, for example, expansion, subtraction, increase, division and location era. In the dominant part of frameworks, the viper is a piece of the basic way that decides the general execution of the framework. As expressed, the framework's general execution would influenced by PDP displayed by the full-viper [1]. Consequently improving the execution of the full viper cell consequences of awesome interest [1].By considering this actualities the configuration of a full-snake having low-control utilization and low proliferation postponement aftereffects of incredible enthusiasm for the usage of cutting edge computerized frameworks. In headway of portable item, which worked with a high throughput ability makes the configuration of low-power viper module another huge objective to be accomplished. Power scattering can be cause by three noteworthy parts in integral metal oxide semiconductor (CMOS) circuits [2] in particular exchanging force, short out force and static force. Lessening any of these segments will represents lower force utilization for the entire framework outline. II. PREVIOUS WORK Different papers have been distributed identified with the outline of low power full adders. They were attempting on both, the rationale style and the rationale structure used to manufacture the snake. Since the standard CMOS acknowledgment [3], different full adders were based upon distinctive static rationale styles. They have been exhibited, to be specific: Differential Cascade Voltage Switch (DCVS) [4], Complementary PassTransistor Logic (CPL) [5], Double Pass-Transistor Logic (DPL) [6], and Swing Restored CPL (SR-CPL) [7]. Contingent Upon these rationale styles, few undertakings have been done to assemble propel full adders by changing the inside rationale structure of the snake module. In late work [8], a full viper is composed by utilizing transmission capacity hypothesis. It is framed by three primary rationale squares in particular XOR-

2 XNOR entryway to get A XOR B and A XNOR B signs (Block 1), and a multiplexers to acquire the SUM (So) and CARRY (Co) yields (Blocks 2 and 3) separately, as appeared in Figure 1. Subsequently, to expand the operational pace of the full viper, it is vital to scrutinize for a development rationale structure that maintains a strategic distance from the era of inside signs used to control the determination or transmission of different signs situated on the basic way. III. ENERGY EFFICIENT FULL ADDER The predetermined rationale structure depends on the full snake's truth-table appeared in Table 1, and it has been acknowledged as the standard inner structure in the vast majority of the field range produced for the single piece full viper cell. TABLE 1-TRUE-TABLE FOR A 1-BIT FULL ADDER WITH A, B AND C AS AN INPUTS, AND SO AND CO ARE OUTPUTS Subsequent to contemplating reality table of full viper in Table 1, it can be watched that the so yield is equivalent to the (A XOR B) esteem when C=0, and equivalent to (A XNOR B) when C=1. From this perception we reason that a multiplexer will be utilized to acquire the individual worth based upon the Carry information, as expressed prior. Utilizing the same situation, the Co yield is equivalent to the (An AND B) esteem when C=0, and (An OR B) esteem when C=1. In the comparative way, convey will be utilized to drive a multiplexer. Consequently, a vitality proficient rationale plan to outline a full snake cell can be shaped by a rationale square to get the (AXOR B) and (AXOR B) signals, other piece to get (An AND B) and (An OR B) signs, and two multiplexers being driven by the Carry info to create the So and Co yields, as appeared in Figure 2 In paper [9], subtle element study is done on one piece cmos full viper, the productive acknowledgment for square 1 in fig 1 was executed with SR-CPL rationale style. Be that as it may, there is an imperative conclusion was pointed out respects of engendering deferral. For a full viper based upon the rationale structure appeared in Figure 1. It is fundamental to get A XOR B and A XNOR B inside signs, which are then bolster to drive different pieces which are block1 and square 2 keeping in mind the end goal to create the last yields. In this manner the general force utilization, rely on upon the deferral and voltage swing of the (A XOR B) and (A XNOR B) signs, produced inside of the module. The components and focal points that can be normal for this vitality proficient rationale structure are given underneath [10], 1. There is no prerequisite of inward flag for controlling the select line of multiplexers. Rather, the Carry info signal, which has full voltage swing and immediately, is utilized to drive the select line of

3 multiplexers, which decreases the general proliferation deferral of full viper. 2. It lessens the capacitive burden for the convey information, in light of the fact that it is joined just to some transistor entryways and not to some channel or source terminals, where the dissemination capacitance is turning out to be vast. Consequently, the general deferral for bigger modules where the convey sign falls on the basic way can be diminished. 3. The spread postponement can be tuned up separately by conforming the XOR/XNOR and the AND/OR doors for the So and Co yields; this criteria is worthwhile for applications where the skew between arriving signs is basic for an appropriate operation (e.g., wave pipelining). 4. By trading the XOR/XNOR signals, and the AND/OR doors to NAND/NOR entryways at the info of the multiplexers, the arrangement of cradles at the full-snake yields can be executed which can enhance the execution for burden delicate applications. Contingent upon the outcomes acquired in [11], two new full-adders will be been planned utilizing the rationale styles DPL and SR-CPL. Fig. 3 exhibits a full-viper outlined utilizing a DPL rationale style to fabricate the XOR/XNOR doors, and a pass-transistor based multiplexer to acquire the so yield In Fig. 4 shows the SR-CPL rationale Style which will be utilized to construct XOR/XNOR entryways What's more, OR doors have been fabricated utilizing a frail and unfounded pass-transistor setup, individually in both cases and a pass-transistor based multiplexer to get the Co yield. IV. POWER DISSIPATION IN CMOS The segment of energy to be considered amid the information sign move, and comprises of two sections, a dynamic dissemination and short out. The dynamic force is scattered to adjust the charge substance of the capacitive burden, it is relative to the changing recurrence and to the heap capacitance, and consequently relies on upon the territory of the cradles. The short out force dispersal is created by the concurrent conduction of P and N transistors amid

4 the move of the data signal. The proportion of data to move times is a decent marker of short out force scattering. The proportion values similar or lower than solidarity, which is the target of support outline, the short out force scattering can be overlooked. Cushion plan with altered or variable decreasing components has been acquired with short out force substance lower than 10% of the aggregate force scattering. The outcome, in the meaning of our enhancing goals, is to simply consider the dynamic part. CREF tot is the aggregate estimation of the heap capacitances included in the outline, it incorporates format parasitic (dissemination and interconnect) and dynamic burdens is the base capacitance considered in the configuration procedure or in the library. Plan for least Power delay item In this section an unequivocal expression for the force delay result of inverters and think about outline arrangements, for the base of this item, to the options researched in the former parts. The deferrals in CMOS structures rely on upon the proportion of the aggregate burden to the drive capacitance of every cell, and that this proportion could be communicated (θ) as a fragmentary piece of a reference capacitance, (C REF ) utilized as a measure unit for the heap. The aggregate element power as the result of a reference power,, by the aggregate burden capacitance standardized as for the reference capacitance For a variety of 2 inverters this outcomes in.[5].the force delay item can then be gotten as where CIN1=(1+k)CN) characterizes the reference capacitance. Subordinate of this expression concerning CIN2gives the ideal decreasing component minimizing the force delay item. Delay region and Power utilization Correlation between n-bit fantastic three-operand and proposed n-bit Three-operand multiplier can be planned by subtracting the deferrals registered by each of the outlines. The comparing deferral for three-operand multipliers utilizing fantastic strategy for augmentation is the issue in now ever days architectures. Subtracting registered deferral of every configuration from mathematical statement would let us know which approach is speedier. In the event of proposed outline I, as it was specified the deferrals are equivalent but since of cell structural planning utilized as a part of proposed configuration I, It is viewed as that it is quicker than fantastic technique for duplication. Subtracting mathematical statement from will let us know which approach is speedier, contrasting excellent three operand increases and proposed outline II. As it is obvious from the inferred comparison, the proposed outline II is speedier by number registered by mathematical statement as for traditional technique for increase. Performing the same method as proposed configuration II for proposed outline III and subtracting will give us the distinction [6]. For execution assessment and examination, we utilize intelligent exertion and will demonstrate the postponement of each proposed plan. For this situation, postponement of an AND entryway is deferral of one door appeared by d(and), the deferral of a 4:2 compressor is equivalent to 3 entryways meant by d(4:2), and idleness of a XOR is 2 door deferral, showed by d(xor). Keeping in mind the end goal to facilitate the correlation created to demonstrate the down to earth deferral in view of legitimate exertion investigation V. HIGH SPEED ADDITION In the first place thing is to look at an acknowledgment of an one-piece viper which speaks to an essential building square for all the more expound expansion plans. Full Adder Operation of a Full Adder is characterized by the Boolean mathematical statements for the entirety and conveys signals: Where ai, bi, and ci are the inputs to the i-th full viper stage, and si and c are the aggregate and convey yields from the i-th stage, individually. The acknowledgment of the Sum capacity requires two XOR rationale entryways. The Carry capacity is further reworked characterizing the Carry-Propagate pi terms and Carry-Generate gi terms: At a given stage i, a convey is created if gi is genuine (i.e., both ai and bi are ONEs), and if p is genuine, a stage proliferates an information convey to its yield (i.e.,

5 either ai or b is an ONE). Fig.1. Full-Adder execution (a) normal (b) utilizing multiplexer as a part of the basic way For this usage, the postponement from either an or bi to si is two XOR deferrals and the deferral from ci to ci+1i is 2 entryway delays. A few innovations, for example, CMOS, execute the capacities all the more productively by utilizing passtransistor circuits. For instance, the basic way of the convey into carryout utilizes a quick passtransistor multiplexer [8] in an option execution of the Full Adder. VI. COMPARISON OF DIFFERENT LOGIC STYLE The rationale style utilized as a part of rationale entryways essentially relies on upon the pace, size, power scattering, and the wiring intricacy of a circuit. Contingent upon these criteria correlation of distinctive rationale style is recorded beneath [12] and less power utilization of around 840 µw, for a general diminishment of 30% appreciation to the best included one of alternate adders been analyzed, yet by and large around half regard to alternate ones. Later on some work should be possible for the planning of rapid low-power full adders, considering elective rationale structure and attempting on new acknowledge for the constituent rationale pieces (XOR/XNOR, AND, OR and MUX cells) REFERENCES [1] A. M. Shams and M. Bayoumi, "Performance evaluation of 1-bit CMOS adder cells ", IEEE ISCAS, Orlando, Florida, May 1999, pp. I [2] A.P.Chandrakasan, S.Sheng and R.W.Brodersen, "Lowpower CMOS digital design ", IEEE JSSC, Vol. 27, April 1992, pp [3] N. Weste and K. Eshraghian, Principles of CMOS design, A system perspective, Addison-Wesley, [4] K. M. Chu and D. Pulfrey, A comparison of CMOS circuit techniques: Differential cascode voltage switch logic versus conventional logic, IEEE J. Solid-State Circuits, vol. SC-22, no. 4, pp , Aug [5] K. Yano, K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi, and A. Shimizu, A 3.8 ns CMOS 16-b multiplier using complementary passtransistor logic, IEEE J. Solid-State Circuits, vol. 25, no. 2, pp , Apr VII. CONCLUSION The outline of fast low-power full snake cells based upon an option rationale methodology has been exhibited. Which brings about an incredible change on respects of force deferral metric for the proposed adders, when contrasted and a few beforehand distributed acknowledge. The full adders outlined utilizing enhanced rationale structure and DPL and SR-CPL rationale styles, less defer of around 720ps [6] M. Suzuki, M. Suzuki, N. Ohkubo, T. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki, and Y. Nakagome, A 1.5 ns 32-b CMOS ALU in double pass-transistor logic, IEEE J. Solid-State Circuits, vol. 28, no. 11, pp , Nov [7] R. Zimmerman and W. Fichtner, Low-power logic styles: CMOS Versus pass-transistor logic, IEEE J. Solid-State Circuits, vol. 32, no. 7, pp , Jul

6 [8] N. Zhuang and H. Wu, "A new design ofthe CMOSfull adder", IEEE JSSC, Vol. 27, No. 5, May 1992, pp [9] A. M. Shams and M. Bayoumi, "A new cellfor low power adders ", Proceedings of the International MWSCAS, [10] C. Chang, J. Gu, and M. Zhang, A reviewof 0.18-mfull adder performances for tree structured arithmetic circuits, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 6, pp , Jun [11] M. Aguirre and M. Linares, An alternative logic approach to implement high-speed low-power full adder cells, in Proc. SBCCI, Florianopolis, Brazil, Sep. 2005, pp [12] Reto Zimmermann and Wolfgang Fichtner, Fellow, IEEE Low-Power Logic Styles: CMOS Versus Pass-Transistor Logic in IEEE Journal Of Solid-State Circuits, Vol. 32, No. 7, July 1997.

Comparative Study on CMOS Full Adder Circuits

Comparative Study on CMOS Full Adder Circuits Comparative Study on CMOS Full Adder Circuits Priyanka Rathore and Bhavna Jharia Abstract The Presented paper focuses on the comparison of seven full adders. The comparison is based on the power consumption

More information

A REVIEW OF THE 0.09 µm STANDARD FULL ADDERS

A REVIEW OF THE 0.09 µm STANDARD FULL ADDERS A REVIEW OF THE 0.09 µm STANDARD FULL ADDERS V. Vijay 1, J. Prathiba 2, S. Niranjan Reddy 3 and P. Praveen kumar 4 1 School of Electronics, Vignan University, Vadlamudi, Guntur vijayqiscet@gmail.com 2

More information

High Performance Low-Power Signed Multiplier

High Performance Low-Power Signed Multiplier High Performance Low-Power Signed Multiplier Amir R. Attarha Mehrdad Nourani VLSI Circuits & Systems Laboratory Department of Electrical and Computer Engineering University of Tehran, IRAN Email: attarha@khorshid.ece.ut.ac.ir

More information

A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates

A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates Anil Kumar 1 Kuldeep Singh 2 Student Assistant Professor Department of Electronics and Communication Engineering Guru Jambheshwar

More information

Design and Implementation of Complex Multiplier Using Compressors

Design and Implementation of Complex Multiplier Using Compressors Design and Implementation of Complex Multiplier Using Compressors Abstract: In this paper, a low-power high speed Complex Multiplier using compressor circuit is proposed for fast digital arithmetic integrated

More information

II. Previous Work. III. New 8T Adder Design

II. Previous Work. III. New 8T Adder Design ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: High Performance Circuit Level Design For Multiplier Arun Kumar

More information

IMPLEMENTATION OF AREA EFFICIENT AND LOW POWER CARRY SELECT ADDER USING BEC-1 CONVERTER

IMPLEMENTATION OF AREA EFFICIENT AND LOW POWER CARRY SELECT ADDER USING BEC-1 CONVERTER IMPLEMENTATION OF AREA EFFICIENT AND LOW POWER CARRY SELECT ADDER USING BEC-1 CONVERTER Hareesha B 1, Shivananda 2, Dr.P.A Vijaya 3 1 PG Student, M.Tech,VLSI Design and Embedded Systems, BNM Institute

More information

DESIGN OF EXTENDED 4-BIT FULL ADDER CIRCUIT USING HYBRID-CMOS LOGIC

DESIGN OF EXTENDED 4-BIT FULL ADDER CIRCUIT USING HYBRID-CMOS LOGIC DESIGN OF EXTENDED 4-BIT FULL ADDER CIRCUIT USING HYBRID-CMOS LOGIC 1 S.Varalakshmi, 2 M. Rajmohan, M.Tech, 3 P. Pandiaraj, M.Tech 1 M.Tech Department of ECE, 2, 3 Asst.Professor, Department of ECE, 1,

More information

Full Adder Circuits using Static Cmos Logic Style: A Review

Full Adder Circuits using Static Cmos Logic Style: A Review Full Adder Circuits using Static Cmos Logic Style: A Review Sugandha Chauhan M.E. Scholar Department of Electronics and Communication Chandigarh University Gharuan,Punjab,India Tripti Sharma Professor

More information

Design of New Full Swing Low-Power and High- Performance Full Adder for Low-Voltage Designs

Design of New Full Swing Low-Power and High- Performance Full Adder for Low-Voltage Designs International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 2, No., 201, pp. 29-. ISSN 2-9 International Academic Journal of Science and Engineering

More information

Implementation of Efficient 5:3 & 7:3 Compressors for High Speed and Low-Power Operations

Implementation of Efficient 5:3 & 7:3 Compressors for High Speed and Low-Power Operations Volume-7, Issue-3, May-June 2017 International Journal of Engineering and Management Research Page Number: 42-47 Implementation of Efficient 5:3 & 7:3 Compressors for High Speed and Low-Power Operations

More information

Implementation of Low Power High Speed Full Adder Using GDI Mux

Implementation of Low Power High Speed Full Adder Using GDI Mux Implementation of Low Power High Speed Full Adder Using GDI Mux Thanuja Kummuru M.Tech Student Department of ECE Audisankara College of Engineering and Technology. Abstract The binary adder is the critical

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1156 Novel Low Power Shrikant and M Pattar, High H V Ravish Speed Aradhya 8T Full Adder Abstract - Full adder

More information

Implementation of Carry Select Adder using CMOS Full Adder

Implementation of Carry Select Adder using CMOS Full Adder Implementation of Carry Select Adder using CMOS Full Adder Smitashree.Mohapatra Assistant professor,ece department MVSR Engineering College Nadergul,Hyderabad-510501 R. VaibhavKumar PG Scholar, ECE department(es&vlsid)

More information

A Low Power and Area Efficient Full Adder Design Using GDI Multiplexer

A Low Power and Area Efficient Full Adder Design Using GDI Multiplexer A Low Power and Area Efficient Full Adder Design Using GDI Multiplexer G.Bramhini M.Tech (VLSI), Vidya Jyothi Institute of Technology. G.Ravi Kumar, M.Tech Assistant Professor, Vidya Jyothi Institute of

More information

Design of Low Power High Speed Hybrid Full Adder

Design of Low Power High Speed Hybrid Full Adder IJECT Vo l. 6, Is s u e 4, Oc t - De c 2015 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Design of Low Power High Speed Hybrid Full Adder 1 P. Kiran Kumar, 2 P. Srikanth 1,2 Dept. of ECE, MVGR College

More information

1-Bit Full-Adder cell with Optimized Delay for Energy- Efficient Arithmetic Applications

1-Bit Full-Adder cell with Optimized Delay for Energy- Efficient Arithmetic Applications International Journal of Electronic Networks, Devices and Fields. ISSN 0974-2182 Volume 4, Number 1 (2012), pp. 1-7 International Research Publication House http://www.irphouse.com 1-Bit Full-Adder cell

More information

POWER DELAY PRODUCT AND AREA REDUCTION OF FULL ADDERS USING SYSTEMATIC CELL DESIGN METHODOLOGY

POWER DELAY PRODUCT AND AREA REDUCTION OF FULL ADDERS USING SYSTEMATIC CELL DESIGN METHODOLOGY This work by IJARBEST is licensed under Creative Commons Attribution 4.0 International License. Available at https://www.ijarbest.com ISSN (ONLINE): 2395-695X POWER DELAY PRODUCT AND AREA REDUCTION OF

More information

Energy Efficient Full-adder using GDI Technique

Energy Efficient Full-adder using GDI Technique Energy Efficient Full-adder using GDI Technique Balakrishna.Batta¹, Manohar.Choragudi², Mahesh Varma.D³ ¹P.G Student, Kakinada Institute of Engineering and technology, korangi, JNTUK, A.P, INDIA ²Assistant

More information

Design and Comparison of Multipliers Using Different Logic Styles

Design and Comparison of Multipliers Using Different Logic Styles International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-2, May 2012 Design and Comparison of Multipliers Using Different Logic Styles Aditya Kumar Singh, Bishnu

More information

Low power high speed hybrid CMOS Full Adder By using sub-micron technology

Low power high speed hybrid CMOS Full Adder By using sub-micron technology Low power high speed hybrid CMOS Full Adder By using sub-micron technology Ch.Naveen Kumar 1 Assistant professor,ece department GURUNANAK institutions technical campus Hyderabad-501506 A.V. Rameshwar Rao

More information

A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION

A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION Mr. Snehal Kumbhalkar 1, Mr. Sanjay Tembhurne 2 Department of Electronics and Communication Engineering GHRAET, Nagpur, Maharashtra,

More information

DESIGN OF LOW POWER HIGH PERFORMANCE 4-16 MIXED LOGIC LINE DECODER P.Ramakrishna 1, T Shivashankar 2, S Sai Vaishnavi 3, V Gowthami 4 1

DESIGN OF LOW POWER HIGH PERFORMANCE 4-16 MIXED LOGIC LINE DECODER P.Ramakrishna 1, T Shivashankar 2, S Sai Vaishnavi 3, V Gowthami 4 1 DESIGN OF LOW POWER HIGH PERFORMANCE 4-16 MIXED LOGIC LINE DECODER P.Ramakrishna 1, T Shivashankar 2, S Sai Vaishnavi 3, V Gowthami 4 1 Asst. Professsor, Anurag group of institutions 2,3,4 UG scholar,

More information

Pardeep Kumar, Susmita Mishra, Amrita Singh

Pardeep Kumar, Susmita Mishra, Amrita Singh Study of Existing Full Adders and To Design a LPFA (Low Power Full Adder) Pardeep Kumar, Susmita Mishra, Amrita Singh 1 Department of ECE, B.M.S.E.C, Muktsar, 2,3 Asstt. Professor, B.M.S.E.C, Muktsar Abstract

More information

Design and Analysis of Low-Power 11- Transistor Full Adder

Design and Analysis of Low-Power 11- Transistor Full Adder Design and Analysis of Low-Power 11- Transistor Full Adder Ravi Tiwari, Khemraj Deshmukh PG Student [VLSI, Dept. of ECE, Shri Shankaracharya Technical Campus(FET), Bhilai, Chattisgarh, India 1 Assistant

More information

Department of Electronics and Communication Engineering, SRM University, India 2

Department of Electronics and Communication Engineering, SRM University, India 2 ISSN: 0974-2115 Design of Low Power Efficient Full Adder Using Six Transistor X-OR and Mux Circuit Kambham Archana 1, Syed Mohammad Aslam 1, Raghuram Reddy 1, S.Latha 1*, P.Muthu 2, Dhanalakshmi S 1 1

More information

Design & Analysis of Low Power Full Adder

Design & Analysis of Low Power Full Adder 1174 Design & Analysis of Low Power Full Adder Sana Fazal 1, Mohd Ahmer 2 1 Electronics & communication Engineering Integral University, Lucknow 2 Electronics & communication Engineering Integral University,

More information

ISSN Vol.04, Issue.05, May-2016, Pages:

ISSN Vol.04, Issue.05, May-2016, Pages: ISSN 2322-0929 Vol.04, Issue.05, May-2016, Pages:0332-0336 www.ijvdcs.org Full Subtractor Design of Energy Efficient, Low Power Dissipation Using GDI Technique M. CHAITANYA SRAVANTHI 1, G. RAJESH 2 1 PG

More information

A Literature Survey on Low PDP Adder Circuits

A Literature Survey on Low PDP Adder Circuits Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 12, December 2015,

More information

Gdi Technique Based Carry Look Ahead Adder Design

Gdi Technique Based Carry Look Ahead Adder Design IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 6, Ver. I (Nov - Dec. 2014), PP 01-09 e-issn: 2319 4200, p-issn No. : 2319 4197 Gdi Technique Based Carry Look Ahead Adder Design

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 5.71 International Journal of Advance Engineering and Research Development Volume 5, Issue 05, May -2018 e-issn (O): 2348-4470 p-issn (P): 2348-6406 COMPARATIVE

More information

SURVEY AND EVALUATION OF LOW-POWER FULL-ADDER CELLS

SURVEY AND EVALUATION OF LOW-POWER FULL-ADDER CELLS SURVEY ND EVLUTION OF LOW-POWER FULL-DDER CELLS hmed Sayed and Hussain l-saad Department of Electrical & Computer Engineering University of California Davis, C, U.S.. STRCT In this paper, we survey various

More information

Investigation on Performance of high speed CMOS Full adder Circuits

Investigation on Performance of high speed CMOS Full adder Circuits ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Investigation on Performance of high speed CMOS Full adder Circuits 1 KATTUPALLI

More information

Design and Comparison of Unsigned 16-Bit Multiplier Based On Booth-Encoder and Wallace-Tree Modifications

Design and Comparison of Unsigned 16-Bit Multiplier Based On Booth-Encoder and Wallace-Tree Modifications Design and Comparison of Unsigned 16-Bit Multiplier Based On Booth-Encoder and Wallace-Tree Modifications Pooja Chandgude 1, Dr.A.M.Sapkal 2, Prof. Ruchika Singh 3 M. E Student, Department of Electronics

More information

An Efficient Advanced High Speed Full-Adder Using Modified GDI Technique

An Efficient Advanced High Speed Full-Adder Using Modified GDI Technique An Efficient Advanced High Speed Full-Adder Using Modified GDI Technique Menakadevi¹, 1 Assistant professor, Sri Eshwar College of Engineering Ciombatore,Tamil Nadu, INDIA Abstract In this paper, high

More information

Pass Transistor and CMOS Logic Configuration based De- Multiplexers

Pass Transistor and CMOS Logic Configuration based De- Multiplexers Abstract: Pass Transistor and CMOS Logic Configuration based De- Multiplexers 1 K Rama Krishna, 2 Madanna, 1 PG Scholar VLSI System Design, Geethanajali College of Engineering and Technology, 2 HOD Dept

More information

High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells

High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells Reza Faghih Mirzaee, Mohammad Hossein Moaiyeri, Keivan Navi Abstract In this paper we present two novel 1-bit full adder cells in dynamic logic

More information

Design of High Performance Decoder with Mixed Logic Styles

Design of High Performance Decoder with Mixed Logic Styles International Journal of Engineering & Technology, 7 (2.20) (2018) 119-123 International Journal of Engineering & Technology Website: www.sciencepubco.com/index.php/ijet Research paper Design of High Performance

More information

A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem

A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem A Novel Low Power, High Speed 4 Transistor CMOS Full Adder Cell with 5% Improvement in Threshold Loss Problem T. Vigneswaran, B. Mukundhan, and P. Subbarami Reddy Abstract Full adders are important components

More information

Design and Performance Analysis of High Speed Low Power 1 bit Full Adder

Design and Performance Analysis of High Speed Low Power 1 bit Full Adder Design and Performance Analysis of High Speed Low Power 1 bit Full Adder Gauri Chopra 1, Sweta Snehi 2 PG student [RNA], Dept. of MAE, IGDTUW, New Delhi, India 1 PG Student [VLSI], Dept. of ECE, IGDTUW,

More information

An Efficient and High Speed 10 Transistor Full Adders with Lector Technique

An Efficient and High Speed 10 Transistor Full Adders with Lector Technique IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 5, Ver. II (Sep.- Oct. 2017), PP 68-73 www.iosrjournals.org An Efficient and

More information

CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS

CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS 70 CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS A novel approach of full adder and multipliers circuits using Complementary Pass Transistor

More information

PERFORMANANCE ANALYSIS OF A 1-BIT FULL ADDER USING 45nm TECHNOLOGY

PERFORMANANCE ANALYSIS OF A 1-BIT FULL ADDER USING 45nm TECHNOLOGY Research Manuscript Title PERFORMANANCE ANALYSIS OF A 1-BIT FULL ADDER USING 45nm TECHNOLOGY A.NIVETHA, M.Hemalatha, P.G.Scholar, Assistant Professor, M.E VLSI Design, Department of ECE Vivekanandha College

More information

12-nm Novel Topologies of LPHP: Low-Power High- Performance 2 4 and 4 16 Mixed-Logic Line Decoders

12-nm Novel Topologies of LPHP: Low-Power High- Performance 2 4 and 4 16 Mixed-Logic Line Decoders 12-nm Novel Topologies of LPHP: Low-Power High- Performance 2 4 and 4 16 Mixed-Logic Line Decoders Mr.Devanaboina Ramu, M.tech Dept. of Electronics and Communication Engineering Sri Vasavi Institute of

More information

Design of Modified Shannon Based Full Adder Cell Using PTL Logic for Low Power Applications

Design of Modified Shannon Based Full Adder Cell Using PTL Logic for Low Power Applications Design of Modified Shannon Based Full Adder Cell Using PTL Logic for Low Power Applications K.Purnima #1, S.AdiLakshmi #2, M.Sahithi #3, A.Jhansi Rani #4,J.Poornima #5 #1 M.Tech student, Department of

More information

Impact of Logic and Circuit Implementation on Full Adder Performance in 50-NM Technologies

Impact of Logic and Circuit Implementation on Full Adder Performance in 50-NM Technologies Impact of Logic and Circuit Implementation on Full Adder Performance in 50-NM Technologies Mahesh Yerragudi 1, Immanuel Phopakura 2 1 PG STUDENT, AVR & SVR Engineering College & Technology, Nandyal, AP,

More information

A New High Speed - Low Power 12 Transistor Full Adder Design with GDI Technique

A New High Speed - Low Power 12 Transistor Full Adder Design with GDI Technique International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 1 A New High Speed - Low Power 12 Transistor Full Design with GDI Technique Shahid Jaman, Nahian Chowdhury, Aasim

More information

Output Waveform Evaluation of Basic Pass Transistor Structure*

Output Waveform Evaluation of Basic Pass Transistor Structure* Output Waveform Evaluation of Basic Pass Transistor Structure* S. Nikolaidis, H. Pournara, and A. Chatzigeorgiou Department of Physics, Aristotle University of Thessaloniki Department of Applied Informatics,

More information

DESIGN AND ANALYSIS OF VEDIC MULTIPLIER USING MICROWIND

DESIGN AND ANALYSIS OF VEDIC MULTIPLIER USING MICROWIND DESIGN AND ANALYSIS OF VEDIC MULTIPLIER USING MICROWIND Amita 1, Nisha Yadav 2, Pardeep 3 1,2,3 Student, YMCA University of Science and Technology/Electronics Engineering, Faridabad, (India) ABSTRACT Multiplication

More information

A Structured Approach for Designing Low Power Adders

A Structured Approach for Designing Low Power Adders A Structured Approach for Designing Low Power Adders Ahmed M. Shams, Magdy A. Bayoumi (axs8245,mab 8 cacs.usl.edu) Abstract- A performance analysis of a general 1-bit full adder cell is presented. The

More information

Design of 64-Bit Low Power ALU for DSP Applications

Design of 64-Bit Low Power ALU for DSP Applications Design of 64-Bit Low Power ALU for DSP Applications J. Nandini 1, V.V.M.Krishna 2 1 M.Tech Scholar [VLSI Design], Department of ECE, KECW, Narasaraopet, A.P., India 2 Associate Professor, Department of

More information

Design of low power delay efficient Vedic multiplier using reversible gates

Design of low power delay efficient Vedic multiplier using reversible gates ISSN: 2454-132X Impact factor: 4.295 (Volume 4, Issue 3) Available online at: www.ijariit.com Design of low power delay efficient Vedic multiplier using reversible gates B Ramya bramyabrbg9741@gmail.com

More information

Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique

Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique Ch. Mohammad Arif 1, J. Syamuel John 2 M. Tech student, Department of Electronics Engineering, VR Siddhartha Engineering College,

More information

A Low-Power High-speed Pipelined Accumulator Design Using CMOS Logic for DSP Applications

A Low-Power High-speed Pipelined Accumulator Design Using CMOS Logic for DSP Applications International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume. 1, Issue 5, September 2014, PP 30-42 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org

More information

Sophisticated design of low power high speed full adder by using SR-CPL and Transmission Gate logic

Sophisticated design of low power high speed full adder by using SR-CPL and Transmission Gate logic Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 3, March -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 Sophisticated

More information

Novel VLSI Architecture of Partial Product Generator for Redundant Binary Multipliers for DSP Applications

Novel VLSI Architecture of Partial Product Generator for Redundant Binary Multipliers for DSP Applications Advances in Computational Sciences and Technology ISSN 973-617 Volume 1, Number 1 (217) pp. 333-345 Research India Publications http://www.ripublication.com Novel VLSI Architecture of Partial Product Generator

More information

Performance Comparison of High-Speed Adders Using 180nm Technology

Performance Comparison of High-Speed Adders Using 180nm Technology Steena Maria Thomas et al. 2016, Volume 4 Issue 2 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752 International Journal of Science, Engineering and Technology An Open Access Journal Performance Comparison

More information

Implementation of 1-bit Full Adder using Gate Difuision Input (GDI) cell

Implementation of 1-bit Full Adder using Gate Difuision Input (GDI) cell International Journal of Electronics and Computer Science Engineering 333 Available Online at www.ijecse.org ISSN: 2277-1956 Implementation of 1-bit Full Adder using Gate Difuision Input (GDI) cell Arun

More information

DESIGN OF PARALLEL MULTIPLIERS USING HIGH SPEED ADDER

DESIGN OF PARALLEL MULTIPLIERS USING HIGH SPEED ADDER DESIGN OF PARALLEL MULTIPLIERS USING HIGH SPEED ADDER Mr. M. Prakash Mr. S. Karthick Ms. C Suba PG Scholar, Department of ECE, BannariAmman Institute of Technology, Sathyamangalam, T.N, India 1, 3 Assistant

More information

Designing and Simulation of Full Adder Cell using Self Reverse Biasing Technique

Designing and Simulation of Full Adder Cell using Self Reverse Biasing Technique Designing and Simulation of Full Adder Cell using Self Reverse Biasing Technique Chandni jain 1, Shipra mishra 2 1 M.tech. Embedded system & VLSI Design NITM,Gwalior M.P. India 474001 2 Asst Prof. EC Dept.,

More information

Implementation of High Performance Carry Save Adder Using Domino Logic

Implementation of High Performance Carry Save Adder Using Domino Logic Page 136 Implementation of High Performance Carry Save Adder Using Domino Logic T.Jayasimha 1, Daka Lakshmi 2, M.Gokula Lakshmi 3, S.Kiruthiga 4 and K.Kaviya 5 1 Assistant Professor, Department of ECE,

More information

Designing of Low-Power VLSI Circuits using Non-Clocked Logic Style

Designing of Low-Power VLSI Circuits using Non-Clocked Logic Style International Journal of Advancements in Research & Technology, Volume 1, Issue3, August-2012 1 Designing of Low-Power VLSI Circuits using Non-Clocked Logic Style Vishal Sharma #, Jitendra Kaushal Srivastava

More information

Design of an Energy Efficient, Low Power Dissipation Full Subtractor Using GDI Technique

Design of an Energy Efficient, Low Power Dissipation Full Subtractor Using GDI Technique Design of an Energy Efficient, Low Power Dissipation Full Subtractor Using GDI Technique ABSTRACT: Rammohan Kurugunta M.Tech Student, Department of ECE, Intel Engineering College, Anantapur, Andhra Pradesh,

More information

A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI)

A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI) A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI) Mahendra Kumar Lariya 1, D. K. Mishra 2 1 M.Tech, Electronics and instrumentation Engineering, Shri G. S. Institute of Technology

More information

DESIGN OF LOW POWER MULTIPLIER USING COMPOUND CONSTANT DELAY LOGIC STYLE

DESIGN OF LOW POWER MULTIPLIER USING COMPOUND CONSTANT DELAY LOGIC STYLE DESIGN OF LOW POWER MULTIPLIER USING COMPOUND CONSTANT DELAY LOGIC STYLE 1 S. DARWIN, 2 A. BENO, 3 L. VIJAYA LAKSHMI 1 & 2 Assistant Professor Electronics & Communication Engineering Department, Dr. Sivanthi

More information

Design of Low-Power High-Performance 2-4 and 4-16 Mixed-Logic Line Decoders

Design of Low-Power High-Performance 2-4 and 4-16 Mixed-Logic Line Decoders Design of Low-Power High-Performance 2-4 and 4-16 Mixed-Logic Line Decoders B. Madhuri Dr.R. Prabhakar, M.Tech, Ph.D. bmadhusingh16@gmail.com rpr612@gmail.com M.Tech (VLSI&Embedded System Design) Vice

More information

CHAPTER - IV. Design and analysis of hybrid CMOS Full adder and PPM adder

CHAPTER - IV. Design and analysis of hybrid CMOS Full adder and PPM adder CHAPTER - IV Design and analysis of hybrid CMOS Full adder and PPM adder Design and analysis of hybrid CMOS Full adder and PPM adder 63 CHAPTER IV DESIGN AND ANALYSIS OF HYBRID CMOS FULL ADDER AND PPM

More information

AREA OPTIMIZED ARITHMETIC AND LOGIC UNIT USING LOW POWER 1-BIT FULL ADDER

AREA OPTIMIZED ARITHMETIC AND LOGIC UNIT USING LOW POWER 1-BIT FULL ADDER International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol. 3, Issue 3, Aug 2013, 115-120 TJPRC Pvt. Ltd. AREA OPTIMIZED ARITHMETIC

More information

AN EFFICIENT MAC DESIGN IN DIGITAL FILTERS

AN EFFICIENT MAC DESIGN IN DIGITAL FILTERS AN EFFICIENT MAC DESIGN IN DIGITAL FILTERS THIRUMALASETTY SRIKANTH 1*, GUNGI MANGARAO 2* 1. Dept of ECE, Malineni Lakshmaiah Engineering College, Andhra Pradesh, India. Email Id : srikanthmailid07@gmail.com

More information

Design and Analysis of CMOS based Low Power Carry Select Full Adder

Design and Analysis of CMOS based Low Power Carry Select Full Adder Design and Analysis of CMOS based Low Power Carry Select Full Adder Mayank Sharma 1, Himanshu Prakash Rajput 2 1 Department of Electronics & Communication Engineering Hindustan College of Science & Technology,

More information

ADIABATIC LOGIC FOR LOW POWER DIGITAL DESIGN

ADIABATIC LOGIC FOR LOW POWER DIGITAL DESIGN ADIABATIC LOGIC FOR LOW POWER DIGITAL DESIGN Mr. Sunil Jadhav 1, Prof. Sachin Borse 2 1 Student (M.E. Digital Signal Processing), Late G. N. Sapkal College of Engineering, Nashik,jsunile@gmail.com 2 Professor

More information

ISSN:

ISSN: 343 Comparison of different design techniques of XOR & AND gate using EDA simulation tool RAZIA SULTANA 1, * JAGANNATH SAMANTA 1 M.TECH-STUDENT, ECE, Haldia Institute of Technology, Haldia, INDIA ECE,

More information

Two New Low Power High Performance Full Adders with Minimum Gates

Two New Low Power High Performance Full Adders with Minimum Gates Two New Low Power High Performance Full Adders with Minimum Gates M.Hosseinghadiry, H. Mohammadi, M.Nadisenejani Abstract with increasing circuits complexity and demand to use portable devices, power consumption

More information

Two New Low Power High Performance Full Adders with Minimum Gates

Two New Low Power High Performance Full Adders with Minimum Gates Two New Low Power High Performance Full Adders with Minimum Gates M.Hosseinghadiry, H. Mohammadi, M.Nadisenejani Abstract with increasing circuits complexity and demand to use portable devices, power consumption

More information

STATIC cmos circuits are used for the vast majority of logic

STATIC cmos circuits are used for the vast majority of logic 176 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 64, NO. 2, FEBRUARY 2017 Design of Low-Power High-Performance 2 4 and 4 16 Mixed-Logic Line Decoders Dimitrios Balobas and Nikos Konofaos

More information

Low power 18T pass transistor logic ripple carry adder

Low power 18T pass transistor logic ripple carry adder LETTER IEICE Electronics Express, Vol.12, No.6, 1 12 Low power 18T pass transistor logic ripple carry adder Veeraiyah Thangasamy 1, Noor Ain Kamsani 1a), Mohd Nizar Hamidon 1, Shaiful Jahari Hashim 1,

More information

A new 6-T multiplexer based full-adder for low power and leakage current optimization

A new 6-T multiplexer based full-adder for low power and leakage current optimization A new 6-T multiplexer based full-adder for low power and leakage current optimization G. Ramana Murthy a), C. Senthilpari, P. Velrajkumar, and T. S. Lim Faculty of Engineering and Technology, Multimedia

More information

Performance Analysis Comparison of 4-2 Compressors in 180nm CMOS Technology

Performance Analysis Comparison of 4-2 Compressors in 180nm CMOS Technology IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Performance Analysis Comparison of 4-2 Compressors in 180nm CMOS Technology To cite this article: Manish Kumar and Jonali Nath

More information

Australian Journal of Basic and Applied Sciences. Optimized Embedded Adders for Digital Signal Processing Applications

Australian Journal of Basic and Applied Sciences. Optimized Embedded Adders for Digital Signal Processing Applications ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Optimized Embedded Adders for Digital Signal Processing Applications 1 Kala Bharathan and 2 Seshasayanan

More information

& POWER REDUCTION IN FULL ADDER USING NEW HYBRID LOGIC V.

& POWER REDUCTION IN FULL ADDER USING NEW HYBRID LOGIC V. POWER REDUCTION IN FULL ADDER USING NEW HYBRID LOGIC V. Kayathri*, C. Kumar**, P. Mari Muthu*** & N. Naveen Kumar**** Department of Electronics and Communication Engineering, RVS College of Engineering

More information

Low Area Wallace Multiplier Using Energy Efficient CMOS Adder Circuit Analysis In Instrumentation

Low Area Wallace Multiplier Using Energy Efficient CMOS Adder Circuit Analysis In Instrumentation I J C T A, 8(2), 2015, pp. 505-512 International Science Press Low Area Wallace Multiplier Using Energy Efficient CMOS Adder Circuit Analysis In Instrumentation G. Sridhar * and T. Reenaraj ** Abstract:

More information

Implementation and Comparative Analysis of CMOS based Adders w.r.t Speed, Delay and Power Dissipation

Implementation and Comparative Analysis of CMOS based Adders w.r.t Speed, Delay and Power Dissipation Implementation and Comparative Analysis of CMOS based Adders w.r.t Speed, and Dissipation Jasleen Chaudhary *, Sudhir Singh ** jasleen.ece@gmail.com, Sudhir.ec32@ietbhaddal.edu.in Abstract Adders are key

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 Special 11(6): pages 599-604 Open Access Journal Design A Full

More information

Comparison of High Speed & Low Power Techniques GDI & McCMOS in Full Adder Design

Comparison of High Speed & Low Power Techniques GDI & McCMOS in Full Adder Design International Conference on Multidisciplinary Research & Practice P a g e 625 Comparison of High Speed & Low Power Techniques & in Full Adder Design Shikha Sharma 1, ECE, Geetanjali Institute of Technical

More information

Low Power Multiplier Design Using Complementary Pass-Transistor Asynchronous Adiabatic Logic

Low Power Multiplier Design Using Complementary Pass-Transistor Asynchronous Adiabatic Logic Low Power Multiplier Design Using Complementary Pass-Transistor Asynchronous Adiabatic Logic A.Kishore Kumar 1 Dr.D.Somasundareswari 2 Dr.V.Duraisamy 3 M.Pradeepkumar 4 1 Lecturer-Department of ECE, 3

More information

THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS

THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS AL-Mamoon AL-Othman and Abdullah Hasanat Department of Computer Engineering, AL-Hussein bin Talal University, Maan, Jordan ABSTRACT Recently,

More information

A Parallel Multiplier - Accumulator Based On Radix 4 Modified Booth Algorithms by Using Spurious Power Suppression Technique

A Parallel Multiplier - Accumulator Based On Radix 4 Modified Booth Algorithms by Using Spurious Power Suppression Technique Vol. 3, Issue. 3, May - June 2013 pp-1587-1592 ISS: 2249-6645 A Parallel Multiplier - Accumulator Based On Radix 4 Modified Booth Algorithms by Using Spurious Power Suppression Technique S. Tabasum, M.

More information

A Highly Efficient Carry Select Adder

A Highly Efficient Carry Select Adder IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 4 October 2015 ISSN (online): 2349-784X A Highly Efficient Carry Select Adder Shiya Andrews V PG Student Department of Electronics

More information

Design of Low Power Vlsi Circuits Using Cascode Logic Style

Design of Low Power Vlsi Circuits Using Cascode Logic Style Design of Low Power Vlsi Circuits Using Cascode Logic Style Revathi Loganathan 1, Deepika.P 2, Department of EST, 1 -Velalar College of Enginering & Technology, 2- Nandha Engineering College,Erode,Tamilnadu,India

More information

An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog

An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog 1 P.Sanjeeva Krishna Reddy, PG Scholar in VLSI Design, 2 A.M.Guna Sekhar Assoc.Professor 1 appireddigarichaitanya@gmail.com,

More information

Keywords: VLSI; CMOS; Pass Transistor Logic (PTL); Gate Diffusion Input (GDI); Parellel In Parellel Out (PIPO); RAM. I.

Keywords: VLSI; CMOS; Pass Transistor Logic (PTL); Gate Diffusion Input (GDI); Parellel In Parellel Out (PIPO); RAM. I. Comparison and analysis of sequential circuits using different logic styles Shofia Ram 1, Rooha Razmid Ahamed 2 1 M. Tech. Student, Dept of ECE, Rajagiri School of Engg and Technology, Cochin, Kerala 2

More information

An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors

An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors T.N.Priyatharshne Prof. L. Raja, M.E, (Ph.D) A. Vinodhini ME VLSI DESIGN Professor, ECE DEPT ME VLSI DESIGN

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK DESIGN OF LOW POWER MULTIPLIERS USING APPROXIMATE ADDER MR. PAWAN SONWANE 1, DR.

More information

A Comparative Analysis of Low Power and Area Efficient Digital Circuit Design

A Comparative Analysis of Low Power and Area Efficient Digital Circuit Design A Comparative Analysis of Low Power and Area Efficient Digital Circuit Design 1 B. Dilli Kumar, 2 A. Chandra Babu, 2 V. Prasad 1 Assistant Professor, Dept. of ECE, Yoganada Institute of Technology & Science,

More information

IC Layout Design of 4-bit Universal Shift Register using Electric VLSI Design System

IC Layout Design of 4-bit Universal Shift Register using Electric VLSI Design System IC Layout Design of 4-bit Universal Shift Register using Electric VLSI Design System 1 Raj Kumar Mistri, 2 Rahul Ranjan, 1,2 Assistant Professor, RTC Institute of Technology, Anandi, Ranchi, Jharkhand,

More information

Ciência e Natura ISSN: Universidade Federal de Santa Maria Brasil

Ciência e Natura ISSN: Universidade Federal de Santa Maria Brasil Ciência e Natura ISSN: 0100-8307 cienciaenaturarevista@gmail.com Universidade Federal de Santa Maria Brasil Abbasi Morad, Milad Jalalian; Reza Talebiyan, Seyyed; Pakniyat, Ebrahim Design of New High-Performance

More information

Area and Power Efficient Pass Transistor Based (PTL) Full Adder Design

Area and Power Efficient Pass Transistor Based (PTL) Full Adder Design This work by IJARBEST is licensed under Creative Commons Attribution 4.0 International License. Available at https://www.ijarbest.com Area and Power Efficient Pass Transistor Based (PTL) Full Adder Design

More information

Design and Implementation of High Radix Booth Multiplier using Koggestone Adder and Carry Select Adder

Design and Implementation of High Radix Booth Multiplier using Koggestone Adder and Carry Select Adder Volume-4, Issue-6, December-2014, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Available at: www.ijemr.net Page Number: 129-135 Design and Implementation of High Radix

More information

METHODS FOR TRUE ENERGY- PERFORMANCE OPTIMIZATION. Naga Harika Chinta

METHODS FOR TRUE ENERGY- PERFORMANCE OPTIMIZATION. Naga Harika Chinta METHODS FOR TRUE ENERGY- PERFORMANCE OPTIMIZATION Naga Harika Chinta OVERVIEW Introduction Optimization Methods A. Gate size B. Supply voltage C. Threshold voltage Circuit level optimization A. Technology

More information

A High Speed Low Power Adder in Multi Output Domino Logic

A High Speed Low Power Adder in Multi Output Domino Logic Journal From the SelectedWorks of Kirat Pal Singh Winter November 28, 2014 High Speed Low Power dder in Multi Output Domino Logic Neeraj Jain, NIIST, hopal, India Puran Gour, NIIST, hopal, India rahmi

More information