Considerations towards Future SAR Developments

Size: px
Start display at page:

Download "Considerations towards Future SAR Developments"

Transcription

1 Considerations towards Future SAR Developments Vorlesung: Hochauflösende Radarsysteme WS 2007/08, Friedrich-Alexander-Universität Erlangen Nürnberg Lehrstuhl für Hochfrequenztechnik Wolfgang Keydel DLR Oberpfaffenhofen, Institut für Hochfrequenztechnik und Radarsysteme Web: 1

2 Future SAR Systems? Credible? 2

3 Goal Present the Expected Development of Features for future Air- borne & Space-borne SAR based on State of the Art reached on the past Development Line & gained with Extrapolations Point out under that Aspect Perspectives & Visions for Future & Space-borne SAR Systems 3

4 Moore s Law gives a Makro Trend Market Demand & respective Semiconductor Industry Response# Functionality per Chip Double Every 1.5 to 2 Years Observed also for Micro Processing Units (MPU) Performance Corrollary to Moore s Law Manufacturing Productivity Improvements enable the Cost-per-function (Microcents per bit etc.) to decrease by about 29% per year. These Figures Observed & Sufficiently Proved over the Last 30 Years 4

5 State of the Art Operational Space Borne SAR Antennas Active Phased Arrays: (T/R Modules) P-, L-, C-, X-Band; Patches in P-, L-, C-Band, Slot-Arrays in X-Band Example: TerraSAR!! Reflector Antennas are not out!! Main Advantages Multi-Polarization high Bandwidth less complex, Low technological Risk at low Costs, lower Mass, Power Main Drawbacks Limited instantaneous Swath Width Lack of electronic Beam Steering Capability (ScanSAR) Examples: SAR-Lupe, MAPSAR: 5

6 Example for Mass Distribution (ASAR) Antenna: C-Band, Patch Array T/R Modules 60 kg Panels/Elements 322 kg (61%) Distribution Network 48 kg Thermal Isolation 50 kg Total 480 kg Main Support Units Mounting / Housing 21 kg Low Power f. Transmitter / Receiver 26 kg Data Handling/Signal Processing 11 kg Total 48 kg 6

7 Antenna Dimensions m x m x 0,15 m Mass incl. Structure 303 kg Payload 394kg, Bus 549kg, Propellant 78kg TerraSAR-X Δϕ Beamwidth (Az x El): 0.33 x 2.3 Scan (Az; El): ± 0.75 ; ± 19.2 Peak Power: Total 2,3 kw, T/R-M 6W Velocity Measurement Capability Orbit: 500m ~ V satellite 7600msec -! d V 2π t arg et V = t arg et Vsatellite λ V satellite λ Δϕ d 2π = for Δφ = 5 V target =1,3 msec -1 3 Antenna leafs with 4 Panels with 32 active Sub-Arrays in Elevation each comprising an HP & VP slottet Waveguide Radiator 384 Sub-Arrays equipped with T/R Modules The dual-polarized Waveguide Radiator allows Polarization Selection via a Polarization Switch in each T/R Module. Personal Communication:J. Mittermayer, DLR Radar & Microwaves Institute, +49/8153/ , josef.mittermayer@dlr.de 7

8 SAR-Lupe (X-Band), Launch 2006 Volume (3m x 4m x 2m) ca. 24 m 3 Strip Map Ground Velocity 7km/s High Resolution within 8 km x 60 km WEIGHT Power Consumption Images/day Av Power Consumption Orbit Height Spatial Resolution 770kg 250 W > years ca. 500 km < 1m Spot-Light Velocity Reduction Highest Resolution within 5,5km x 5,5 km Antenna Size 3,3 m x 2,7 m 8

9 Major challenging technology elements Active Control of Structure, Surface Profile, and Roughness Under Consideration Dual Polarized SAR Membrane Antenna 3-Layer, Size 12m x 3m Storage Volume < 1 m 3 Total Mass 175 kg Membrane Material & Spacers 45 kg; Sunshield & Insulation 27 kg, Deployment Mechanism 100 kg (57%) Stowage Container 3 kg. Shaubert D., et al.: Lightweight. Deployable Antennas, Earth Science Enterprise Technology Planning Wokshop, JPL, Jan

10 MAPSAR Antenna Elliptical Cassegrain 7,5 m x 5 m Reflecting Surface triaxially woven Fabric Carbon Fibre Reinforced Silicone (CFRS) Reflector Structure main & auxiliary Membrane Ribs, radially deployed & stiffened with Pantograph Mechanism Distance between Reflectors 2,70 m Sub-Reflector Dimension 1,0 m x 0,67 m Horn dimension.1,40 m x 0,45 m x 0, 56 m Main radial ribs Triax CFRS Auxiliary membrane ribs Reflecting surface Mass Budget Central unit: 11 kg, Pantographs & Deployment. 30 kg, Membrane Ribs: 10 kg, Reflecting Surface: 7 kg, Subreflector Support:,.10 kg Totally..68 kg Personal Communication: Leri Datashvili, Institute of LightweightStructures, Technische Universitaet Muenchen, Tel.: +49/ , Datashvili@llb.mw.tum.de: T. Neff, DLR Microwaves & Radar Institute, , 10 Thomas Neff@dlr.de

11 Main Mechanical Antenna Problems Stiffness & Surface Accuracy Deployment & Rigidizing Reliability Antenna Deployment Control & synchronization to achieve high Stiffness Feed Subreflector Possible Stowage Geometry Available stowed Volume 2100 mm * 1500 mm Reflector Mass : 0.5 kg/m kg/m Additional available space, to be considered for package 1900 Reflector Payload Reflector Possibilities: Flexible knitted Mesh, Tensed metalized Membrane parabolic quasi-membrane (flexible shell-membrane) Example MapSAR TAURUS Shroud Configuration 11

12 From SAR Antenna to Antenna SAR ENVISAT Sensors 2145kg SAR-Lupe 2006 SAR only 770 kg TerraSAR 2007 SAR only 480kg MapSAR 2014? SAR only 450kg? Antenna SAR 2025? SAR only 200kg? Antenna 1m x kg Array C-Band Antenna 2,7m x 3,3 m ca. 100 kg Mirror X-Band Antenna 0,7m x 4,8m 303kg Phased Array X-Band Antenna 5m x 7,5m Goal: <70kg (0,7 kg m -2 ) Cassegrain L-Band Antenna 1m x 12m 10kg (0,5 kg m -2 ) Phased Array Multi-Band 12

13 Formation Flying System Deployment of large Number of Low Cost small Satellites acting collaboratively as a Single Collective Unit (Large Antenna) New Members to the Formation can be Introduced over Time. Requirements Guidance & Control System on Board with autonomous Navigation, Formation Positioning & Estimation, Path Planning Functions & extreme Pointing & Attitude Stability. Significant Challenges: Control of Spacecrafts in low Orbits non-uniform Perturbations, potentially, destabilize the Formation Geometry & decrease the Systems Measurement Accuracy. First Step: Tandem 13

14 Digital Beam Forming Simultaneous Multiple Beam Forming on Receive Receiver & AD Converter at Each Element or Subgroup Continuous Beam Dwelling on All Objects within the Illuminated Sector Transmitter Central MPU ADC Rec Processor MPU ADC Rec Unit MPU ADC Rec MPU ADC Zooming Small Part of Large Image with Low Resolution to a Small Image With Higher Resolution (Corresponding to the Fraction of Elements ore Sub-Arrays resp.) Optimum Solution Equip Each Antenna Element or Subarray with an Own Computer Rec 14

15 Multistatic Digital Beam Forming System Schemes Master Satellite Transmitter Satellite Array Formation Flight Comunication Space-borne Array Air-borne UAV Array Fleet Note: In GEO Case the Master Satellite is above Equator! 15

16 Digital Beam Forming Image Processor Central Processor Array Antenna MPU ADC T/R MPU ADC T/R MPU ADC T/R MPU ADC T/R Strip Map Whole Area Whole Arrray Zoom by Squint DBF Single Array Module Whole Array 16

17 Frequency Range: 500 MHz...18 GHz Air - Air +IFF Navigation (GPS) Fire Control Weather Communication + IFF Terrain Following Missile Warning Altimeter Flight Guidance + IFF Kommunikation Air - Ground SAR Reconnaissance Communication + IFF 17

18 ENVISAT Combination of 10 remote sensing instruments MIPAS AATSR ASAR-Antenna (ca. 10 m x 1.33 m and 320 T/R-Modules) MERIS GOMOS RA-2 LRR SCIAMACHY DORIS MWR ASAR 18

19 Candidates for Integrated Antenna Systems CONFORMAL PATCH ARRAYS Spiral ore Cone Patches Covering a Wide Bandwidth. State of the Art Cover the whole RF Spectrum from 500 MHz up to 18 Ghz by 3 Multifunction Apertures 500 MHz to 2 GHz, 2 GHz to 6 GHz, 6 GHz to 18 GHz 19

20 Physical Limits of Transistor Development will be reached within the Near Future Very new Invention of Crossbar Latch Principle promises further Validation of Moore s Law for the next Decades Kuekes, Philip J., Duncan R. Stewart and R. Stanley Williams, Hewlett-Packard Laboratories, Quantum Science Research group: The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits. Journal of Applied Physics 97, (2005) 20

21 Technical & Technological Development Expectations within the next 2 Decades Power Efficiency of Solid-State devices > 60 %. Higher Miniaturization will reduce Mass & Volume of RF-systems drastically (including the Antenna down to about 10 %). High Degree of Automation of the Radar and Operation Functions will reduce Effort for Post Launch Mission Operation. High Temperature Super Conductors will be applicable for Extremely Small Filtering as well as for T/R Modules with high S/N, Progress in Time Synchronization to nsec-accuracies, Future SAR, mainly, will consist of the Antenna with a small Number of more ore less Peripheral Elements only (Solar cells, GPS, Power Supply etc.). The SAR Antenna will mutate to a complete Antenna SAR 21

22 Future SAR Systems: Software Based & Multi Static with Multi-Polarization, Multi-Frequency Capability, Multiple Operation Modes One ore more Central Illuminators together with a Synchronized Fleet of Airborne, Space Borne, or Ground Based Receivers resp. enable continuous Availability with nearly Global Coverage Extremely High Resolution down to cm Dedicated Information Transfer to specific Users in Real Time, based on Onboard Data Processing Necessary Extremely Accurate Time Synchronisation Very Effective Data & Communication Links 22

23 Future SAR Systems: Technique and Technology Antenna &Transmitter Highly Efficient Reflector Antennas, Wide Angle Beam Illumination, High Power Microwave Vacuum Sources with High Efficiency Receiver Fleet of Receiver Satellites organized as an Intercommunicative Web as a Macro Instrument Concept Coordinated Efforts between Multiple Numbers & Types of Sensing Platforms, including both Orbital & Terrestrial both Fixed & Mobile. Information Gathered by one Sensor Shared & Used by other Web Sensors Each Sensor Communicates with its Local Neighbours & thus Distributes Information to the Instrument as a Whole. 23

24 Develop integrated Antenna Systems with extremely large Bandwith Develop X-Band Patch Antennas Mass Reduction Develop lightweight Material for Mirrorors, Deployment Support etc. Develop Zoom Capability for Digital Beam Forming Develop Formation Flying Concepts based on Tandem Develop Volume Antenna Principles for a Sensor Web Establish Concerted Action regarding Frequency Management between Remote Sensing & other Microwave Services (Com-Nav etc.)! Investigate Dual Use Possibilities of Frequencies for Radar & other Services & Dual System Use for Civil & Military Purposes! Use Experience gained with other Microwave Services (ComNav etc.)! Investigate Fusion with other Sensor Systems & - Techniques! SAR is not a Stand Alone Technique 24

25 Principal Interconnection Scheme for a Sensor Web COM GEO TV RS GEO/2 LEO UAV 25

26 What to do? An exemplary Task Selection Develop new appropriate Waveform Generation & Modulation Schemes! Carry out Experiments for Bistatic SAR Systems (ground based, airborne, space borne using existing Instruments & Satellites)! Study Bistatic Scattering Behavior of Electromagnetic Waves (Polarization, Forward Scattering conflicts with high resolution requirements etc)! Implement all Activities on the Platform as an End-to-End System! Use Experience gained with other Microwave Services (ComNav etc.)! Establish Concerted Action regarding Frequency Management between Remote Sensing & other Microwave Services (Com-Nav etc.)! Investigate Dual Use Possibilities of Frequencies for Radar & other Services & Dual System Use for Civil & Military Purposes! Investigate Fusion with other Sensor Systems & - Techniques! SAR is not a Stand Alone Technique 26

27 Consequence:Vision Autonomous, Global, Integrated "Reconnaissance and Remote Sensing Multisensor System" with Communication and Positioning Capability. Polarimetric Interferometry SAR (10MHz to 10GHz) Central Illuminators for a Synchronised Fleet of Small Airborne and Spaceborne Receivers for Continuos Availability & Global Coverage. Extremely High Resolution down to the dm Range Real Time Feature Processing & Value Adding on Board Dedicated Information Transfer to Specific Users Extremely Accurate Signal and Time Synchronisation Very Effective Data and Communication Links 27

28 'The future cannot be predicted. It has to be invented.' (Dennis Gabor, ) Future Developments, Investigation & Activities necessary 28

29 First Next Step:From TerraSAR-X) to Tandem-X (2009) TerraSAR-X (2007 Tandem-X (2009) 29

30 center frequency 9.65 GHz (X-band) Tx bandwidth up to 150 MHz (300 exp.) PRF 3 KHz to 6,5 KHz transmit duty cycle 13-20% radiated peak power 2260 W system noise figure 5 db 30

31 antenna dimension in azimuth m antenna dimension in elevation m azimuth beamwidth 0.33 elevation beamwidth 2.3 scan angle azimuth ± 0.75 scan angle elevation ±

32 TerraSAR-X Orbit sunlight side night side dusk/down orbit altitude at equator km inclination sun-synchronous repeat orbit: repeat period 11 days revisit time: 4.5 days (100%) 2.5 days (95%) orbits per day 15 2/11 32

33 Antennas Determine Spaceborne Microwave Remote Sensing TerraSAR-X Mission Profile X-Band Downlink 300 Mbit/sec S-Band TM & TC Raw Data Acquisition DLR GS Neustrelitz DLR GS Weilheim Mission Operations DLR Oberpfaffenhofen 33

34 Θ 1 =20 o Flight direction 20 Nadir Track Swath Width 100 km Θ 2 =55 o 45 TerraSAR-X Imaging Modes Stripmap Mode ScanSAR Mode Spotlight Mode (Sliding) HighRes Spotlight Mode (Sliding) Centre of rotation Stripmap ScanSAR Spotlight HighRes Spotlight full perf. inc, angle range scene size along track acqu. length acqu. length 10 km 5 km scene size ground range 30 km 100 km 10 km 10 km single look az. resolution 3 m 16 m 2 m 1 m single look range resolution 3 m (ground) 16 m 5 looks 1.2 m (slant) 1.2 m (slant) 34

35 TerraSAR-X TD-X TanDEM-X TerraSAR add-on for Digital Elevation Measurements 35

7.7 TerraSAR-X & TanDEM-X

7.7 TerraSAR-X & TanDEM-X 7.7 TerraSAR-X & TanDEM-X Two Innovative Remote Sensing Stars for space-borne Earth Observation Vorlesung Wolfgang Keydel Microwaves and Radar Institute, German Aerospace Research Center (DLR), D-82230

More information

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR 3 nd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry POLinSAR 2007 January 25, 2007 ESA/ESRIN Frascati, Italy MULTI-CHANNEL SAR EXPERIMENTS FROM THE

More information

Executive Summary. Development of a Functional Model

Executive Summary. Development of a Functional Model Development of a Functional Model Deutsches Zentrum für Luft- und Raumfahrt e.v. Institut für Hochfrequenztechnik und Radarsysteme Oberpfaffenhofen, Germany January 2001 Page 1 of 17 Contents 1 Introduction

More information

Polarisation Capabilities and Status of TerraSAR-X

Polarisation Capabilities and Status of TerraSAR-X Polarisation Capabilities and Status of TerraSAR-X Irena Hajnsek, Josef Mittermayer, Stefan Buckreuss, Kostas Papathanassiou German Aerospace Center Microwaves and Radar Institute irena.hajnsek@dlr.de

More information

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave HEMERA Team Members: Andrea Bellome, Giulia Broggi, Luca Collettini, Davide Di Ienno, Edoardo Fornari, Leandro Lucchese, Andrea

More information

Calibration Concepts for Future Low Frequency SAR Systems. Jens Reimann, Marco Schwerdt, Sravan Kumar Aitha and Manfred Zink

Calibration Concepts for Future Low Frequency SAR Systems. Jens Reimann, Marco Schwerdt, Sravan Kumar Aitha and Manfred Zink Calibration Concepts for Future Low Frequency SAR Systems Jens Reimann, Marco Schwerdt, Sravan Kumar Aitha and Manfred Zink DLR.de Chart 2 Low Frequency SAR Missions OHB DLR.de Chart 3 BIOMASS - Facts

More information

LE/ESSE Payload Design

LE/ESSE Payload Design LE/ESSE4360 - Payload Design 4.3 Communications Satellite Payload - Hardware Elements Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Professor of Space Engineering Department of Earth and Space Science

More information

Introduction Active microwave Radar

Introduction Active microwave Radar RADAR Imaging Introduction 2 Introduction Active microwave Radar Passive remote sensing systems record electromagnetic energy that was reflected or emitted from the surface of the Earth. There are also

More information

I SARA 08/10/13. Pre-Decisional Information -- For Planning and Discussion Purposes Only

I SARA 08/10/13. Pre-Decisional Information -- For Planning and Discussion Purposes Only 1 Overview ISARA Mission Summary Payload Description Experimental Design ISARA Mission Objectives: Demonstrate a practical, low cost Ka-band High Gain Antenna (HGA) on a 3U CubeSat Increase downlink data

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

Chapter 3 Solution to Problems

Chapter 3 Solution to Problems Chapter 3 Solution to Problems 1. The telemetry system of a geostationary communications satellite samples 100 sensors on the spacecraft in sequence. Each sample is transmitted to earth as an eight-bit

More information

FORMATION FLYING PICOSAT SWARMS FOR FORMING EXTREMELY LARGE APERTURES

FORMATION FLYING PICOSAT SWARMS FOR FORMING EXTREMELY LARGE APERTURES FORMATION FLYING PICOSAT SWARMS FOR FORMING EXTREMELY LARGE APERTURES Presented at the ESA/ESTEC Workshop on Innovative System Concepts February 21, 2006 Ivan Bekey President, Bekey Designs, Inc. 4624

More information

GNSS Reflectometry and Passive Radar at DLR

GNSS Reflectometry and Passive Radar at DLR ACES and FUTURE GNSS-Based EARTH OBSERVATION and NAVIGATION 26./27. May 2008, TU München Dr. Thomas Börner, Microwaves and Radar Institute, DLR Overview GNSS Reflectometry a joined proposal of DLR and

More information

ECE 6390: Satellite Communications and Navigation Systems TEST 1 (Fall 2004)

ECE 6390: Satellite Communications and Navigation Systems TEST 1 (Fall 2004) Name: GTID: ECE 6390: Satellite Communications and Navigation Systems TEST 1 (Fall 2004) Please read all instructions before continuing with the test. This is a closed notes, closed book, closed friend,

More information

VenSAR: A MULTI-FUNCTIONAL S-BAND RADAR FOR THE EnVision MISSION TO VENUS

VenSAR: A MULTI-FUNCTIONAL S-BAND RADAR FOR THE EnVision MISSION TO VENUS VenSAR: A MULTI-FUNCTIONAL S-BAND RADAR FOR THE EnVision MISSION TO VENUS Richard Ghail (1) and David Hall (2) (1) Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom

More information

Development Status of Compact X-band Synthetic Aperture Radar Compatible with a100kg-class SAR Satellite and Its Future Plan.

Development Status of Compact X-band Synthetic Aperture Radar Compatible with a100kg-class SAR Satellite and Its Future Plan. SSC17-IX-01 Development Status of Compact X-band Synthetic Aperture Radar Compatible with a100kg-class SAR Satellite and Its Future Plan Hirobumi Saito Japan Aerospace Exploration Agency (JAXA), Institute

More information

SATELLITE SUBSYSTEMS. Networks and Communication Department. Dr. Marwah Ahmed

SATELLITE SUBSYSTEMS. Networks and Communication Department. Dr. Marwah Ahmed 1 SATELLITE SUBSYSTEMS Networks and Communication Department Dr. Marwah Ahmed Outlines Attitude and Orbit Control System (AOCS) Telemetry, Tracking, Command and Monitoring (TTC & M) Power System Communication

More information

TerraSAR-X: Status Report & Polarimetric Data Exploitation

TerraSAR-X: Status Report & Polarimetric Data Exploitation TerraAR-X: tatus Report & Polarimetric Data Exploitation Alberto Moreira & Irena Hajnsek German Aerospace Center (DLR) Folie irena.hajnsek@dlr.de - 5.0.007 TerraAR-X: A National cience Mission with Commercial

More information

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology QuikSCAT Mission Status QuikSCAT Follow-on Mission 2 QuikSCAT instrument and spacecraft are healthy, but aging June 19, 2009 will be the 10 year launch anniversary We ve had two significant anomalies during

More information

Design of an Airborne SLAR Antenna at X-Band

Design of an Airborne SLAR Antenna at X-Band Design of an Airborne SLAR Antenna at X-Band Markus Limbach German Aerospace Center (DLR) Microwaves and Radar Institute Oberpfaffenhofen WFMN 2007, Markus Limbach, Folie 1 Overview Applications of SLAR

More information

Concept of the future L-band SAR mission for wide swath SAR observation

Concept of the future L-band SAR mission for wide swath SAR observation Concept of the future SAR mission for wide swath SAR observation A.Karasawa 1, Y.Okada 1, Y.Yokota 1, S.Nakamura 1 1) Mitsubishi Electric Corporation 1 Outline 1:Development of SAR systems in MELCO 2:Development

More information

Affordable space based radar for homeland security

Affordable space based radar for homeland security Changing the economics of space Affordable space based radar for homeland security Adam Baker Brent Abbott Phil Whittaker Rachel Bird Luis Gomes Summary Why Radar? However: Radar data is expensive Users

More information

Space Frequency Coordination Group

Space Frequency Coordination Group Space Frequency Coordination Group Report SFCG 38-1 POTENTIAL RFI TO EESS (ACTIVE) CLOUD PROFILE RADARS IN 94.0-94.1 GHZ FREQUENCY BAND FROM OTHER SERVICES Abstract This new SFCG report analyzes potential

More information

1. Discuss in detail the Design Consideration of a Satellite Communication Systems. [16]

1. Discuss in detail the Design Consideration of a Satellite Communication Systems. [16] Code No: R05410409 Set No. 1 1. Discuss in detail the Design Consideration of a Satellite Communication Systems. 2. (a) What is a Geosynchronous Orbit? Discuss the advantages and disadvantages of these

More information

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing GMAT 9600 Principles of Remote Sensing Week 4 Radar Background & Surface Interactions Acknowledgment Mike Chang Natural Resources Canada Process of Atmospheric Radiation Dr. Linlin Ge and Prof Bruce Forster

More information

NovaSAR-S - Bringing Radar Capability to the Disaster Monitoring Constellation

NovaSAR-S - Bringing Radar Capability to the Disaster Monitoring Constellation Changing the economics of space NovaSAR-S - Bringing Radar Capability to the Disaster Monitoring Constellation SSTL: Philip Davies, Phil Whittaker, Rachel Bird, Luis Gomes, Ben Stern, Prof Sir Martin Sweeting

More information

TanDEM-X. 1. Mission Overview. Science Meeting No SAR Imaging Modes & Performance 3. Satellite Design Overview 4. Launcher 5.

TanDEM-X. 1. Mission Overview. Science Meeting No SAR Imaging Modes & Performance 3. Satellite Design Overview 4. Launcher 5. TanDEM-X Science Meeting No. 1 Dresden 15.5.2006 Wolfgang Pitz EADS Astrium GmbH D-88039 Friedrichshafen 1. Mission Overview 2. SAR Imaging Modes & Performance 3. Satellite Design Overview 4. Launcher

More information

PAZ Product Definition

PAZ Product Definition PAZ Product Definition CALVAL Centre Juan Manuel Cuerda Muñoz, Javier del Castillo Mena, Adolfo López Pescador, Nuria Gimeno Martínez, Nuria Casal Vázquez, Patricia Cifuentes Revenga, Marcos García Rodríguez,

More information

The BYU microsar System

The BYU microsar System The BYU microsar System David G. Long BYU Center for Remote Sensing, Microwave Earth Remote Sensing Laboratory Electrical and Computer Engineering Dept., Brigham Young University 459 Clyde Building, Provo,

More information

Executive Summary. Doc. No.: EA-XS Issue: 1 Rev. 0 Date: Name Date Signature

Executive Summary. Doc. No.: EA-XS Issue: 1 Rev. 0 Date: Name Date Signature Project: Feasibility Study on Satellite-Unmanned Airborne Systems Cooperative Approaches for the Improvement of all- Weather Day and Night Operations Title: Executive Summary Doc. No.: EA-XS Date: 12.10.2009

More information

Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band

Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band Recommendation ITU-R M.2008 (03/2012) Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band 13.25-13.40 GHz M Series Mobile, radiodetermination,

More information

SAR Interferometry Capabilities of Canada's planned SAR Satellite Constellation

SAR Interferometry Capabilities of Canada's planned SAR Satellite Constellation SAR Interferometry Capabilities of Canada's planned SAR Satellite Constellation Dirk Geudtner, Guy Séguin,, Ralph Girard Canadian Space Agency RADARSAT Follow-on Program CSA is in the middle of a Phase

More information

ADVANCED 14/12 AND 30/20 GHz MULTIPLE BEAM ANTENNA TECHNOLOGY FOR COMMUNICATIONS SATELLITES

ADVANCED 14/12 AND 30/20 GHz MULTIPLE BEAM ANTENNA TECHNOLOGY FOR COMMUNICATIONS SATELLITES ADVANCED 14/12 AND 30/20 GHz MULTIPLE BEAM ANTENNA TECHNOLOGY FOR COMMUNICATIONS SATELLITES C.C. Chen TRW Defense and Space Systems Group Redondo Beach, CA 90278 ABSTRACT This paper discusses recent TRW

More information

A CubeSat Radio Beacon Experiment

A CubeSat Radio Beacon Experiment A CubeSat Radio Beacon Experiment CUBEACON A Beacon Test of Designs for the Future Antenna? Michael Cousins SRI International Multifrequency? Size, Weight and Power? CubeSat Developers Workshop, April

More information

RADAR CHAPTER 3 RADAR

RADAR CHAPTER 3 RADAR RADAR CHAPTER 3 RADAR RDF becomes Radar 1. As World War II approached, scientists and the military were keen to find a method of detecting aircraft outside the normal range of eyes and ears. They found

More information

EE 529 Remote Sensing Techniques. Introduction

EE 529 Remote Sensing Techniques. Introduction EE 529 Remote Sensing Techniques Introduction Course Contents Radar Imaging Sensors Imaging Sensors Imaging Algorithms Imaging Algorithms Course Contents (Cont( Cont d) Simulated Raw Data y r Processing

More information

TerraSAR-X Mission: Application and Data Access

TerraSAR-X Mission: Application and Data Access TerraSAR-X Mission: Application and Data Access Irena Hajnsek & TSX TEAM German Aerospace Center Microwaves and Radar Institute Pol-InSAR Research Group 2 years in Orbit (since June 2007) irena.hajnsek@dlr.de

More information

Adaptive SAR Results with the LiMIT Testbed

Adaptive SAR Results with the LiMIT Testbed Adaptive SAR Results with the LiMIT Testbed Gerald Benitz Adaptive Sensor Array Processing Workshop 7 June 2005 999999-1 Outline LiMIT collection platform SAR sidelobe recovery Electronic Protection (EP)

More information

B ==================================== C

B ==================================== C Satellite Space Segment Communication Frequencies Frequency Band (GHz) Band Uplink Crosslink Downlink Bandwidth ==================================== C 5.9-6.4 3.7 4.2 0.5 X 7.9-8.4 7.25-7.7575 0.5 Ku 14-14.5

More information

L-BAND ICE-PENETRATING RADAR ON BOARD A SMALL SATELLITE

L-BAND ICE-PENETRATING RADAR ON BOARD A SMALL SATELLITE L-BAND ICE-PENETRATING RADAR ON BOARD A SMALL SATELLITE Anoop Parthasarathy Mtech. Digital Signal Processing Centre for Emerging Technologies Jain University ACKNOWLEDGEMENTS My sincere thanks to Dr. G.

More information

ALOS and PALSAR. Masanobu Shimada

ALOS and PALSAR. Masanobu Shimada ALOS and PALSAR Masanobu Shimada Earth Observation Research Center, National Space Development Agency of Japan, Harumi 1-8-10, Harumi island triton square office tower X 22, Chuo-Ku, Tokyo-To, Japan, 104-6023,

More information

BENEFITS FOR DEPLOYABLE QUADRIFILAR HELICAL ANTENNA MODULES FOR SMALL SATELLITES

BENEFITS FOR DEPLOYABLE QUADRIFILAR HELICAL ANTENNA MODULES FOR SMALL SATELLITES BENEFITS FOR DEPLOYABLE ANTENNA MODULES FOR SMALL SATELLITES 436.5 and 2400 MHz QHA s compared with Monopole Antennas on Small Satellites 1 2400 MHZ ISO-FLUX ANTENNA MOUNTED ON A 2U SMALL SATELLITE Axial

More information

Calibration Concepts of Multi-Channel Spaceborne SAR

Calibration Concepts of Multi-Channel Spaceborne SAR DLR.de Chart 1 > CEOS Workshop 2016 > Tobias Rommel > September 7 th, 2016 Calibration Concepts of Multi-Channel Spaceborne SAR T. Rommel, F. Queiroz de Almeida, S. Huber, M. Jäger, G. Krieger, C. Laux,

More information

DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM

DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM A. Patyuchenko, M. Younis, G. Krieger German Aerospace Center (DLR), Microwaves and Radar Institute, Muenchner Strasse

More information

Multi-function Phased Array Radars (MPAR)

Multi-function Phased Array Radars (MPAR) Multi-function Phased Array Radars (MPAR) Satyanarayana S, General Manager - RF systems, Mistral Solutions Pvt. Ltd., Bangalore, Karnataka, satyanarayana.s@mistralsolutions.com Abstract In this paper,

More information

7.7.2 TerraSAR-X-Add-on for Digital Elevation Measurements

7.7.2 TerraSAR-X-Add-on for Digital Elevation Measurements 7.7.2 TerraSAR-X-Add-on for Digital Elevation Measurements TDX launched on June 21, 2010 18 Overview of the TanDEM-X overall system architecture (image credit: DLR) Figure 10: Overview of the TanDEM-X

More information

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2)

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2) Remote Sensing Ch. 3 Microwaves (Part 1 of 2) 3.1 Introduction 3.2 Radar Basics 3.3 Viewing Geometry and Spatial Resolution 3.4 Radar Image Distortions 3.1 Introduction Microwave (1cm to 1m in wavelength)

More information

ACTIVE SENSORS RADAR

ACTIVE SENSORS RADAR ACTIVE SENSORS RADAR RADAR LiDAR: Light Detection And Ranging RADAR: RAdio Detection And Ranging SONAR: SOund Navigation And Ranging Used to image the ocean floor (produce bathymetic maps) and detect objects

More information

Remote Sensing for Epidemiological Studies

Remote Sensing for Epidemiological Studies Remote Sensing for Epidemiological Studies Joint ICTP-IAEA Conference on Predicting Disease Patterns According to Climate Changes The Abdus Salam International Centre for Theoretical Physics 12-14 May

More information

Active microwave systems (1) Satellite Altimetry

Active microwave systems (1) Satellite Altimetry Remote Sensing: John Wilkin Active microwave systems (1) Satellite Altimetry jwilkin@rutgers.edu IMCS Building Room 214C 732-932-6555 ext 251 Active microwave instruments Scatterometer (scattering from

More information

Concept Design of Space-Borne Radars for Tsunami Detection

Concept Design of Space-Borne Radars for Tsunami Detection Concept Design of Space-Borne Radars for Tsunami Detection DLR German Aerospace Agency +Microwaves and Radar Institute *Remote Sensing Institute +Michele Galletti +Gerhard Krieger +Nicolas Marquart +Thomas

More information

RECOMMENDATION ITU-R SA.1628

RECOMMENDATION ITU-R SA.1628 Rec. ITU-R SA.628 RECOMMENDATION ITU-R SA.628 Feasibility of sharing in the band 35.5-36 GHZ between the Earth exploration-satellite service (active) and space research service (active), and other services

More information

Chapter 6 Spaceborne SAR Antennas for Earth Science

Chapter 6 Spaceborne SAR Antennas for Earth Science Chapter 6 Spaceborne SAR Antennas for Earth Science Yunjin Kim and Rolando L. Jordan 6.1 Introduction Before the development of the first synthetic aperture radar (SAR) antenna flown in space, Jet Propulsion

More information

DESIGN AND DEVELOPMENT OF A DUAL OPERAT- ING MODE MICROSTRIP PATCH ANTENNA FOR UN- MANNED AERIAL VEHICLE SYNTHETIC APERTURE RADAR

DESIGN AND DEVELOPMENT OF A DUAL OPERAT- ING MODE MICROSTRIP PATCH ANTENNA FOR UN- MANNED AERIAL VEHICLE SYNTHETIC APERTURE RADAR Progress In Electromagnetics Research C, Vol. 27, 143 156, 2012 DESIGN AND DEVELOPMENT OF A DUAL OPERAT- ING MODE MICROSTRIP PATCH ANTENNA FOR UN- MANNED AERIAL VEHICLE SYNTHETIC APERTURE RADAR P. N. Tan,

More information

Small Satellites: The Execution and Launch of a GPS Radio Occultation Instrument in a 6U Nanosatellite

Small Satellites: The Execution and Launch of a GPS Radio Occultation Instrument in a 6U Nanosatellite Small Satellites: The Execution and Launch of a GPS Radio Occultation Instrument in a 6U Nanosatellite Dave Williamson Director, Strategic Programs Tyvak Tyvak: Satellite Solutions for Multiple Organizations

More information

Design and Performance Simulation of a Ku-Band Rotating Fan-Beam Scatterometer

Design and Performance Simulation of a Ku-Band Rotating Fan-Beam Scatterometer Design and Performance Simulation of a Ku-Band Rotating Fan-Beam Scatterometer Xiaolong DONG, Wenming LIN, Di ZHU, (CSSAR/CAS) PO Box 8701, Beijing, 100190, China Tel: +86-10-62582841, Fax: +86-10-62528127

More information

KOMPSAT Constellation. November 2012 Satrec Initiative

KOMPSAT Constellation. November 2012 Satrec Initiative KOMPSAT Constellation November 2012 Satrec Initiative KOMPSAT Constellation KOMPSAT National program Developed and operated by KARI (Korea Aerospace Research Institute) Dual use : Government & commercial

More information

Sentinel-1 System Overview

Sentinel-1 System Overview Sentinel-1 System Overview Dirk Geudtner, Rámon Torres, Paul Snoeij, Malcolm Davidson European Space Agency, ESTEC Global Monitoring for Environment and Security (GMES) EU-led program aiming at providing

More information

UAVSAR in Africa. Quality Assurance and Preliminary Results. Brian Hawkins, UAVSAR Team

UAVSAR in Africa. Quality Assurance and Preliminary Results. Brian Hawkins, UAVSAR Team Photo by Sassan Saatchi UAVSAR in Africa Quality Assurance and Preliminary Results Brian Hawkins, UAVSAR Team CEOS SAR Cal/Val Workshop 2016 Copyright 2016 California Institute of Technology. Government

More information

2009 CubeSat Developer s Workshop San Luis Obispo, CA

2009 CubeSat Developer s Workshop San Luis Obispo, CA Exploiting Link Dynamics in LEO-to-Ground Communications 2009 CubeSat Developer s Workshop San Luis Obispo, CA Michael Caffrey mpc@lanl.gov Joseph Palmer jmp@lanl.gov Los Alamos National Laboratory Paper

More information

Development of a Dual-Frequency, Dual-Polarization, Flexible and Deployable Antenna Array for Weather Applications

Development of a Dual-Frequency, Dual-Polarization, Flexible and Deployable Antenna Array for Weather Applications Development of a Dual-Frequency, Dual-Polarization, Flexible and Deployable Antenna Array for Weather Applications Dimitrios E. Anagnostou, Member, IEEE, Ramanan Bairavasubramanian, Student Member, IEEE,

More information

Primary POC: Prof. Hyochoong Bang Organization: Korea Advanced Institute of Science and Technology KAIST POC

Primary POC: Prof. Hyochoong Bang Organization: Korea Advanced Institute of Science and Technology KAIST POC Title: Demonstration of Optical Stellar Interferometry with Near Earth Objects (NEO) using Laser Range Finder by a Nano Satellite Constellation: A Cost effective approach. Primary POC: Prof. Hyochoong

More information

Baumanets student micro-satellite

Baumanets student micro-satellite Baumanets student micro-satellite Presentation at UNIVERSAT 2006 International Symposium June 28, 2006 Moscow, Russia Victoria Mayorova Director of Youth Space Center of Bauman Moscow State Technical University

More information

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry Remote Sensing: John Wilkin wilkin@marine.rutgers.edu IMCS Building Room 211C 732-932-6555 ext 251 Active microwave systems (1) Satellite Altimetry Active microwave instruments Scatterometer (scattering

More information

Potential interference from spaceborne active sensors into radionavigation-satellite service receivers in the MHz band

Potential interference from spaceborne active sensors into radionavigation-satellite service receivers in the MHz band Rec. ITU-R RS.1347 1 RECOMMENDATION ITU-R RS.1347* Rec. ITU-R RS.1347 FEASIBILITY OF SHARING BETWEEN RADIONAVIGATION-SATELLITE SERVICE RECEIVERS AND THE EARTH EXPLORATION-SATELLITE (ACTIVE) AND SPACE RESEARCH

More information

Relative Navigation, Timing & Data. Communications for CubeSat Clusters. Nestor Voronka, Tyrel Newton

Relative Navigation, Timing & Data. Communications for CubeSat Clusters. Nestor Voronka, Tyrel Newton Relative Navigation, Timing & Data Communications for CubeSat Clusters Nestor Voronka, Tyrel Newton Tethers Unlimited, Inc. 11711 N. Creek Pkwy S., Suite D113 Bothell, WA 98011 425-486-0100x678 voronka@tethers.com

More information

Radar observables: Target range Target angles (azimuth & elevation) Target size (radar cross section) Target speed (Doppler) Target features (imaging)

Radar observables: Target range Target angles (azimuth & elevation) Target size (radar cross section) Target speed (Doppler) Target features (imaging) Fundamentals of Radar Prof. N.V.S.N. Sarma Outline 1. Definition and Principles of radar 2. Radar Frequencies 3. Radar Types and Applications 4. Radar Operation 5. Radar modes What What is is Radar? Radar?

More information

Final Results of the Efficient TerraSAR-X Calibration Method

Final Results of the Efficient TerraSAR-X Calibration Method Final Results of the Efficient TerraSAR-X Calibration Method M. Schwerdt, B. Bräutigam, M. Bachmann, B. Döring, Dirk Schrank and Jaime Hueso Gonzalez Microwave and Radar Institute of the German Aerospace

More information

Microsatellite Constellation for Earth Observation in the Thermal Infrared Region

Microsatellite Constellation for Earth Observation in the Thermal Infrared Region Microsatellite Constellation for Earth Observation in the Thermal Infrared Region Federico Bacci di Capaci Nicola Melega, Alessandro Tambini, Valentino Fabbri, Davide Cinarelli Observation Index 1. Introduction

More information

Study towards cryogenic Phased Array Radar Systems

Study towards cryogenic Phased Array Radar Systems Study towards cryogenic Phased Array Radar Systems A. Froehlich, M. Tiesing and N. Ben Bekhti, F. Koenig, S. Putselyk, L. Naumann, F. Rahlf Fraunhofer Institute for High Frequency Physics and Radar Techniques

More information

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM Yunling Lou, Yunjin Kim, and Jakob van Zyl Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, MS 300-243 Pasadena,

More information

Satellite Engineering BEST Course. CubeSats at ULg

Satellite Engineering BEST Course. CubeSats at ULg Satellite Engineering BEST Course CubeSats at ULg Nanosatellite Projects at ULg Primary goal Hands-on satellite experience for students 2 Nanosatellite Projects at ULg Primary goal Hands-on satellite experience

More information

RECOMMENDATION ITU-R SA.1624 *

RECOMMENDATION ITU-R SA.1624 * Rec. ITU-R SA.1624 1 RECOMMENDATION ITU-R SA.1624 * Sharing between the Earth exploration-satellite (passive) and airborne altimeters in the aeronautical radionavigation service in the band 4 200-4 400

More information

GMES Sentinel-1 Transponder Development

GMES Sentinel-1 Transponder Development GMES Sentinel-1 Transponder Development Paul Snoeij Evert Attema Björn Rommen Nicolas Floury Malcolm Davidson ESA/ESTEC, European Space Agency, Noordwijk, The Netherlands Outline 1. GMES Sentinel-1 overview

More information

Large, Deployable S-Band Antenna for a 6U Cubesat

Large, Deployable S-Band Antenna for a 6U Cubesat Physical Sciences Inc. VG15-073 Large, Deployable S-Band Antenna for a 6U Cubesat Peter A. Warren, John W. Steinbeck, Robert J. Minelli Physical Sciences, Inc. Carl Mueller Vencore, Inc. 20 New England

More information

INTRODUCTION. Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems

INTRODUCTION. Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems Tracking Radar H.P INTRODUCTION Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems 2 RADAR FUNCTIONS NORMAL RADAR FUNCTIONS 1. Range (from pulse

More information

Characteristics of and protection criteria for systems operating in the mobile service in the frequency range GHz

Characteristics of and protection criteria for systems operating in the mobile service in the frequency range GHz Recommendation ITU-R M.2068-0 (02/2015) Characteristics of and protection criteria for systems operating in the mobile service in the frequency range 14.5-15.35 GHz M Series Mobile, radiodetermination,

More information

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads John Buonocore 12 th Annual Developer s Workshop 22 April 2015 Cal Poly San Luis Obispo High Speed Data Downlink The need for wider bandwidth

More information

Overview Research and Projects

Overview Research and Projects Overview Research and Projects Alberto Moreira Microwaves and Radar Institute (HR) Microwaves and Radar Institute Research Profile: passive and active microwave systems Sensor concept, design and simulation

More information

The Current Status and Brief Results of Engineering Model for PALSAR-2 onboard ALOS-2 and Science Project

The Current Status and Brief Results of Engineering Model for PALSAR-2 onboard ALOS-2 and Science Project The Current Status and Brief Results of Engineering Model for PALSAR-2 onboard ALOS-2 and Science Project + The 16 th KC meeting Japan Aerospace Exploration Agency Masanobu Shimada, Yukihiro KANKAKU The

More information

The Delay-Doppler Altimeter

The Delay-Doppler Altimeter Briefing for the Coastal Altimetry Workshop The Delay-Doppler Altimeter R. K. Raney Johns Hopkins University Applied Physics Laboratory 05-07 February 2008 1 What is a Delay-Doppler altimeter? Precision

More information

A Stepped Frequency CW SAR for Lightweight UAV Operation

A Stepped Frequency CW SAR for Lightweight UAV Operation UNCLASSIFIED/UNLIMITED A Stepped Frequency CW SAR for Lightweight UAV Operation ABSTRACT Dr Keith Morrison Department of Aerospace, Power and Sensors University of Cranfield, Shrivenham Swindon, SN6 8LA

More information

DLR contribution and perspectives for JECAM

DLR contribution and perspectives for JECAM DLR contribution and perspectives for JECAM Dr. Helmut Staudenrausch 1, Dr. Achim Roth 2 1 DLR Space Administration, Earth Observations helmut.staudenrausch@dlr.de 2 DLR, German Remote Sensing Data Center

More information

A CubeSat-Based Optical Communication Network for Low Earth Orbit

A CubeSat-Based Optical Communication Network for Low Earth Orbit A CubeSat-Based Optical Communication Network for Low Earth Orbit Richard Welle, Alexander Utter, Todd Rose, Jerry Fuller, Kristin Gates, Benjamin Oakes, and Siegfried Janson The Aerospace Corporation

More information

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Time: Max. Marks: Q1. What is remote Sensing? Explain the basic components of a Remote Sensing system. Q2. What is

More information

The Nemo Bus: A Third Generation Nanosatellite Bus for Earth Monitoring and Observation

The Nemo Bus: A Third Generation Nanosatellite Bus for Earth Monitoring and Observation The Nemo Bus: A Third Generation Nanosatellite Bus for Earth Monitoring and Observation FREDDY M. PRANAJAYA Manager, Advanced Systems Group S P A C E F L I G H T L A B O R A T O R Y University of Toronto

More information

Detection of traffic congestion in airborne SAR imagery

Detection of traffic congestion in airborne SAR imagery Detection of traffic congestion in airborne SAR imagery Gintautas Palubinskas and Hartmut Runge German Aerospace Center DLR Remote Sensing Technology Institute Oberpfaffenhofen, 82234 Wessling, Germany

More information

Chapter 41 Deep Space Station 13: Venus

Chapter 41 Deep Space Station 13: Venus Chapter 41 Deep Space Station 13: Venus The Venus site began operation in Goldstone, California, in 1962 as the Deep Space Network (DSN) research and development (R&D) station and is named for its first

More information

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7670 05921 Email: mdisney@ucl.geog.ac.uk www.geog.ucl.ac.uk/~mdisney

More information

TerraSAR-X & TanDEM-X

TerraSAR-X & TanDEM-X TerraSAR-X & TanDEM-X David Miller DLR - Raumfahrt-Industrietage in Friedrichshafen 13./14. Mai 2009 Missions Overview TerraSAR-X & TanDEM-X Satellites with X-Band (9.65GHz) Synthetic Aperture Radar using

More information

ICO S-BAND ANTENNAS TEST PROGRAM

ICO S-BAND ANTENNAS TEST PROGRAM ICO S-BAND ANTENNAS TEST PROGRAM Peter A. Ilott, Ph.D.; Robert Hladek; Charles Liu, Ph.D.; Bradford Arnold Hughes Space & Communications, El Segundo, CA Abstract The four antenna subsystems on each of

More information

Comparison of Two Detection Combination Algorithms for Phased Array Radars

Comparison of Two Detection Combination Algorithms for Phased Array Radars Comparison of Two Detection Combination Algorithms for Phased Array Radars Zhen Ding and Peter Moo Wide Area Surveillance Radar Group Radar Sensing and Exploitation Section Defence R&D Canada Ottawa, Canada

More information

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014 Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014 Contents Introduction GMES Copernicus Six thematic areas Infrastructure Space data An introduction to Remote Sensing In-situ data Applications

More information

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry Remote Sensing: John Wilkin wilkin@marine.rutgers.edu IMCS Building Room 211C 732-932-6555 ext 251 Active microwave systems (1) Satellite Altimetry Active microwave instruments Scatterometer (scattering

More information

Naval Surveillance Multi-beam Active Phased Array Radar (MAARS)

Naval Surveillance Multi-beam Active Phased Array Radar (MAARS) Naval Surveillance Multi-beam Active Phased Array Radar (MAARS) MAARS MAARS purpose: MAARS is multimode C-band acquisition radar for surveillance and weapon assignment. It perform automatic detection,

More information

RADIOMETRIC TRACKING. Space Navigation

RADIOMETRIC TRACKING. Space Navigation RADIOMETRIC TRACKING Space Navigation Space Navigation Elements SC orbit determination Knowledge and prediction of SC position & velocity SC flight path control Firing the attitude control thrusters to

More information

Microwave Remote Sensing

Microwave Remote Sensing Provide copy on a CD of the UCAR multi-media tutorial to all in class. Assign Ch-7 and Ch-9 (for two weeks) as reading material for this class. HW#4 (Due in two weeks) Problems 1,2,3 and 4 (Chapter 7)

More information

Interferometric Cartwheel 1

Interferometric Cartwheel 1 The Interferometric CartWheel A wheel of passive radar microsatellites for upgrading existing SAR projects D. Massonnet, P. Ultré-Guérard (DPI/EOT) E. Thouvenot (DTS/AE/INS/IR) Interferometric Cartwheel

More information

Multifunction Phased Array

Multifunction Phased Array Multifunction Phased Array Radar (MPAR) John Cho 18 November 2014 Sponsors: Michael Emanuel, FAA Advanced Concepts and Technology Development (ANG-C63) Kurt Hondl, NOAA National Severe Storms Laboratory

More information

Ka by C-COM Satellite Systems Inc.

Ka by C-COM Satellite Systems Inc. Ka-66 The inetvu Ka-66 Drive-Away Antenna is a 66 cm auto-acquire satellite antenna system which can be mounted on the roof of a vehicle for direct broadband access over any configured satellite. The system

More information