Stabilizing an Interferometric Delay with PI Control

Size: px
Start display at page:

Download "Stabilizing an Interferometric Delay with PI Control"

Transcription

1 Stabilizing an Interferometric Delay with PI Control Madeleine Bulkow August 31, 2013 Abstract A Mach-Zhender style interferometric delay can be used to separate a pulses by a precise amount of time, act as a frequency comb, and measure lengths to extreme precision. The accuracy and precision for each application is dependent on the length stability in the interferometer itself. While passive length stabilization is enough for many applications, especially on a short time scale, relying solely on passive stability is not always sufficient or practical. Instead, this paper explores the effectiveness of active length stabilization, using a feedback loop from the interferometer s output intensity at one port to a piezo-mounted mirror. 1 Introduction 1.1 Interferometers and Their Applications An optical interferometer operates by sending light on two or more different paths, then recombining the light and observing the constructive or destructive interference that results. In an interferometric delay, there is a significant difference between two path lengths, so that light traveling the longer path not only experiences some phase shift relative to the shorter one, but also arrives at the recombination site a non-negligible amount of time later. The path length difference in such an interferometer will have a related free spectral range, meaning that the setup can be used as a frequency comb, as in Ref [1] where it is used to separate a carrier signal from its sidebands. In order to effectively filter light, or make precision measurements, the path length difference in the interferometer must be known and constant. To achieve this, it is necessary to stabilize the path length difference against environmental perturbations on the order of nanometers. Ref. [2] shows an example of such stabilization in a balanced Mach-Zehnder interferometer, where the path lengths differ by at most a few micrometers, while Ref [3] shows its application in a more complicated setup. 1

2 Figure 1: The Mach-Zehnder style interferometric setup, with feedback from one photodiode to a piezo for length correction. 1.2 PI Control The active stabilization of our interferometer used PI or Proportion-Integral control to turn an error signal, related to path length deviation, into a correction signal, which was used to change the path length as needed. Proportional- Integral control is so called because it creates a correction signal which is a weighted sum of the instantaneous error (the proportional part) and the integral of the error over time. The correction signal looks like u (t) = K P e (t) + K I t 0 e (τ) dτ (1) where coefficient K P is called the proportional gain and K I is the integral gain. The proportional part corrects for error on a short time scale, but may maintain a constant non-zero error if its gain is too low, or start oscillating from overshooting if its gain is too high. The integral part will correct any error that exists on a long-term scale, but has little effect on error on shorter time scales. Used together, they can correct for error occurring at both low and high frequencies. 2

3 2 Methods 2.1 Interferometer Setup The Mach-Zhender delay, Figure 1, operates by separating light at Beamsplitter A, and sending it on two different paths - one of them longer by a path length difference l - then recombining them at Beamsplitter B to produce interference patterns. If the light is initially in phase φ, then after traveling the top path and arriving at Photodiode 1, it has phase: φ 1t = π π l + π π d = 2π + 2π d + 2π l + 1 2π l + π 2 2 while the light traveling the bottom path has phase shift (2) (3) φ 1b = 2π d resulting in an effective phase difference of (4) φ 1 = 2π + 2π l between the light from each path. Assuming that the laser light has initial intensity I 0, the fraction of the initial light sent along the top path and reflected toward Photodiode 1 is α 1t, and the fraction transmitted straight through the bottom path to Photodiode 1 is α 1b, then the intensity observed at Photodiode 1 from the constructive interference of these beams is ( ) 2π l I 1 = max (α 1t I 0, α 1b I 0 ) + min (α 1t I 0, α 1b I 0 ) cos 2π + (6) ( ) 2π l = max (α 1t, α 1b ) I 0 + min (α 1t, α 1b ) I 0 cos (7) The voltage produced across Photodiode 1 from this incident light is then ( ) 2π l V 1 = V 1,offset + V 1,pp cos (8) where V 1,offset and V 1,pp are dependent mostly on the initial intensity I 0. For the purposes of this stabilization setup, we will assume that both the intensity and wavelength of the initial laser light are constant, so that variation in V 1 is attributed entirely to variation in l. The voltage measured here is then used as input for the feed back loop, to correct perceived changes in length. (5) 3

4 2.2 Error Signal and Correction Since we are attributing the voltage at Photodiode 1 solely to length changes, fixing the length to a specific l means fixing V 1 to a specific set voltage, V stab. To observe length changes with the greatest precision, we picked a set voltage at a point where V 1 has the greatest sensitivity to changes in l: at approximately V 1,offset, when the incident light halfway between a bright fringe and a dark one. V 1,offset was estimated by observing the maximum and minimum voltages produced by full oscillations in the incident light, and taking their mean. This estimate was entered as V stab into a commercial PI control box, and subtracted from the input voltage V 1 to produce an error signal, e (t). With this error as input, the PI control box produced a correction signal V out = K P e (t) + K I t 0 e (τ) dτ (9) where the integral and proportional gain were varied systematically until the error signal got locked. 3 Results When the interferometer was successfully locked, the noise in the input voltage, and therefore the length, was visibly transferred into the correction signal to hold the input voltage approximately stable, as shown in Figure 2. The error voltage can be translated into a error length, by solving ( ) π 2π δl ( π ) V 1 V stab = V 1,pp cos + V 1,pp cos 2 2 ( ) 2π δl = V 1,pp sin (10) for the length displacement δl at a given instant. This conversion assumes that V stab is exactly V 1,offset, but since sin is approximately linear in this region, the assumption is valid to first order. Taking samples of stabilized and unstabilized voltage variation as in Figure 3 and converting these voltages into length shows the typical range of length displacement, as in Figure 4. The root-mean-squared length displacement for the samples depicted is typical: x rms,unstab = 27.0nm and x rms,stab = 3.0nm. In an interferometer where l is 10.5cm, this amount to lengths stability about on the order of one in 10 7 We can also examine the effectiveness of stabilization as a function of frequency, by taking a Fourier transform of the output voltage and converting voltage displacement density into length displacement density. Figure 5 shows this frequency response, where the unstabilized interferometer exhibits a large amount of noise in the Hz range, including a number of spikes presumably corresponding to some vibration or mechanical resonance in the interferometer setup. The stabilized frequency response shows that this noise has been killed 4

5 Figure 2: The voltages V 1 and e (t) with noise before stabilization, and the (scaled) voltage V stab correcting for this noise during stabilization. almost entirely at low frequencies (< 100Hz), and damped for higher frequencies (at least up to 400Hz). 4 Discussion To consider how the stabilization might be improved, we must first check our assumption that the observed error is actually due to variation in length, and not to variation in the frequency or intensity of the incident light. Noise on the order of a part in 10 7 is still significantly larger than any noise in the frequency of the laser, so frequency variation can be safely ignored. Measuring just the intensity of the laser and converting it to perceived length changes gives us the histogram in Figure 6. Comparing root-mean-squared (perceived) displacement x rms,intensity = 1.5nm to x rms,stab = 3.0nm, and standard deviation σ intensity = 0.4nm to σ stab = 0.8nm, it is clear that intensity noise rather than length variation accounts for a significant portion of the error signal during stabilization. To eliminate this problem, ideally, we would use an error signal with less or no dependence on intensity. One option is to use the signals both from Photodiode 1 and Photodiode 2, which have mean voltages V 1,offset and V 2,offset, the ratio which should be constant and intensity independent. By stabilizing V 1 V 2 at V 1,offset V 2,offset = R fixed, although the magnitude of nonzero error would still be intensity dependent, the path length difference l corresponding to zero error would now be intensity independent. Other improvements could involve changing the gain in the PI controller specifically to kill off the apparent resonant frequencies in the Fourier transform 5

6 Figure 3: Samples of the error signal e (t), with and without stabilization. Figure 4: The distribution of length displacement, in nanometers, during the samples shown in 3. 6

7 Figure 5: Length displacement density against frequency. Most of the lowerfrequency noise in the unstabilized interferometer is successfully eliminated by stabilization. Figure 5, and systematically determining what gains would be optimal for stabilizing the system without prompting overshoot and over-oscillation. Another extension of this work might introduce the ability to stabilize l to an arbitrary value, instead of exclusively at l = ( n + 2) 1 for integer n. In Ref. [1] shows that this is possible in a balanced Mach-Zehnder interferometer, varying the l continuously over the range of a few micrometers. 5 Conclusion The goal of this project was to create an interferometer whose path length difference could be maintained at a constant value over long time periods of time. The interferometer was built with materials to maintain a reasonable amount of passive length stability, then a feedback loop was introduced which achieved stability on the order of a few nanometers over long time scales. To make the interferometer significantly more stable (i.e. an order of magnitude or more), it would be necessary to change the design of the feedback loop, to eliminate or decrease its dependence on the intensity of the stabilization laser. 6 Acknowledgments Many thanks to Wes Campbell, Andrew Jayich, Sylvi Haendel, Michael Ip, Danilo Dadic, Sam Freitas, and Anna Wang for helping me around the lab. Thanks to the NSF for funding this REU, and to Francoise Queval for coordinating it. 7

8 Figure 6: With one arm of the beam interferometer blacked so that no interference is occurring, the voltage on Photodiode A still varies from its expected value, the same as if l were changed by a couple nanometers. References [1] Bateman, J. E., et al. HnschCouillaud locking of MachZehnder interferometer for carrier removal from a phase-modulated optical spectrum. JOSA B 27, (2010). [2] Freschi, A. A., and J. Frejlich. Adjustable phase control in stabilized interferometry. Optics letters 20, (1995). [3] Krishnamachari, Vishnu Vardhan, et al. An active interferometerstabilization scheme with linear phase control. Opt. Express 14, (2006). 8

Installation and Characterization of the Advanced LIGO 200 Watt PSL

Installation and Characterization of the Advanced LIGO 200 Watt PSL Installation and Characterization of the Advanced LIGO 200 Watt PSL Nicholas Langellier Mentor: Benno Willke Background and Motivation Albert Einstein's published his General Theory of Relativity in 1916,

More information

Multiply Resonant EOM for the LIGO 40-meter Interferometer

Multiply Resonant EOM for the LIGO 40-meter Interferometer LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIGO-XXXXXXX-XX-X Date: 2009/09/25 Multiply Resonant EOM for the LIGO

More information

Exercise 8: Interference and diffraction

Exercise 8: Interference and diffraction Physics 223 Name: Exercise 8: Interference and diffraction 1. In a two-slit Young s interference experiment, the aperture (the mask with the two slits) to screen distance is 2.0 m, and a red light of wavelength

More information

Optical Vernier Technique for Measuring the Lengths of LIGO Fabry-Perot Resonators

Optical Vernier Technique for Measuring the Lengths of LIGO Fabry-Perot Resonators LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T97074-0- R 0/5/97 Optical Vernier Technique for

More information

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 1051-232 Imaging Systems Laboratory II Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 Abstract. In the last lab, you saw that coherent light from two different locations

More information

Chapter 10 WDM concepts and components

Chapter 10 WDM concepts and components Chapter 10 WDM concepts and components - Outline 10.1 Operational principle of WDM 10. Passive Components - The x Fiber Coupler - Scattering Matrix Representation - The x Waveguide Coupler - Mach-Zehnder

More information

The Pre Stabilized Laser for the LIGO Caltech 40m Interferometer: Stability Controls and Characterization.

The Pre Stabilized Laser for the LIGO Caltech 40m Interferometer: Stability Controls and Characterization. LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T010159-00-R 10/15/01 The Pre Stabilized Laser for the

More information

Back-Reflected Light and the Reduction of Nonreciprocal Phase Noise in the Fiber Back-Link on LISA

Back-Reflected Light and the Reduction of Nonreciprocal Phase Noise in the Fiber Back-Link on LISA Back-Reflected Light and the Reduction of Nonreciprocal Phase Noise in the Fiber Back-Link on LISA Aaron Specter The Laser Interferometer Space Antenna (LISA) is a joint ESA NASA project with the aim of

More information

1.6 Beam Wander vs. Image Jitter

1.6 Beam Wander vs. Image Jitter 8 Chapter 1 1.6 Beam Wander vs. Image Jitter It is common at this point to look at beam wander and image jitter and ask what differentiates them. Consider a cooperative optical communication system that

More information

Development of innovative fringe locking strategies for vibration-resistant white light vertical scanning interferometry (VSI)

Development of innovative fringe locking strategies for vibration-resistant white light vertical scanning interferometry (VSI) Development of innovative fringe locking strategies for vibration-resistant white light vertical scanning interferometry (VSI) Liang-Chia Chen 1), Abraham Mario Tapilouw 1), Sheng-Lih Yeh 2), Shih-Tsong

More information

Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm

Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm 15 February 2000 Ž. Optics Communications 175 2000 209 213 www.elsevier.comrlocateroptcom Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm F. Koch ), S.V. Chernikov,

More information

This is a brief report of the measurements I have done in these 2 months.

This is a brief report of the measurements I have done in these 2 months. 40m Report Kentaro Somiya This is a brief report of the measurements I have done in these 2 months. Mach-Zehnder MZ noise spectrum is measured in various conditions. HEPA filter enhances the noise level

More information

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

Optical Communications and Networking 朱祖勍. Sept. 25, 2017 Optical Communications and Networking Sept. 25, 2017 Lecture 4: Signal Propagation in Fiber 1 Nonlinear Effects The assumption of linearity may not always be valid. Nonlinear effects are all related to

More information

Holography (A13) Christopher Bronner, Frank Essenberger Freie Universität Berlin Tutor: Dr. Fidder. July 1, 2007 Experiment on July 2, 2007

Holography (A13) Christopher Bronner, Frank Essenberger Freie Universität Berlin Tutor: Dr. Fidder. July 1, 2007 Experiment on July 2, 2007 Holography (A13) Christopher Bronner, Frank Essenberger Freie Universität Berlin Tutor: Dr. Fidder July 1, 2007 Experiment on July 2, 2007 1 Preparation 1.1 Normal camera If we take a picture with a camera,

More information

Collimation Tester Instructions

Collimation Tester Instructions Description Use shear-plate collimation testers to examine and adjust the collimation of laser light, or to measure the wavefront curvature and divergence/convergence magnitude of large-radius optical

More information

Absolute distance interferometer in LaserTracer geometry

Absolute distance interferometer in LaserTracer geometry Absolute distance interferometer in LaserTracer geometry Corresponding author: Karl Meiners-Hagen Abstract 1. Introduction 1 In this paper, a combination of variable synthetic and two-wavelength interferometry

More information

Wavelength Control and Locking with Sub-MHz Precision

Wavelength Control and Locking with Sub-MHz Precision Wavelength Control and Locking with Sub-MHz Precision A PZT actuator on one of the resonator mirrors enables the Verdi output wavelength to be rapidly tuned over a range of several GHz or tightly locked

More information

Development of a Low Cost 3x3 Coupler. Mach-Zehnder Interferometric Optical Fibre Vibration. Sensor

Development of a Low Cost 3x3 Coupler. Mach-Zehnder Interferometric Optical Fibre Vibration. Sensor Development of a Low Cost 3x3 Coupler Mach-Zehnder Interferometric Optical Fibre Vibration Sensor Kai Tai Wan Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, UB8 3PH,

More information

Chapter 3 Experimental study and optimization of OPLLs

Chapter 3 Experimental study and optimization of OPLLs 27 Chapter 3 Experimental study and optimization of OPLLs In Chapter 2 I have presented the theory of OPLL and identified critical issues for OPLLs using SCLs. In this chapter I will present the detailed

More information

The secondary MZM used to modulate the quadrature phase carrier produces a phase shifted version:

The secondary MZM used to modulate the quadrature phase carrier produces a phase shifted version: QAM Receiver 1 OBJECTIVE Build a coherent receiver based on the 90 degree optical hybrid and further investigate the QAM format. 2 PRE-LAB In the Modulation Formats QAM Transmitters laboratory, a method

More information

Lecture 9 External Modulators and Detectors

Lecture 9 External Modulators and Detectors Optical Fibres and Telecommunications Lecture 9 External Modulators and Detectors Introduction Where are we? A look at some real laser diodes. External modulators Mach-Zender Electro-absorption modulators

More information

Interference [Hecht Ch. 9]

Interference [Hecht Ch. 9] Interference [Hecht Ch. 9] Note: Read Ch. 3 & 7 E&M Waves and Superposition of Waves and Meet with TAs and/or Dr. Lai if necessary. General Consideration 1 2 Amplitude Splitting Interferometers If a lightwave

More information

Length and Position Measurement

Length and Position Measurement Length and Position Measurement Primary standards were once based on the length of a bar of metal at a given temperature. The present standard is: 1 meter = distance traveled by light in a vacuum in 3.335641

More information

QAM Transmitter 1 OBJECTIVE 2 PRE-LAB. Investigate the method for measuring the BER accurately and the distortions present in coherent modulators.

QAM Transmitter 1 OBJECTIVE 2 PRE-LAB. Investigate the method for measuring the BER accurately and the distortions present in coherent modulators. QAM Transmitter 1 OBJECTIVE Investigate the method for measuring the BER accurately and the distortions present in coherent modulators. 2 PRE-LAB The goal of optical communication systems is to transmit

More information

Project Staff: Timothy A. Savas, Michael E. Walsh, Thomas B. O'Reilly, Dr. Mark L. Schattenburg, and Professor Henry I. Smith

Project Staff: Timothy A. Savas, Michael E. Walsh, Thomas B. O'Reilly, Dr. Mark L. Schattenburg, and Professor Henry I. Smith 9. Interference Lithography Sponsors: National Science Foundation, DMR-0210321; Dupont Agreement 12/10/99 Project Staff: Timothy A. Savas, Michael E. Walsh, Thomas B. O'Reilly, Dr. Mark L. Schattenburg,

More information

High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications

High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications Carlos Macià-Sanahuja and Horacio Lamela-Rivera Optoelectronics and Laser Technology group, Universidad

More information

Part 2: Second order systems: cantilever response

Part 2: Second order systems: cantilever response - cantilever response slide 1 Part 2: Second order systems: cantilever response Goals: Understand the behavior and how to characterize second order measurement systems Learn how to operate: function generator,

More information

9. Microwaves. 9.1 Introduction. Safety consideration

9. Microwaves. 9.1 Introduction. Safety consideration MW 9. Microwaves 9.1 Introduction Electromagnetic waves with wavelengths of the order of 1 mm to 1 m, or equivalently, with frequencies from 0.3 GHz to 0.3 THz, are commonly known as microwaves, sometimes

More information

Ultrahigh precision synchronization of optical and microwave frequency sources

Ultrahigh precision synchronization of optical and microwave frequency sources Journal of Physics: Conference Series PAPER OPEN ACCESS Ultrahigh precision synchronization of optical and microwave frequency sources To cite this article: A Kalaydzhyan et al 2016 J. Phys.: Conf. Ser.

More information

Stability of a Fiber-Fed Heterodyne Interferometer

Stability of a Fiber-Fed Heterodyne Interferometer Stability of a Fiber-Fed Heterodyne Interferometer Christoph Weichert, Jens Flügge, Paul Köchert, Rainer Köning, Physikalisch Technische Bundesanstalt, Braunschweig, Germany; Rainer Tutsch, Technische

More information

Delay Line Interferometers

Delay Line Interferometers w w w. k y l i a. c o m i n f o @ k y l i a. c o m Delay ine Interferometers MINT and WT-MINT 1 Description p1 2 Block diagrams.. p2 3 Absolute maximum ratings p3 4 Operating conditions. p3 5 MINT specifications

More information

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015 Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015 Chapter 9: Optical Parametric Amplifiers and Oscillators 9.8 Noncollinear optical parametric amplifier (NOPA) 9.9 Optical parametric chirped-pulse

More information

Optical PLL for homodyne detection

Optical PLL for homodyne detection Optical PLL for homodyne detection 7 Capella Court Nepean, ON, Canada K2E 7X1 +1 (613) 224-4700 www.optiwave.com 2009 Optiwave Systems, Inc. Optical BPSK PLL building blocks Signal Generation and Detection

More information

7 CHAPTER 7: REFRACTIVE INDEX MEASUREMENTS WITH COMMON PATH PHASE SENSITIVE FDOCT SETUP

7 CHAPTER 7: REFRACTIVE INDEX MEASUREMENTS WITH COMMON PATH PHASE SENSITIVE FDOCT SETUP 7 CHAPTER 7: REFRACTIVE INDEX MEASUREMENTS WITH COMMON PATH PHASE SENSITIVE FDOCT SETUP Abstract: In this chapter we describe the use of a common path phase sensitive FDOCT set up. The phase measurements

More information

I = I 0 cos 2 θ (1.1)

I = I 0 cos 2 θ (1.1) Chapter 1 Faraday Rotation Experiment objectives: Observe the Faraday Effect, the rotation of a light wave s polarization vector in a material with a magnetic field directed along the wave s direction.

More information

Fringe Parameter Estimation and Fringe Tracking. Mark Colavita 7/8/2003

Fringe Parameter Estimation and Fringe Tracking. Mark Colavita 7/8/2003 Fringe Parameter Estimation and Fringe Tracking Mark Colavita 7/8/2003 Outline Visibility Fringe parameter estimation via fringe scanning Phase estimation & SNR Visibility estimation & SNR Incoherent and

More information

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE 1 DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE PRESENTED BY- ARPIT RAWANKAR THE GRADUATE UNIVERSITY FOR ADVANCED STUDIES, HAYAMA 2 INDEX 1. Concept

More information

DETECTING THE RATIO OF I AC

DETECTING THE RATIO OF I AC T E C H N O L O G Y F O R P O L A R I Z A T I O N M E A S U R E M E N T DETECTING THE RATIO OF I AC MEASUREMENT OF THE RAGE INTENSITY OF A MODULATED LIGHT BEAM In any experiment using photoelastic modulators

More information

Introduction to Phase Noise

Introduction to Phase Noise hapter Introduction to Phase Noise brief introduction into the subject of phase noise is given here. We first describe the conversion of the phase fluctuations into the noise sideband of the carrier. We

More information

Department of Mechanical and Aerospace Engineering, Princeton University Department of Astrophysical Sciences, Princeton University ABSTRACT

Department of Mechanical and Aerospace Engineering, Princeton University Department of Astrophysical Sciences, Princeton University ABSTRACT Phase and Amplitude Control Ability using Spatial Light Modulators and Zero Path Length Difference Michelson Interferometer Michael G. Littman, Michael Carr, Jim Leighton, Ezekiel Burke, David Spergel

More information

Testing Aspherics Using Two-Wavelength Holography

Testing Aspherics Using Two-Wavelength Holography Reprinted from APPLIED OPTICS. Vol. 10, page 2113, September 1971 Copyright 1971 by the Optical Society of America and reprinted by permission of the copyright owner Testing Aspherics Using Two-Wavelength

More information

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers Optical phase-coherent link between an optical atomic clock and 1550 nm mode-locked lasers Kevin W. Holman, David J. Jones, Steven T. Cundiff, and Jun Ye* JILA, National Institute of Standards and Technology

More information

Lasers for LISA: overview and phase characteristics

Lasers for LISA: overview and phase characteristics Lasers for LISA: overview and phase characteristics M Tröbs 1, S Barke 1, J Möbius 2,3, M Engelbrecht 2,4, D Kracht 2, L d Arcio 5, G Heinzel 1 and K Danzmann 1 1 AEI Hannover, (MPI für Gravitationsphysik

More information

How to Build a Gravitational Wave Detector. Sean Leavey

How to Build a Gravitational Wave Detector. Sean Leavey How to Build a Gravitational Wave Detector Sean Leavey Supervisors: Dr Stefan Hild and Prof Ken Strain Institute for Gravitational Research, University of Glasgow 6th May 2015 Gravitational Wave Interferometry

More information

Chapter 7. Optical Measurement and Interferometry

Chapter 7. Optical Measurement and Interferometry Chapter 7 Optical Measurement and Interferometry 1 Introduction Optical measurement provides a simple, easy, accurate and reliable means for carrying out inspection and measurements in the industry the

More information

la. Smith and C.P. Burger Department of Mechanical Engineering Texas A&M University College Station Tx

la. Smith and C.P. Burger Department of Mechanical Engineering Texas A&M University College Station Tx INJECTION LOCKED LASERS AS SURF ACE DISPLACEMENT SENSORS la. Smith and C.P. Burger Department of Mechanical Engineering Texas A&M University College Station Tx. 77843 INTRODUCTION In an age where engineered

More information

The Florida control scheme. Guido Mueller, Tom Delker, David Reitze, D. B. Tanner

The Florida control scheme. Guido Mueller, Tom Delker, David Reitze, D. B. Tanner The Florida control scheme Guido Mueller, Tom Delker, David Reitze, D. B. Tanner Department of Physics, University of Florida, Gainesville 32611-8440, Florida, USA The most likely conguration for the second

More information

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and EXERCISES OF OPTICAL MEASUREMENTS BY ENRICO RANDONE AND CESARE SVELTO EXERCISE 1 A CW laser radiation (λ=2.1 µm) is delivered to a Fabry-Pérot interferometer made of 2 identical plane and parallel mirrors

More information

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA Abstract: A novel interferometric scheme for detection of ultrasound is presented.

More information

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is a process of mixing a signal with a sinusoid to produce

More information

Arm Cavity Finesse for Advanced LIGO

Arm Cavity Finesse for Advanced LIGO LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T070303-01-D Date: 2007/12/20 Arm Cavity Finesse

More information

Chapter 35. Interference. Optical Interference: Interference of light waves, applied in many branches of science.

Chapter 35. Interference. Optical Interference: Interference of light waves, applied in many branches of science. Chapter 35 Interference 35.1: What is the physics behind interference? Optical Interference: Interference of light waves, applied in many branches of science. Fig. 35-1 The blue of the top surface of a

More information

Directly Chirped Laser Source for Chirped Pulse Amplification

Directly Chirped Laser Source for Chirped Pulse Amplification Directly Chirped Laser Source for Chirped Pulse Amplification Input pulse (single frequency) AWG RF amp Output pulse (chirped) Phase modulator Normalized spectral intensity (db) 64 65 66 67 68 69 1052.4

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Mach-Zehnder interferometer (MZI) phase stabilization. (a) DC output of the MZI with and without phase stabilization. (b) Performance of MZI stabilization

More information

Results from the Stanford 10 m Sagnac interferometer

Results from the Stanford 10 m Sagnac interferometer INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 19 (2002) 1585 1589 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(02)30157-6 Results from the Stanford 10 m Sagnac interferometer Peter T Beyersdorf,

More information

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 4 Fall Term

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 4 Fall Term Engineering Sciences 151 Electromagnetic Communication Laboratory Assignment 4 Fall Term 1997-98 OBJECTIVES: To build familiarity with interference phenomena and interferometric measurement techniques;

More information

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Utkarsh

More information

INTERFEROMETRIC VIBRATION DISPLACEMENT MEASUREMENT

INTERFEROMETRIC VIBRATION DISPLACEMENT MEASUREMENT Romanian Reports in Physics, Vol. 62, No. 3, P. 671 677, 2010 Dedicated to the 50 th LASER Anniversary (LASERFEST-50) INTERFEROMETRIC VIBRATION DISPLACEMENT MEASUREMENT F. GAROI 1, P.C. LOGOFATU 1, D.

More information

Laser stabilization and frequency modulation for trapped-ion experiments

Laser stabilization and frequency modulation for trapped-ion experiments Laser stabilization and frequency modulation for trapped-ion experiments Michael Matter Supervisor: Florian Leupold Semester project at Trapped Ion Quantum Information group July 16, 2014 Abstract A laser

More information

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers T. Day and R. A. Marsland New Focus Inc. 340 Pioneer Way Mountain View CA 94041 (415) 961-2108 R. L. Byer

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

attosnom I: Topography and Force Images NANOSCOPY APPLICATION NOTE M06 RELATED PRODUCTS G

attosnom I: Topography and Force Images NANOSCOPY APPLICATION NOTE M06 RELATED PRODUCTS G APPLICATION NOTE M06 attosnom I: Topography and Force Images Scanning near-field optical microscopy is the outstanding technique to simultaneously measure the topography and the optical contrast of a sample.

More information

Figure1. To construct a light pulse, the electric component of the plane wave should be multiplied with a bell shaped function.

Figure1. To construct a light pulse, the electric component of the plane wave should be multiplied with a bell shaped function. Introduction The Electric field of a monochromatic plane wave is given by is the angular frequency of the plane wave. The plot of this function is given by a cosine function as shown in the following graph.

More information

Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2

Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2 Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2 1 Announcements Week 14 Prepset due Fri at 8:30 am PS 11 due Week 14 Friday at 9 pm in boxes outside 26-152

More information

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 )

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) 레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) Contents Frequency references Frequency locking methods Basic principle of loop filter Example of lock box circuits Quantifying frequency stability Applications

More information

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper Watkins-Johnson Company Tech-notes Copyright 1981 Watkins-Johnson Company Vol. 8 No. 6 November/December 1981 Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper All

More information

Doppler-Free Spetroscopy of Rubidium

Doppler-Free Spetroscopy of Rubidium Doppler-Free Spetroscopy of Rubidium Pranjal Vachaspati, Sabrina Pasterski MIT Department of Physics (Dated: April 17, 2013) We present a technique for spectroscopy of rubidium that eliminates doppler

More information

PACS Nos v, Fc, Yd, Fs

PACS Nos v, Fc, Yd, Fs A Shear Force Feedback Control System for Near-field Scanning Optical Microscopes without Lock-in Detection J. W. P. Hsu *,a, A. A. McDaniel a, and H. D. Hallen b a Department of Physics, University of

More information

Detecting the Ratio of I ac. /I ave. photoelastic modulators

Detecting the Ratio of I ac. /I ave. photoelastic modulators Measurement of the Average Intensity of a Modulated Light Beam In any experiment using (PEMs it is necessary to compare the time average intensity of the light at the detector with the amplitude of a single

More information

3.0 Alignment Equipment and Diagnostic Tools:

3.0 Alignment Equipment and Diagnostic Tools: 3.0 Alignment Equipment and Diagnostic Tools: Alignment equipment The alignment telescope and its use The laser autostigmatic cube (LACI) interferometer A pin -- and how to find the center of curvature

More information

D.C. Emmony, M.W. Godfrey and R.G. White

D.C. Emmony, M.W. Godfrey and R.G. White A MINIATURE OPTICAL ACOUSTIC EMISSION TRANSDUCER ABSTRACT D.C. Emmony, M.W. Godfrey and R.G. White Department of Physics Loughborough University of Technology Loughborough, Leicestershire LEll 3TU United

More information

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking Introduction The Vescent Photonics D2-135 Offset Phase Lock Servo is normally used to phase lock a pair of

More information

Lecture 21. Wind Lidar (3) Direct Detection Doppler Lidar

Lecture 21. Wind Lidar (3) Direct Detection Doppler Lidar Lecture 21. Wind Lidar (3) Direct Detection Doppler Lidar Overview of Direct Detection Doppler Lidar (DDL) Resonance fluorescence DDL Fringe imaging DDL Scanning FPI DDL FPI edge-filter DDL Absorption

More information

A review of Pound-Drever-Hall laser frequency locking

A review of Pound-Drever-Hall laser frequency locking A review of Pound-Drever-Hall laser frequency locking M Nickerson JILA, University of Colorado and NIST, Boulder, CO 80309-0440, USA Email: nickermj@jila.colorado.edu Abstract. This paper reviews the Pound-Drever-Hall

More information

Fabry-Perot Interferometer

Fabry-Perot Interferometer Experimental Optics Contact: Maximilian Heck (maximilian.heck@uni-jena.de) Ria Krämer (ria.kraemer@uni-jena.de) Last edition: Ria Krämer, March 2017 Fabry-Perot Interferometer Contents 1 Overview 3 2 Safety

More information

3 General Principles of Operation of the S7500 Laser

3 General Principles of Operation of the S7500 Laser Application Note AN-2095 Controlling the S7500 CW Tunable Laser 1 Introduction This document explains the general principles of operation of Finisar s S7500 tunable laser. It provides a high-level description

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

Development of Etalon-Type Gain-Flattening Filter

Development of Etalon-Type Gain-Flattening Filter Development of Etalon-Type Gain-Flattening Filter by Kazuyou Mizuno *, Yasuhiro Nishi *, You Mimura *, Yoshitaka Iida *, Hiroshi Matsuura *, Daeyoul Yoon *, Osamu Aso *, Toshiro Yamamoto *2, Tomoaki Toratani

More information

College Physics II Lab 3: Microwave Optics

College Physics II Lab 3: Microwave Optics ACTIVITY 1: RESONANT CAVITY College Physics II Lab 3: Microwave Optics Taner Edis with Peter Rolnick Spring 2018 We will be dealing with microwaves, a kind of electromagnetic radiation with wavelengths

More information

Optical Recombination of the LIGO 40-m Gravitational Wave Interferometer

Optical Recombination of the LIGO 40-m Gravitational Wave Interferometer Optical Recombination of the LIGO 40-m Gravitational Wave Interferometer T.T. Lyons, * A. Kuhnert, F.J. Raab, J.E. Logan, D. Durance, R.E. Spero, S. Whitcomb, B. Kells LIGO Project, California Institute

More information

Agilent 71400C Lightwave Signal Analyzer Product Overview. Calibrated measurements of high-speed modulation, RIN, and laser linewidth

Agilent 71400C Lightwave Signal Analyzer Product Overview. Calibrated measurements of high-speed modulation, RIN, and laser linewidth Agilent 71400C Lightwave Signal Analyzer Product Overview Calibrated measurements of high-speed modulation, RIN, and laser linewidth High-Speed Lightwave Analysis 2 The Agilent 71400C lightwave signal

More information

The electric field for the wave sketched in Fig. 3-1 can be written as

The electric field for the wave sketched in Fig. 3-1 can be written as ELECTROMAGNETIC WAVES Light consists of an electric field and a magnetic field that oscillate at very high rates, of the order of 10 14 Hz. These fields travel in wavelike fashion at very high speeds.

More information

Physical Optics. Diffraction.

Physical Optics. Diffraction. Physical Optics. Diffraction. Interference Young s interference experiment Thin films Coherence and incoherence Michelson interferometer Wave-like characteristics of light Huygens-Fresnel principle Interference.

More information

Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA

Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA Abstract: Speckle interferometry (SI) has become a complete technique over the past couple of years and is widely used in many branches of

More information

Experimental Test of an Alignment Sensing Scheme for a Gravitational-wave Interferometer

Experimental Test of an Alignment Sensing Scheme for a Gravitational-wave Interferometer Experimental Test of an Alignment Sensing Scheme for a Gravitational-wave Interferometer Nergis Mavalvala *, Daniel Sigg and David Shoemaker LIGO Project Department of Physics and Center for Space Research,

More information

Quantum frequency standard Priority: Filing: Grant: Publication: Description

Quantum frequency standard Priority: Filing: Grant: Publication: Description C Quantum frequency standard Inventors: A.K.Dmitriev, M.G.Gurov, S.M.Kobtsev, A.V.Ivanenko. Priority: 2010-01-11 Filing: 2010-01-11 Grant: 2011-08-10 Publication: 2011-08-10 Description The present invention

More information

Physics 1442 and 1444 Questions and problems Only

Physics 1442 and 1444 Questions and problems Only Physics 1442 and 1444 Questions and problems Only U15Q1 To measure current using a digital multimeter the probes of the meter would be placed the component. ) in parallel with ) in series with C) adjacent

More information

Notes on the Pound-Drever-Hall technique

Notes on the Pound-Drever-Hall technique LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T980045-00- D 4/16/98 Notes on the Pound-Drever-Hall

More information

All-Optical Signal Processing and Optical Regeneration

All-Optical Signal Processing and Optical Regeneration 1/36 All-Optical Signal Processing and Optical Regeneration Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Introduction Major Nonlinear Effects

More information

Distance measurement systems using lasers and their applications

Distance measurement systems using lasers and their applications 1 Distance measurement systems using lasers and their applications João António Santos Dias Fonseca, Military Academy / IST Abstract Optical measuring systems came to offer new ways to determine distances,

More information

Wave Front Detection for Virgo

Wave Front Detection for Virgo Wave Front Detection for Virgo L.L.Richardson University of Arizona, Steward Observatory, 933 N. Cherry ave, Tucson Arizona 8575, USA E-mail: zimlance@email.arizona.edu Abstract. The use of phase cameras

More information

Interferometers for stability measurements

Interferometers for stability measurements Interferometers for stability measurements Gauge block Interferometry using phase stepping algorithms combined with CCD sensors is well suited for the measurement of long term stability, CTE and compressibility.

More information

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza Experiment C & D: Course: FY1 The Pulsed Laser Done by: Wael Al-Assadi Mangwiza 8/1/ Wael Al Assadi Mangwiza Experiment C & D : Introduction: Course: FY1 Rev. 35. Page: of 16 1// In this experiment we

More information

Basic methods in imaging of micro and nano structures with atomic force microscopy (AFM)

Basic methods in imaging of micro and nano structures with atomic force microscopy (AFM) Basic methods in imaging of micro and nano P2538000 AFM Theory The basic principle of AFM is very simple. The AFM detects the force interaction between a sample and a very tiny tip (

More information

High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [ ] Introduction

High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [ ] Introduction High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [5895-27] Introduction Various deformable mirrors for high-speed wavefront control have been demonstrated

More information

Low Vibration, Low Thermal Fluctuation System for Pulse Tube and Gifford- McMahon Cryocoolers

Low Vibration, Low Thermal Fluctuation System for Pulse Tube and Gifford- McMahon Cryocoolers Low Vibration, Low Thermal Fluctuation System for Pulse Tube and Gifford- McMahon Cryocoolers L. Mauritsen, D. Snow, A. Woidtke, M. Chase, and I. Henslee S2 Corporation Bozeman, MT ABSTRACT A compact,

More information

Swept Wavelength Testing:

Swept Wavelength Testing: Application Note 13 Swept Wavelength Testing: Characterizing the Tuning Linearity of Tunable Laser Sources In a swept-wavelength measurement system, the wavelength of a tunable laser source (TLS) is swept

More information

Goals of the Lab: Photodetectors and Noise (Part 2) Department of Physics. Slide 1. PHYSICS6770 Laboratory 4

Goals of the Lab: Photodetectors and Noise (Part 2) Department of Physics. Slide 1. PHYSICS6770 Laboratory 4 Slide 1 Goals of the Lab: Understand the origin and properties of thermal noise Understand the origin and properties of optical shot noise In this lab, You will qualitatively and quantitatively determine

More information

Fiber-optic Michelson Interferometer Sensor Fabricated by Femtosecond Lasers

Fiber-optic Michelson Interferometer Sensor Fabricated by Femtosecond Lasers Sensors & ransducers 2013 by IFSA http://www.sensorsportal.com Fiber-optic Michelson Interferometer Sensor Fabricated by Femtosecond Lasers Dong LIU, Ying XIE, Gui XIN, Zheng-Ying LI School of Information

More information

91052 Erlangen, Germany, Erlangen, Germany

91052 Erlangen, Germany, Erlangen, Germany A Method to Remotely Measure Amplitudes of Surface Vibrations with a Conventional Michelson Interferometer Ralph Hohenstein 1,, Felix Tenner 1,, Christian Brock 1,, Michael Schmidt 1, 1 Institute of Photonic

More information