PERFORMANCE TO NEW THRESHOLDS

Size: px
Start display at page:

Download "PERFORMANCE TO NEW THRESHOLDS"

Transcription

1 10 ELEVATING RADIO ABSTRACT The advancing Wi-Fi and 3GPP specifications are putting pressure on power amplifier designs and other RF components. Na ose i s Linearization and Characterization Technologies elevate the performance of the entire RF signal chain. PERFORMANCE TO NEW THRESHOLDS

2 Page 1 of 7 Elevating Radio Performance to New Thresholds Next generation radio standards are pushing the limits of radio frequency (RF) systems. In the unlicensed world of IEEE Wi-Fi specifications, ac and 11ax are increasing MIMO layers, implementing wider channel bandwidths, and improving modulation to bring data rates to new levels. Specifically, bandwidths requirements of 160 MHz as well as 1024 QAM (10-bits/symbol Quadrature Amplitude Modulation) are being required by the ax specifications. Higher modulation schemes, such as 4096 QAM (12-bits/symbol), are under consideration. Given the cost conscience ethos of the Wi-Fi community, these specifications must be realized with low cost power amplifiers. In the licensed radio access systems defined by 3GPP, there are increasing requirements for multicarrier and multiband 4G (LTE) implementations. In addition, 3GPP is defining 5G as the next generation radio system with a targeted peak data rate of 5 Gbps to each mobile device. 5G has two licensed spectrum allocations; Sub 6 GHz and mmw (millimeter wave), specifically 28 GHz and 39 GHz. In the current 3GPP specifications, the component carrier for 5G is 100 MHz as opposed to 20 MHz used in 4G/LTE. For sub 6 GHz deployments, adaptive hybrid MIMO with up to 64 layers is being defined; for mmw, massive beamforming with many individual power amplifiers will be required to close the link between the mobile station and the base station. Once again, the performance of the RF chains and power amplifiers becomes a focus of the designs in order to meet the cost requirements of the mobile devices and performance metrics of base stations. The target market for Wi-Fi devices and smartphones is large. In 2016, over 1.4 billion smartphones shipped with LTE modems and over 3 billion Wi-Fi devices were shipped including smartphone, tablets, routers, computers, TV and other consumer electronics The Existing Radio Chain is Challenged The advancing Wi-Fi and 3GPP specifications are putting pressure on the power amplifier (PA) designs and other RF components. The higher data rates of Wi-Fi specifications manifest in both wider bandwidth and increasing the modulation rates from the currently common 256 QAM to as much as 4096 QAM. This is putting pressure on the cleanliness of the signal chain. This cleanliness, measured by the error vector magnitude (EVM), is a difficult objective for typical low-cost PAs used in Wi-Fi systems. In order to provide the higher rates promised by higher QAM, the power output and efficiency of the CMOS PAs must increase. The critical challenge of 1024 QAM or 4096 QAM is to meet EVM objectives with range on par with lower data rates while maintaining power efficiency Likewise, the increased bandwidth being required of 5G signals along with very strict out of channel emission requirements (ACLR) places a premium on the PA performance for mobile devices which typically use low cost PAs. At mmw carrier frequency implementations, the device Tx power to meet

3 Page 2 of 7 link level / coverage needs is challenged. This is a common problem for mobile devices, Customer Premises Equipment (CPE) and base stations as the power output and efficiency of PAs at these frequencies are very low. 5G will push bandwidths from the current 20MHz to 100MHz and up to 800MHz, representing a challenge for most power amplifiers to achieve inexpensively and efficiently The increased bandwidth requirements are impacting base-station designs as well. PAs used in both wideband 4G and 5G base-stations, (typically GaN, LDMOS or GaAs) are challenged to meet the ACLR and efficiency requirements being imposed by signal requirements of 100 MHz or more. What does NanoSemi Bring to Solve These Problems? Common to all of these requirements is the need to improve the performance of the signal chain, including the data converters, PAs and other system components. This is best done by linearization ith ad a ed digital sig al p o essi g. Na ose i i gs li ea izatio to e le els usi g a s a t lea i g app oa h hi h automatically characterizes the signal chain including the PAs. It identifies nonlinear components and other non-ideal impairments in dynamic system operation across the full signal chain of a radio and analyzes their impact on system performance. A corresponding mathematical model is created, including nonlinear transformations. This approach has the following benefits: Automatically characterizes and models the signal chain PA agnostic: GaN, LDMOS, GaAs, CMOS Works with any RF for mobile devices, customer premises equipment and base stations Unprecedented bandwidth with reduced sampling rate Improves EVM by max. 30 db Corrects ACLR by max. 40 db Figure 1: Na ose i s Algorith s sit ithi the ase a d pro essor a d hara terizes the e tire sig al hai Na ose i s app oa h is significantly different than existing linearization techniques which are based upon generalized memory polynomials (GMP) and envelope tracking (ET). Both DPD based upon GMP and ET suffer from increasing complexity as bandwidth increases, particularly when signal bandwidths exceed MHz (as is found in Wi-Fi and 5G signals). Also note that neither DPD based upon GMP nor

4 Page 3 of 7 ET a p ope l ha a te ize a e ti e sig al hai a d o l odif the PA eha io ; Na ose i s Linearization compensates the entire RF chain including filter and coupling effects. Bandwidth >100MHz Improve PA Efficiency Increase Average Power Envelope Tracking DPD based upon GMP NanoSemi Linearization Notes ET power supply must achieve switching frequencies >2-3X signal bandwidth ET and GMP optimized for linearizing low bandwidth signals GMP based DPD needs to back off further from Psat-PAPR Improve Linearity & ACLR ET introduces noise through switching power supply. Improve EVM Implementation Size RF Chain Characterization N/A N/A GMP becomes too large for bandwidth >40MHz: ET requires additional circuit blocks & highly linear switching power supply NS characterizes entire signal chain from data converter to PA; able to linearize non PA components Figure 2: Comparison of envelope tracking, traditional DPD based upon GMP a d Na ose i s linearization based upon wide band signals (>80MHz) For more information on Envelop Tracking, please see: What are the e efits of Na ose i s Li earizatio to Wi-Fi, LTE and 5G products? Benefits to Wi-Fi devices and access points: The benefits to the performance of Wi-Fi signals are significant. Traditionally Wi-Fi devices eschewed linearization due to the high bandwidth required of Wi-Fi signals. However, as shown below, linearization provides considerable benefits to Wi-Fi signals, allowing higher modulation rates, at higher power output and greater power efficiency. Figure 3 summarizes measured results, taken from a CMOS integrated transceiver where its digital to analog converter (DAC) and analog to digital converter (ADC) operated at MSPS and a Doherty GaAs PA at a carrier frequency of 5.5GHz.

5 Page 4 of 7 Figure 3: NanoSemi linearization significantly improves Wi-Fi Power Efficiency and Pout The significant improvement in EVM can be seen below where an uncorrected signal 160 MHz ax signal is compared to a corrected, linearized version. Notice how the 20 db EVM improvement has resulted in the signal with a significantly cleaner constellation. Also note that transmit power is higher by a factor of 12. Figure 4 is a measured result from a SiGe BiCMOS PA, driven at output power of 24dBm with power efficiency of 14.2%. Figure : Ho Na ose i s li earizatio lea s the sig al o stellatio, allo i g for higher QAM. The diagram on the left is an ax 160MHz signal without any linearization. The diagram on the right shows the same sig al pro essed ith Na ose i s linearization. The improved EVM allows for 4096 QAM at output power of 24dBm even with 160MHz. In a Smartphone or other Wi-Fi mobile device, higher data rates can be achieved at any given range and the improved PA efficiency results in less battery consumption. In a Wi-Fi access point, the improved PA performance and cleaner EVM leads to higher data rates over larger ranges.

6 Page 5 of 7 Figure 5: NanoSemi s linearization improves both Pout and EVM, yielding better rate to range performance due to higher power output and better EVM performance (free space propagation model). Benefits to LTE devices and Base Stations: For 3GPP Waveforms (LTE, 5G) the performance requirements are more stringent. Specifically, 3GPP puts constraints on adjacent channel performance as measured by the adjacent channel leakage ratio (ACLR), which is defined as the ratio of the transmitted power to the power in the adjacent radio channel. In addition, traditional approaches to LTE linearization were designed around the narrow 1.5, 5, 10, 15 or 20MHz component carriers. High bandwidths such as 80 or 100MHz LTE, multiband LTE and 5G wave forms require new approaches to achieve performance metrics without backing off the PA power output and efficiency. Newer base stations are pushing the limits on RF performance. GPP s 4.5G and 5G requirements include bandwidths in excess of 100MHz and massive MIMO with up to 64 PAs. Na ose i s implementation is inherently broadband. In addition, one receiver (either from a dedicated observation path or a regular receiver channel) can be shared among multiple transmitter channels, a capability which becomes increasingly important for large MIMO implementation. The combination of greater power efficiency, lower power consumption and the feedback receiver sharing reduces the radio subsystem power consumption. Specifically, for a 64x64 massive MIMO system:

7 Page 6 of 7 Compared to base-stations ithout a fo of DPD o li ea izatio, Na ose i s Li ea izatio is able to reduce the radio subsystem power consumption by 80%. Compared to GMP based DPD implementations, NanoSemi can reduce the power consumption by 33%. Upon request, NanoSemi can provide the details behind this analysis. Benefits to 5G devices and base-stations: 5G waveforms (still being finalized in 3GPP) are very broadband, with component carriers that are 100MHz wide vs. 20MHz for 4G. As stated in the introduction, there are two bands of operation for 5G; mmw (28GHz and 39GHz) and Sub 6GHz (e.g..5 GHz). As sho i the ta le elo, Na ose i s Linearization technologies are expected to improve the performance both mmw and sub 6GHz devices: Figure 6: NanoSemi s e efits to G De i es a d ase-stations. The wide band 5G signal presents challenges to PA performance and efficiency. Figure 7 shows the ACLR improvement on a 3.5 GHz m-mimo radio with 200MHz instantaneous bandwidth signal (10 20MHz LTE carriers). The resulting waveform s spectral characteristics are expected to be very similar to 2x 5G carriers. This testing was conducted with 64 GaN PAs, each operating at 35dBm. The measured ACLR of -51dBc exceeds 3GPP requirements.

8 Page 7 of 7 Figure 7: ACLR improvement of 25dB in a 200MHz OFDMA waveform (10x20MHz LTE). This is also indicative of a 2X100MHz 5G waveform. Conclusion The evolution of IEEE and 3GPP standards is putting greater pressure on radio systems. The radio chain is the interface between the modem and spectrum; therefore, improving the performance of the radio chain is critical to increasing the data rates, spectral and power efficiencies being required of standards su h as IEEE8. a a d GPP 5G. Na ose i s Li ea izatio a d Cha a te izatio te h i ues i p o e radio chain power efficiency and signal cleanliness at unprecedented bandwidths. The small implementation size is cost effective for integration into ASICs that support Wi-Fi or into LTE/5G chips for smartphones. For further information, please contact us through our web page:

Envelope Tracking Technology

Envelope Tracking Technology MediaTek White Paper January 2015 2015 MediaTek Inc. Introduction This white paper introduces MediaTek s innovative Envelope Tracking technology found today in MediaTek SoCs. MediaTek has developed wireless

More information

Top 5 Challenges for 5G New Radio Device Designers

Top 5 Challenges for 5G New Radio Device Designers WHITE PAPER Top 5 Challenges for 5G New Radio Device Designers 5G New Radio (NR) Release-15, introduced in December 2017, lays the foundation for ultra-fast download speeds, reliable low latency connections,

More information

A Product Development Flow for 5G/LTE Envelope Tracking Power Amplifiers, Part 2

A Product Development Flow for 5G/LTE Envelope Tracking Power Amplifiers, Part 2 Test & Measurement A Product Development Flow for 5G/LTE Envelope Tracking Power Amplifiers, Part 2 ET and DPD Enhance Efficiency and Linearity Figure 12: Simulated AM-AM and AM-PM response plots for a

More information

GaN Power Amplifiers for Next- Generation Wireless Communications

GaN Power Amplifiers for Next- Generation Wireless Communications GaN Power Amplifiers for Next- Generation Wireless Communications Jennifer Kitchen Arizona State University Students: Ruhul Hasin, Mahdi Javid, Soroush Moallemi, Shishir Shukla, Rick Welker Wireless Communications

More information

Introduction to Envelope Tracking. G J Wimpenny Snr Director Technology, Qualcomm UK Ltd

Introduction to Envelope Tracking. G J Wimpenny Snr Director Technology, Qualcomm UK Ltd Introduction to Envelope Tracking G J Wimpenny Snr Director Technology, Qualcomm UK Ltd Envelope Tracking Historical Context EER first proposed by Leonard Kahn in 1952 to improve efficiency of SSB transmitters

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

Behavioral Characteristics of Power Amplifiers. Understanding the Effects of Nonlinear Distortion. Generalized Memory Polynomial Model (GMP)

Behavioral Characteristics of Power Amplifiers. Understanding the Effects of Nonlinear Distortion. Generalized Memory Polynomial Model (GMP) WHITE PAPER Testing PAs under Digital Predistortion and Dynamic Power Supply Conditions CONTENTS Introduction Behavioral Characteristics of Power Amplifiers AM-AM and AM-PM Measurements Memory Effects

More information

RF 파워앰프테스트를위한 Envelope Tracking 및 DPD 기술

RF 파워앰프테스트를위한 Envelope Tracking 및 DPD 기술 RF 파워앰프테스트를위한 Envelope Tracking 및 DPD 기술 한국내쇼날인스트루먼트 RF 테스트담당한정규 jungkyu.han@ni.com Welcome to the World of RFICs Low Noise Amplifiers Power Amplifiers RF Switches Duplexer and Filters 2 Transmitter Power

More information

From 2G to 4G UE Measurements from GSM to LTE. David Hall RF Product Manager

From 2G to 4G UE Measurements from GSM to LTE. David Hall RF Product Manager From 2G to 4G UE Measurements from GSM to LTE David Hall RF Product Manager Agenda: Testing 2G to 4G Devices The progression of standards GSM/EDGE measurements WCDMA measurements LTE Measurements LTE theory

More information

Reinventing the Transmit Chain for Next-Generation Multimode Wireless Devices. By: Richard Harlan, Director of Technical Marketing, ParkerVision

Reinventing the Transmit Chain for Next-Generation Multimode Wireless Devices. By: Richard Harlan, Director of Technical Marketing, ParkerVision Reinventing the Transmit Chain for Next-Generation Multimode Wireless Devices By: Richard Harlan, Director of Technical Marketing, ParkerVision Upcoming generations of radio access standards are placing

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

5G deployment below 6 GHz

5G deployment below 6 GHz 5G deployment below 6 GHz Ubiquitous coverage for critical communication and massive IoT White Paper There has been much attention on the ability of new 5G radio to make use of high frequency spectrum,

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

GC5325 Wideband Digital Predistortion Transmit IC Solution. David Brubaker Product Line Manager Radio Products February 2009

GC5325 Wideband Digital Predistortion Transmit IC Solution. David Brubaker Product Line Manager Radio Products February 2009 GC5325 Wideband Digital Predistortion Transmit IC Solution David Brubaker Product Line Manager Radio Products February 2009 Broadband Wireless Standards drive BTS design complexity Increased subscriber

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

FlexCFR: Overview. Background

FlexCFR: Overview. Background Background Crest Factor Reduction (CFR) enhances the power efficiency of modern Radio Frequency Power Amplifiers (RFPA) when transmitting today s linear modulation schemes such as those utilised by 3G

More information

Digital predistortion with bandwidth limitations for a 28 nm WLAN ac transmitter

Digital predistortion with bandwidth limitations for a 28 nm WLAN ac transmitter Digital predistortion with bandwidth limitations for a 28 nm WLAN 802.11ac transmitter Ted Johansson, Oscar Morales Chacón Linköping University, Linköping, Sweden Tomas Flink Catena Wireless Electronics

More information

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test M A R C H 2 6, 2 0 1 8 Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies 1 5G Market Trends 5G New Radio Specification and Implications New Measurement Challenges and Redefining Test Summary

More information

Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless

Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless Jin Bains Vice President R&D, RF Products, National Instruments 1 We live in a Hyper Connected World Data rate

More information

A balancing act: Envelope Tracking and Digital Pre-Distortion in Handset Transmitters

A balancing act: Envelope Tracking and Digital Pre-Distortion in Handset Transmitters Abstract Envelope tracking requires the addition of another connector to the RF power amplifier. Providing this supply modulation input leads to many possibilities for improving the performance of the

More information

Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul

Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul Using a highly linear fiber optic transceiver with IIP3 > 35 dbm, operating at noise level of -160dB/Hz, we demonstrate 71 km RF

More information

Simply configured Radio on Fiber link yielding positive gain for mobile phone system

Simply configured Radio on Fiber link yielding positive gain for mobile phone system LETTER IEICE Electronics Express, Vol.11, No.15, 1 6 Simply configured Radio on Fiber link yielding positive gain for mobile phone system Junji Higashiyama 1a), Yoshiaki Tarusawa 1, and Masafumi Koga 2

More information

Three-dimensional power segmented tracking for adaptive digital pre-distortion

Three-dimensional power segmented tracking for adaptive digital pre-distortion LETTER IEICE Electronics Express, Vol.13, No.17, 1 10 Three-dimensional power segmented tracking for adaptive digital pre-distortion Lie Zhang a) and Yan Feng School of Electronics and Information, Northwestern

More information

mm Wave Communications J Klutto Milleth CEWiT

mm Wave Communications J Klutto Milleth CEWiT mm Wave Communications J Klutto Milleth CEWiT Technology Options for Future Identification of new spectrum LTE extendable up to 60 GHz mm Wave Communications Handling large bandwidths Full duplexing on

More information

Future Networks Webinar Series

Future Networks Webinar Series Future Networks Webinar Series Mitigating Thermal & Power Limitations to Enable 5G Presented By Earl McCune, CTO Eridan Communications Wednesday, October 24, 2018 OVERVIEW 5G New Radio modulation Heat

More information

Transmit Power Extension Power Combiners/Splitters Figure 1 Figure 2

Transmit Power Extension Power Combiners/Splitters Figure 1 Figure 2 May 2010 Increasing the Maximum Transmit Power Rating of a Power Amplifier Using a Power Combining Technique By Tom Valencia and Stephane Wloczysiak, Skyworks Solutions, Inc. Abstract Today s broadband

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Tabrez Khan Application Engineering Group 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies 5G development

More information

Fifth-generation (5G)

Fifth-generation (5G) Raising the Levels of 5G Millimeter-Wave Signals Fifth-generation (5G) wireless network technology is being touted as the true next generation of wireless communications, capable of performance levels

More information

Advances in Freescale Airfast RFICs Setting New Benchmarks in LDMOS for Macrocells through Small Cells

Advances in Freescale Airfast RFICs Setting New Benchmarks in LDMOS for Macrocells through Small Cells Freescale Semiconductor White Paper AIRFASTWBFWP Rev. 0, 5/2015 Advances in Freescale Airfast RFICs Setting New Benchmarks in LDMOS for Macrocells through Small Cells By: Margaret Szymanowski and Suhail

More information

Mobile Radio Transformation in the Age of 5G: A Perspective on Opportunities for SOI

Mobile Radio Transformation in the Age of 5G: A Perspective on Opportunities for SOI Mobile adio Transformation in the Age of 5G: A Perspective on Opportunities for SOI Peter A. abbeni VP, Segment Offering Management, Business Development and Marketing 7 key trends that drove this year

More information

With release 12, the third generation. Is Your Handset PA Ready for LTE Device-to-Device Proximity Services?

With release 12, the third generation. Is Your Handset PA Ready for LTE Device-to-Device Proximity Services? Is Your Handset PA Ready for LTE Device-to-Device Proximity Services? Andreas Roessler Rohde & Schwarz, Munich, Germany With release 12, the third generation partnership project (3GPP) has taken on the

More information

GaN HPA optimized for telecom - Linearity results & DPD assessment March 2017

GaN HPA optimized for telecom - Linearity results & DPD assessment March 2017 GaN HPA optimized for telecom - Linearity results & DPD assessment March 2017 christophe.auvinet@ums-gaas.com GaN technology toward 5G 1. Toward 5G with GaN 2. AB class HPA optimization 3. Doherty linearity

More information

PXI Vector Signal Transceivers

PXI Vector Signal Transceivers PRODUCT FLYER PXI Vector Signal Transceivers CONTENTS PXI Vector Signal Transceivers Detailed View of PXIe-5840 RF Vector Signal Transceiver Key Features Software-Defined Architecture Platform-Based Approach

More information

Research and Design of Envelope Tracking Amplifier for WLAN g

Research and Design of Envelope Tracking Amplifier for WLAN g Research and Design of Envelope Tracking Amplifier for WLAN 802.11g Wei Wang a, Xiao Mo b, Xiaoyuan Bao c, Feng Hu d, Wenqi Cai e College of Electronics Engineering, Chongqing University of Posts and Telecommunications,

More information

ETSI Standards and the Measurement of RF Conducted Output Power of Wi-Fi ac Signals

ETSI Standards and the Measurement of RF Conducted Output Power of Wi-Fi ac Signals ETSI Standards and the Measurement of RF Conducted Output Power of Wi-Fi 802.11ac Signals Introduction The European Telecommunications Standards Institute (ETSI) have recently introduced a revised set

More information

A Case for Distributing Intelligence Throughout the Signal Chain Enabling Practical Wireless System Solutions

A Case for Distributing Intelligence Throughout the Signal Chain Enabling Practical Wireless System Solutions A Case for Distributing Intelligence Throughout the Signal Chain Enabling Practical Wireless System Solutions GNU Radio Conference, San Diego September 11 th, 2017 Shyam Nambiar Applications Engineer Transceiver

More information

Integrated RoF Network Concept for Heterogeneous / Multi-Access 5G Wireless System

Integrated RoF Network Concept for Heterogeneous / Multi-Access 5G Wireless System Integrated RoF Network Concept for Heterogeneous / Multi-Access 5G Wireless System Yasushi Yamao AWCC The University of Electro-Communications LABORATORY Goal Outline Create concept of 5G smart backhaul

More information

Massive MIMO for the New Radio Overview and Performance

Massive MIMO for the New Radio Overview and Performance Massive MIMO for the New Radio Overview and Performance Dr. Amitabha Ghosh Nokia Bell Labs IEEE 5G Summit June 5 th, 2017 What is Massive MIMO ANTENNA ARRAYS large number (>>8) of controllable antennas

More information

DPD Toolkit: Overview

DPD Toolkit: Overview Background Digital Predistortion technology (DPD) enables power-efficient transmission in modern wireless communications systems. Prior to third generation (3G) cellular systems, wireless signals were

More information

Advanced RF Measurements You Didn t Know Your Oscilloscope Could Make. Brad Frieden Philip Gresock

Advanced RF Measurements You Didn t Know Your Oscilloscope Could Make. Brad Frieden Philip Gresock Advanced RF Measurements You Didn t Know Your Oscilloscope Could Make Brad Frieden Philip Gresock Agenda RF measurement challenges Oscilloscope platform overview Typical RF characteristics Bandwidth vs.

More information

Keysight Technologies Performing LTE and LTE-Advanced RF Measurements with the E7515A UXM Wireless Test Set

Keysight Technologies Performing LTE and LTE-Advanced RF Measurements with the E7515A UXM Wireless Test Set Keysight Technologies Performing LTE and LTE-Advanced RF Measurements with the E7515A UXM Wireless Test Set Based on 3GPP TS 36.521-1 Application Note 02 Keysight Performing LTE and LTE-Advanced Measurements

More information

A Business Case for Employing Direct RF Transmission over Optical Fiber In Place of CPRI for 4G and 5G Fronthaul

A Business Case for Employing Direct RF Transmission over Optical Fiber In Place of CPRI for 4G and 5G Fronthaul A Business Case for Employing Direct RF Transmission over Optical Fiber In Place of CPRI for 4G and 5G Fronthaul Presented by APIC Corporation 5800 Uplander Way Culver City, CA 90230 www.apichip.com sales@apichip.com

More information

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note Keysight Technologies Testing WLAN Devices According to IEEE 802.11 Standards Application Note Table of Contents The Evolution of IEEE 802.11...04 Frequency Channels and Frame Structures... 05 Frame structure:

More information

Testing RFIC Power Amplifiers with Envelope Tracking. April 2014

Testing RFIC Power Amplifiers with Envelope Tracking. April 2014 Testing RFIC Power Amplifiers with Envelope Tracking April 2014 1 Agenda Key Test Challenges Addressing Test Challenges New emerging technologies such as envelope tracking and DPD and their implications

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

The Doherty Power Amplifier 1936 to the Present Day

The Doherty Power Amplifier 1936 to the Present Day TH1-E1 The Doherty Power Amplifier 1936 to the Present Day Ray Pengelly, Prism Consulting NC, LLC Hillsborough, NC 27278 USA 1 Summary Early History Broadcast Transmitters Handset Transmitters Cellular

More information

Electro-Optical Performance Requirements for Direct Transmission of 5G RF over Fiber

Electro-Optical Performance Requirements for Direct Transmission of 5G RF over Fiber Electro-Optical Performance Requirements for Direct Transmission of 5G RF over Fiber Revised 10/25/2017 Presented by APIC Corporation 5800 Uplander Way Culver City, CA 90230 www.apichip.com 1 sales@apichip.com

More information

Conformity and Interoperability Training Homologation Procedures and Type Approval Testing for Mobile Terminals

Conformity and Interoperability Training Homologation Procedures and Type Approval Testing for Mobile Terminals Conformity and Interoperability Training Homologation Procedures and Type Approval Testing for Mobile Terminals ITU C&I Programme Training Course on Testing Mobile Terminal Schedule RF Tests (Functional)

More information

Envelope Tracking for TD-LTE terminals

Envelope Tracking for TD-LTE terminals Envelope Tracking for TD-LTE terminals TD-LTE pushes bandwidth up by 5x and doubles peak power consumption. ET restores the balance, making TD-LTE more energy efficient than FD-LTE, not less. White Paper

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v01.05.00 HMC141/142 MIXER OPERATION

More information

A 1.55 GHz to 2.45 GHz Center Frequency Continuous-Time Bandpass Delta-Sigma Modulator for Frequency Agile Transmitters

A 1.55 GHz to 2.45 GHz Center Frequency Continuous-Time Bandpass Delta-Sigma Modulator for Frequency Agile Transmitters RMO2C A 1.55 GHz to 2.45 GHz Center Frequency Continuous-Time Bandpass Delta-Sigma Modulator for Frequency Agile Transmitters RFIC 2009 Martin Schmidt, Markus Grözing, Stefan Heck, Ingo Dettmann, Manfred

More information

5G System Concept Seminar. RF towards 5G. Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen

5G System Concept Seminar. RF towards 5G. Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen 04.02.2016 @ 5G System Concept Seminar RF towards 5G Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen 5.2.2016 2 Outline 5G challenges for RF Key RF system assumptions Channel SNR and related

More information

TESTING METHODS AND ERROR BUDGET ANALYSIS OF A SOFTWARE DEFINED RADIO By Richard Overdorf

TESTING METHODS AND ERROR BUDGET ANALYSIS OF A SOFTWARE DEFINED RADIO By Richard Overdorf TESTING METHODS AND ERROR BUDGET ANALYSIS OF A SOFTWARE DEFINED RADIO By Richard Overdorf SDR Considerations Data rates Voice Image Data Streaming Video Environment Distance Terrain High traffic/low traffic

More information

White paper. Long Term HSPA Evolution Mobile broadband evolution beyond 3GPP Release 10

White paper. Long Term HSPA Evolution Mobile broadband evolution beyond 3GPP Release 10 White paper Long Term HSPA Evolution Mobile broadband evolution beyond 3GPP Release 10 HSPA has transformed mobile networks Contents 3 Multicarrier and multiband HSPA 4 HSPA and LTE carrier 5 HSDPA multipoint

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

Panel Session: 5G Test and Measurement

Panel Session: 5G Test and Measurement IEEE 5G Summit Panel Session: 5G Test and Measurement Malcolm Robertson, Keysight Jon Martens, Anritsu Chris Scholz, Rohde & Schwarz Jason White, National Instruments Moderator: Kate A. Remley, NIST So

More information

PXI. TD-SCDMA Measurement Suite Data Sheet. The most important thing we build is trust. Total Average Power plus Midamble / Data Power

PXI. TD-SCDMA Measurement Suite Data Sheet. The most important thing we build is trust. Total Average Power plus Midamble / Data Power PXI TD-SCDMA Measurement Suite Data Sheet The most important thing we build is trust Total Average Power plus Midamble / Data Power Transmit On/Off Time Mask Transmit Closed Loop Power Control (CLPC) Spectrum

More information

Advances in RF and Microwave Measurement Technology

Advances in RF and Microwave Measurement Technology 1 Advances in RF and Microwave Measurement Technology Rejwan Ali Marketing Engineer NI Africa and Oceania New Demands in Modern RF and Microwave Test In semiconductor and wireless, technologies such as

More information

A new generation Cartesian loop transmitter for fl exible radio solutions

A new generation Cartesian loop transmitter for fl exible radio solutions Electronics Technical A new generation Cartesian loop transmitter for fl exible radio solutions by C.N. Wilson and J.M. Gibbins, Applied Technology, UK The concept software defined radio (SDR) is much

More information

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM)

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM) Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM) 1 4G File transfer at 10 Mbps High resolution 1024 1920 pixel hi-vision picture

More information

PXI LTE FDD and LTE TDD Measurement Suites Data Sheet

PXI LTE FDD and LTE TDD Measurement Suites Data Sheet PXI LTE FDD and LTE TDD Measurement Suites Data Sheet The most important thing we build is trust A production ready ATE solution for RF alignment and performance verification UE Tx output power Transmit

More information

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion November 11, 11, 2015 2015 1 mm-wave advantage Why is mm-wave interesting now? Available Spectrum 7 GHz of virtually

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

Agilent Highly Accurate Amplifier ACLR and ACPR Testing with the Agilent N5182A MXG Vector Signal Generator. Application Note

Agilent Highly Accurate Amplifier ACLR and ACPR Testing with the Agilent N5182A MXG Vector Signal Generator. Application Note Agilent Highly Accurate Amplifier ACLR and ACPR Testing with the Agilent N5182A MXG Vector Signal Generator Application Note Introduction 1 0 0 1 Symbol encoder I Q Baseband filters I Q IQ modulator Other

More information

ELT Radio Architectures and Signal Processing. Motivation, Some Background & Scope

ELT Radio Architectures and Signal Processing. Motivation, Some Background & Scope Introduction ELT-44007/Intro/1 ELT-44007 Radio Architectures and Signal Processing Motivation, Some Background & Scope Markku Renfors Department of Electronics and Communications Engineering Tampere University

More information

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS Introduction As wireless system designs have moved from carrier frequencies at approximately 9 MHz to wider bandwidth applications like Personal Communication System (PCS) phones at 1.8 GHz and wireless

More information

Digital Signal Analysis

Digital Signal Analysis Digital Signal Analysis Objectives - Provide a digital modulation overview - Review common digital radio impairments Digital Modulation Overview Signal Characteristics to Modify Polar Display / IQ Relationship

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK 17 Product Application Notes Introduction

More information

Overcoming Key OTA Test Challenges from 4G to 5G

Overcoming Key OTA Test Challenges from 4G to 5G Overcoming Key OTA Test Challenges from 4G to 5G Raja N. Mir 5G MN Products Nokia - US/Irving 1 Contents 1 2 3 4 5 5G Overview 4G Vs 5G Radio, What Changed? OTA Changes impacting Measurement OTA Changes

More information

PXI WiMAX Measurement Suite Data Sheet

PXI WiMAX Measurement Suite Data Sheet PXI WiMAX Measurement Suite Data Sheet The most important thing we build is trust Transmit power Spectral mask Occupied bandwidth EVM (all, data only, pilots only) Frequency error Gain imbalance, Skew

More information

802.11ax introduction and measurement solution

802.11ax introduction and measurement solution 802.11ax introduction and measurement solution Agenda IEEE 802.11ax 802.11ax overview & market 802.11ax technique / specification 802.11ax test items Keysight Product / Solution Demo M9421A VXT for 802.11ax

More information

Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations

Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations Vitor Fialho,2, Fernando Fortes 2,3, and Manuela Vieira,2 Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia DEE

More information

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document. Mansor, Z. B., Nix, A. R., & McGeehan, J. P. (2011). PAPR reduction for single carrier FDMA LTE systems using frequency domain spectral shaping. In Proceedings of the 12th Annual Postgraduate Symposium

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (8 th Week) Cellular Wireless Network 8.Outline Principles of Cellular Networks Cellular Network Generations LTE-Advanced

More information

A 5G Paradigm Based on Two-Tier Physical Network Architecture

A 5G Paradigm Based on Two-Tier Physical Network Architecture A 5G Paradigm Based on Two-Tier Physical Network Architecture Elvino S. Sousa Jeffrey Skoll Professor in Computer Networks and Innovation University of Toronto Wireless Lab IEEE Toronto 5G Summit 2015

More information

Advances in RF and Microwave Measurement Technology

Advances in RF and Microwave Measurement Technology 1 Advances in RF and Microwave Measurement Technology Chi Xu Certified LabVIEW Architect Certified TestStand Architect New Demands in Modern RF and Microwave Test In semiconductor and wireless, technologies

More information

High-end vector signal generator creates complex multichannel scenarios

High-end vector signal generator creates complex multichannel scenarios Wireless technologies Signal generation and analysis High-end vector signal generator creates complex multichannel scenarios Fig. 1: The new R&S SMW200A vector signal generator combined with two R&S SGS100A

More information

Issues for Multi-Band Multi-Access Radio Circuits in 5G Mobile Communication

Issues for Multi-Band Multi-Access Radio Circuits in 5G Mobile Communication Issues or Multi-Band Multi-Access Radio Circuits in 5G Mobile Communication Yasushi Yamao AWCC The University o Electro-Communications LABORATORY Outline Background Requirements or 5G Hardware Issues or

More information

Energy Efficient Transmitters for Future Wireless Applications

Energy Efficient Transmitters for Future Wireless Applications Energy Efficient Transmitters for Future Wireless Applications Christian Fager christian.fager@chalmers.se C E N T R E Microwave Electronics Laboratory Department of Microtechnology and Nanoscience Chalmers

More information

mmw to THz ultra high data rate radio access technologies

mmw to THz ultra high data rate radio access technologies mmw to THz ultra high data rate radio access technologies Dr. Laurent HERAULT VP Europe, CEA LETI Pierre Vincent Head of RF IC design Lab, CEA LETI Outline mmw communication use cases and standards mmw

More information

Concurrent Multi-Band Envelope Tracking Power Amplifiers for Emerging Wireless Communications

Concurrent Multi-Band Envelope Tracking Power Amplifiers for Emerging Wireless Communications Concurrent Multi-Band Envelope Tracking Power Amplifiers for Emerging Wireless Communications by Hassan Sarbishaei A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies //08 K E Y N O T E S P E E C H Jeffrey Chen Jeffrey-cy_chen@keysight.com 08.0. Deputy General Manager / Keysight Technologies M O R E S P E E D, L E S S P O W E R, P E R F E C T A C C U R A C Y NETWORKS/CLOUD

More information

5G Multi-Band Vector Transceiver

5G Multi-Band Vector Transceiver SOLUTION BRIEF Streamlining high-volume test of 5G NR base stations 5G Multi-Band Vector Transceiver Compact, scalable solution accelerates deployment of 5G equipment 5G New Radio (NR) network equipment

More information

Figures of Merit for Active Antenna Enabled 5G Communication Networks

Figures of Merit for Active Antenna Enabled 5G Communication Networks Figures of Merit for Active Antenna Enabled 5G Communication Networks Jan M. McKinnis Ball Aerospace Westminster, CO, USA jmckinni@ball.com Dr. Ian Gresham Anokiwave, Inc Billerica, MA, USA ian.gresham@anokiwave.com

More information

5G Applications trends and technology needs. Sven Mattisson Ericsson Research, Lund

5G Applications trends and technology needs. Sven Mattisson Ericsson Research, Lund 5G Applications trends and technology needs Sven Mattisson Ericsson Research, Lund Envisioned 5G plans Source: Ericsson Mobility Report 5G Applications trends and technology needs NORCAS 2017 Page 2 Estimated

More information

LTE Signal Quality Analysis. BTS Master, Cell Master,, Spectrum Master

LTE Signal Quality Analysis. BTS Master, Cell Master,, Spectrum Master LTE Signal Quality Analysis BTS Master, Cell Master,, Spectrum Master Slide 1 Anritsu LTE Test Instrument Portfolio Signaling Tester Fading Simulator Signal Analyzers Vector Signal Generator Radio Communication

More information

22 Marzo 2012 IFEMA, Madrid spain.ni.com/nidays.

22 Marzo 2012 IFEMA, Madrid spain.ni.com/nidays. 22 Marzo 2012 IFEMA, Madrid spain.ni.com/nidays www.infoplc.net The Art of Benchmarking Speed PXI Versus Rack-and-Stack Test Equipment Filippo Persia Systems Engineer Automated Test Mediterranean Region

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

IMS2017 Power Amplifier Linearization through DPD Student Design Competition (SDC): Signals, Scoring & Test Setup Description

IMS2017 Power Amplifier Linearization through DPD Student Design Competition (SDC): Signals, Scoring & Test Setup Description IMS2017 Power Amplifier Linearization through DPD Student Design Competition (SDC: Signals, Scoring & Test Setup Description I. Introduction The objective of the IMS2017 SDC is to design an appropriate

More information

Exploring Trends in Technology and Testing in Satellite Communications

Exploring Trends in Technology and Testing in Satellite Communications Exploring Trends in Technology and Testing in Satellite Communications Aerospace Defense Symposium Giuseppe Savoia Keysight Technologies Agenda Page 2 Evolving military and commercial satellite communications

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

Does The Radio Even Matter? - Transceiver Characterization Testing Framework

Does The Radio Even Matter? - Transceiver Characterization Testing Framework Does The Radio Even Matter? - Transceiver Characterization Testing Framework TRAVIS COLLINS, PHD ROBIN GETZ 2017 Analog Devices, Inc. All rights reserved. 1 Which cost least? 3 2017 Analog Devices, Inc.

More information

COSMOS Millimeter Wave June Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia

COSMOS Millimeter Wave June Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia COSMOS Millimeter Wave June 1 2018 Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia srangan@nyu.edu, hk2532@columbia.edu Millimeter Wave Communications Vast untapped spectrum

More information

Recent Advances in Power Encoding and GaN Switching Technologies for Digital Transmitters

Recent Advances in Power Encoding and GaN Switching Technologies for Digital Transmitters MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Recent Advances in Power Encoding and GaN Switching Technologies for Digital Transmitters Ma, R. TR2015-131 December 2015 Abstract Green and

More information

A Flexible Testbed for 5G Waveform Generation & Analysis. Greg Jue Keysight Technologies

A Flexible Testbed for 5G Waveform Generation & Analysis. Greg Jue Keysight Technologies A Flexible Testbed for 5G Waveform Generation & Analysis Greg Jue Keysight Technologies Agenda Introduction 5G Research: Waveforms and Frequencies Desired Testbed Attributes and Proposed Approach Wireless

More information

From Antenna to Bits:

From Antenna to Bits: From Antenna to Bits: Wireless System Design with MATLAB and Simulink Cynthia Cudicini Application Engineering Manager MathWorks cynthia.cudicini@mathworks.fr 1 Innovations in the World of Wireless Everything

More information

PXI WLAN Measurement Suite Data Sheet

PXI WLAN Measurement Suite Data Sheet PXI WLAN Measurement Suite Data Sheet The most important thing we build is trust Bench-top R&D and production ready ATE RF performance verification tools Multi device parallel testing for higher production

More information

Simulation for 5G New Radio System Design and Verification

Simulation for 5G New Radio System Design and Verification Simulation for 5G New Radio System Design and Verification WHITE PAPER The Challenge of the First Commercial 5G Service Deployment The 3rd Generation Partnership Project (3GPP) published its very first

More information

Addressing Design and Test Challenges for new LTE-Advanced Standard

Addressing Design and Test Challenges for new LTE-Advanced Standard Addressing Design and Test Challenges for new LTE-Advanced Standard Sheri DeTomasi Modular Program Manager LTE-A Multi-channel Apps Updated December 15, 2014 The Data Challenge Internet Email Navigation

More information

Millimeter Waves. Millimeter Waves. mm- Wave. 1 GHz 10 GHz 100 GHz 1 THz 10 THz 100 THz 1PHz. Infrared Light. Far IR. THz. Microwave.

Millimeter Waves. Millimeter Waves. mm- Wave. 1 GHz 10 GHz 100 GHz 1 THz 10 THz 100 THz 1PHz. Infrared Light. Far IR. THz. Microwave. Millimeter Waves Millimeter Waves 1 GHz 10 GHz 100 GHz 1 THz 10 THz 100 THz 1PHz 30 GHz 300 GHz Frequency Wavelength Microwave mm- Wave THz Far IR Infrared Light UV 10 cm 1 cm 1 mm 100 µm 10 µm 1 µm Page

More information