Typical Application VCC IP+ IP+ V OUT VIOUT ACS714 FILTER IP IP GND

Size: px
Start display at page:

Download "Typical Application VCC IP+ IP+ V OUT VIOUT ACS714 FILTER IP IP GND"

Transcription

1 Features and Benefits Low-noise analog signal path Device bandwidth is set via the pin 5 μs output rise time in response to step input current khz bandwidth Total output error.5% typical, at T A = 5 C Small footprint, low-profile SOIC package. mω internal conductor resistance. kvrms minimum isolation voltage from pins - to pins 5-5. V, single supply operation to 5 mv/a output sensitivity Output voltage proportional to AC or DC currents Factory-trimmed for accuracy Extremely stable output offset voltage Nearly zero magnetic hysteresis Ratiometric output from supply voltage Operating temperature range, C to 5 C Package: pin SOIC (suffix LC) Approximate Scale : Description The Allegro ACS7 provides economical and precise solutions for AC or DC current sensing in automotive systems. The device package allows for easy implementation by the customer. Typical applications include motor control, load detection and management, switched-mode power supplies, and overcurrent fault protection. The device consists of a precise, low-offset, linear Hall sensor circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which is sensed by the integrated Hall IC and converted into a proportional voltage. Device accuracy is optimized through the close proximity of the magnetic signal to the Hall transducer. A precise, proportional voltage is provided by the low-offset, chopper-stabilized BiCMOS Hall IC, which is programmed for accuracy after packaging. The output of the device has a positive slope (>V IOUT(Q) ) when an increasing current flows through the primary copper conduction path (from pins and, to pins 3 and ), which is the path used for current sensing. The internal resistance of this conductive path is. mω typical, providing low power loss. The thickness of the copper conductor allows survival Continued on the next page Typical Application I P 3 ACS7 7 5 V OUT C F nf C BYP. μf Application. The ACS7 outputs an analog signal, V OUT. that varies linearly with the uni- or bi-directional AC or DC primary sensed current, I P, within the range specified. C F is recommended for noise management, with values that depend on the application. ACS7-DS, Rev. 3

2 Description (continued) of the device at up to 5 overcurrent conditions. The terminals of the conductive path are electrically isolated from the sensor leads (pins 5 through ). This allows the ACS7 current sensor to be used in applications requiring electrical isolation without the use of opto-isolators or other costly isolation techniques. The ACS7 is provided in a small, surface mount SOIC package. The leadframe is plated with % matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the device is Pb-free, except for flip-chip high-temperature Pb-based solder balls, currently exempt from RoHS. The device is fully calibrated prior to shipment from the factory. Selection Guide Part Number Optimized Range, I P (A) Sensitivity, Sens (Typ) (mv/a) T A ( C) Packing* ACS7ELCTR-5B-T ±5 5 ACS7ELCTR-A-T ± ACS7ELCTR-3A-T ±3 ACS7LLCTR-5B-T ±5 5 ACS7LLCTR-A-T ± ACS7LLCTR-3A-T ±3 *Contact Allegro for additional packing options. to 5 to 5 Tape and reel, 3 pieces/reel Absolute Maximum Ratings Characteristic Symbol Notes Rating Units Supply Voltage V CC V Reverse Supply Voltage V RCC. V Output Voltage V IOUT V Reverse Output Voltage V RIOUT. V Reinforced Isolation Voltage V ISO Pins - and 5-; Hz, minute, T A =5 C V Rated Input Voltage V working Voltage applied to leadframe (Ip+ pins) VAC Max Output Current Source I IOUT(Source) 3 ma Output Current Sink I IOUT(Sink) ma Overcurrent Transient Tolerance I P pulse, ms A Range E to 5 ºC Nominal Operating Ambient Temperature T A Range L to 5 ºC Maximum Junction Temperature T J (max) 5 ºC Storage Temperature T stg 5 to 7 ºC TÜV America Certificate Number: UV 5 5 Parameter Fire and Electric Shock Specification CAN/CSA-C. No UL 95-:3 EN 95-: 5 Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5) 53-5

3 Functional Block Diagram (Pin ) Hall Current Drive (Pin ) Sense Temperature Coefficient Trim (Pin ) IP (Pin 3) IP (Pin ) Dynamic Offset Cancellation Sense Trim Signal Recovery Ampere Offset Adjust R F(INT) (Pin 7) (Pin 5) (Pin ) Pin-out Diagram Terminal List Table Number Name Description and Terminals for current being sensed; fused internally 3 and Terminals for current being sensed; fused internally 5 Signal ground terminal Terminal for external capacitor that sets bandwidth 7 Analog output signal Device power supply terminal 5 Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5)

4 COMMON OPERATING CHARACTERISTICS over full range of T A, C F = nf, and, unless otherwise specified Characteristic Symbol Test Conditions Min. Typ. Max. Units ELECTRICAL CHARACTERISTICS Supply Voltage V CC V Supply Current I CC V CC = 5. V, output open 3 ma Output Capacitance Load C LOAD to nf Output Resistive Load R LOAD to.7 kω Primary Conductor Resistance R PRIMARY T A = 5 C. mω Rise Time t r I P = I P (max), T A = 5 C, C OUT = open 5 μs Frequency Bandwidth f 3 db, T A = 5 C; I P is A peak-to-peak khz Nonlinearity E LIN Over full range of I P.5 % Symmetry E SYM Over full range of I P 9 % Zero Current Output Voltage V IOUT(Q) Bidirectional; I P = A, T A = 5 C V CC.5 V Output reaches 9% of steady-state level, T Power-On Time t J = 5 C, A present PO on leadframe 35 μs Magnetic Coupling G/A Internal Filter Resistance 3 R F(INT).7 kω Device may be operated at higher primary current levels, I P, and ambient, T A, and internal leadframe temperatures, T A, provided that the Maximum Junction Temperature, T J (max), is not exceeded. G =. mt. 3R F(INT) forms an RC circuit via the pin. COMMON THERMAL CHARACTERISTICS Min. Typ. Max. Units E range 5 C Operating Internal Leadframe Temperature T A L range 5 C Value Units Junction-to-Lead Thermal Resistance R θjl Mounted on the Allegro ASEK 7 evaluation board 5 C/W Mounted on the Allegro 5-3 evaluation board, includes the power consumed by the board Junction-to-Ambient Thermal Resistance R θja 3 C/W Additional thermal information is available on the Allegro website. The Allegro evaluation board has 5 mm of oz. copper on each side, connected to pins and, and to pins 3 and, with thermal vias connecting the layers. Performance values include the power consumed by the PCB. Further details on the board are available from the Frequently Asked Questions document on our website. Further information about board design and thermal performance also can be found in the Applications Information section of this datasheet. 5 Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5) 53-5

5 x5b PERFORMANCE CHARACTERISTICS over Range E: T A = C to 5 C, C F = nf, and, unless otherwise specified Characteristic Symbol Test Conditions Min. Typ. Max. Units Optimized Accuracy Range I P 5 5 A Sensitivity Sens Over full range of I P, T A = 5 C 5 9 mv/a Noise V NOISE(PP) Peak-to-peak, T A = 5 C, 5 mv/a programmed Sensitivity, C F = 7 nf, C OUT = open, khz bandwidth mv T A = C to 5 C. mv/ C Zero Current Output Slope I OUT(Q) T A = 5 C to 5 C. mv/ C Sensitivity Slope Sens T A = C to 5 C.5 mv/a/ C T A = 5 C to 5 C. mv/a/ C Electrical Output Voltage V OE I P = A mv Total Output Error E TOT I P =±5 A, T A = 5 C ±.5 % Device may be operated at higher primary current levels, I P, and ambient temperatures, T A, provided that the Maximum Junction Temperature, T J(max), is not exceeded. Percentage of I P, with I P = 5 A. Output filtered. x5b PERFORMANCE CHARACTERISTICS over Range L: T A = C to 5 C, C F = nf, and, unless otherwise specified Characteristic Symbol Test Conditions Min. Typ. Max. Units Optimized Accuracy Range I P 5 5 A Sensitivity Sens Over full range of I P, T A = 5 C 5 mv/a Noise V NOISE(PP) Peak-to-peak, T A = 5 C, 5 mv/a programmed Sensitivity, C F = 7 nf, C OUT = open, khz bandwidth mv T A = C to 5 C. mv/ C Zero Current Output Slope I OUT(Q) T A = 5 C to 5 C. mv/ C T A = C to 5 C.5 mv/a/ C Sensitivity Slope Sens T A = 5 C to 5 C. mv/a/ C Electrical Output Voltage V OE I P = A mv I Total Output Error P =±5 A, T A = 5 C ±.5 % E TOT I P =±5 A, T A = C to 5 C 7 7 % Device may be operated at higher primary current levels, I P, and ambient temperatures, T A, provided that the Maximum Junction Temperature, T J(max), is not exceeded. Percentage of I P, with I P = 5 A. Output filtered. 5 Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5)

6 xa PERFORMANCE CHARACTERISTICS over Range E: T A = C to 5 C, C F = nf, and, unless otherwise specified Characteristic Symbol Test Conditions Min. Typ. Max. Units Optimized Accuracy Range I P A Sensitivity Sens Over full range of I P, T A = 5 C 9 mv/a Noise V NOISE(PP) Peak-to-peak, T A = 5 C, mv/a programmed Sensitivity, C F = 7 nf, C OUT = open, khz bandwidth mv T A = C to 5 C.3 mv/ C Zero Current Output Slope ΔI OUT(Q) T A = 5 C to 5 C.7 mv/ C Sensitivity Slope ΔSens T A = C to 5 C.7 mv/a/ C T A = 5 C to 5 C. mv/a/ C Electrical Output Voltage V OE I P = A 3 3 mv Total Output Error E TOT I P = ± A, T A = 5 C ±.5 % Device may be operated at higher primary current levels, I P, and ambient temperatures, T A, provided that the Maximum Junction Temperature, T J (max), is not exceeded. Percentage of I P, with I P = A. Output filtered. xa PERFORMANCE CHARACTERISTICS over Range L: T A = C to 5 C, C F = nf, and, unless otherwise specified Characteristic Symbol Test Conditions Min. Typ. Max. Units Optimized Accuracy Range I P A Over full range of I P, T A = 5 C mv/a Sensitivity Sens Over full range of I P, T A = C to 5 C 9 mv/a Peak-to-peak, T Noise V A = 5 C, mv/a programmed Sensitivity, NOISE(PP) mv C F = 7 nf, C OUT = out, khz bandwidth T A = C to 5 C.3 mv/ C Zero Current Output Slope ΔI OUT(Q) T A = 5 C to 5 C.7 mv/ C T A = C to 5 C.7 mv/a/ C Sensitivity Slope ΔSens T A = 5 C to 5 C. mv/a/ C Electrical Output Voltage V OE I P = A mv I Total Output Error P = ± A, T A = 5 C ±.5 % E TOT I P = ± A, T A = C to 5 C 5 5 % Device may be operated at higher primary current levels, I P, and ambient temperatures, T A, provided that the Maximum Junction Temperature, T J (max), is not exceeded. Percentage of I P, with I P = A. Output filtered. 5 Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5) 53-5

7 x3a PERFORMANCE CHARACTERISTICS over Range E: T A = C to 5 C, C F = nf, and, unless otherwise specified Characteristic Symbol Test Conditions Min. Typ. Max. Units Optimized Accuracy Range I P 3 3 A Sensitivity Sens Over full range of I P, T A = 5 C mv/a Noise V NOISE(PP) Peak-to-peak, T A = 5 C, mv/a programmed Sensitivity, C F = 7 nf, C OUT = open, khz bandwidth 7 mv T A = C to 5 C.35 mv/ C Zero Current Output Slope ΔI OUT(Q) T A = 5 C to 5 C. mv/ C Sensitivity Slope ΔSens T A = C to 5 C.7 mv/a/ C T A = 5 C to 5 C. mv/a/ C Electrical Output Voltage V OE I P = A 3 3 mv Total Output Error E TOT I P = ±3 A, T A = 5 C ±.5 % Device may be operated at higher primary current levels, I P, and ambient temperatures, T A, provided that the Maximum Junction Temperature, T J (max), is not exceeded. Percentage of I P, with I P = 3 A. Output filtered. x3a PERFORMANCE CHARACTERISTICS over Range L: T A = C to 5 C, C F = nf, and, unless otherwise specified Characteristic Symbol Test Conditions Min. Typ. Max. Units Optimized Accuracy Range I P 3 3 A Over full range of I P, T A = 5 C mv/a Sensitivity Sens Over full range of I P, T A = C to 5 C 3 9 mv/a Peak-to-peak, T Noise V A = 5 C, mv/a programmed Sensitivity, NOISE(PP) 7 mv C F = 7 nf, C OUT = open, khz bandwidth T A = C to 5 C.35 mv/ C Zero Current Output Slope ΔI OUT(Q) T A = 5 C to 5 C. mv/ C T A = C to 5 C.7 mv/a/ C Sensitivity Slope ΔSens T A = 5 C to 5 C. mv/a/ C Electrical Output Voltage V OE I P = A mv I Total Output Error P = ±3 A E, T A = 5 C ±.5 % TOT I P = ±3 A, T A = C to 5 C 5 5 % Device may be operated at higher primary current levels, I P, and ambient temperatures, T A, provided that the Maximum Junction Temperature, T J (max), is not exceeded. Percentage of I P, with I P = 3 A. Output filtered. 5 Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5)

8 Mean I CC (ma) I OM (ma) Mean Supply Current versus Ambient Temperature ; I P = A, After excursion to A Mean Total Output Error versus Ambient Temperature E TOT (%) V IOUT (V) Magnetic Offset versus Ambient Temperature Output Voltage versus Sensed Current I P (A) Characteristic Performance I P = 5 A, unless otherwise specified Sens (mv/a) Sens (mv/a) I CC (ma) E LIN (%) Supply Current versus Supply Voltage V CC (V) Nonlinearity versus Ambient Temperature Sensitivity versus Sensed Current Ip (A) Sensitivity versus Ambient Temperature A Output Voltage versus Ambient Temperature A Output Voltage Current versus Ambient Temperature 55.5 V IOUT(Q) (mv) I P = A I OUT(Q) (A)..5 I P = A Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5) 53-5

9 Mean Supply Current versus Ambient Temperature 9.7 Characteristic Performance I P = A, unless otherwise specified. Supply Current versus Supply Voltage 9.. Mean I CC (ma) I CC (ma) I OM (ma) E TOT (%) V IOUT (V) V IOUT(Q) (mv) Magnetic Offset versus Ambient Temperature ; I P = A, After excursion to A Mean Total Output Error versus Ambient Temperature Output Voltage versus Sensed Current I P (A) A Output Voltage versus Ambient Temperature I P = A E LIN (%) Sens (mv/a) Sens (mv/a) V CC (V) Nonlinearity versus Ambient Temperature Sensitivity versus Ambient Temperature Sensitivity versus Sensed Current Ip (A) A Output Voltage Current versus Ambient Temperature I OUT(Q) (A) I P = A Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5)

10 Mean Supply Current versus Ambient Temperature 9. Characteristic Performance I P = 3 A, unless otherwise specified. Supply Current versus Supply Voltage 9.5. Mean I CC (ma) I CC (ma) I OM (ma) ; I P = A, After excursion to A Mean Total Output Error versus Ambient Temperature V IOUT(Q) (mv) E TOT (%) V IOUT (V) Magnetic Offset versus Ambient Temperature Output Voltage versus Sensed Current I P (A) I P = A Sens (mv/a) Sens (mv/a) I OUT(Q) (A) E LIN (%) V CC (V) Nonlinearity versus Ambient Temperature Sensitivity versus Ambient Temperature Sensitivity versus Sensed Current Ip (A) A Output Voltage versus Ambient Temperature A Output Voltage Current versus Ambient Temperature I P = A Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5) 53-5

11 Definitions of Accuracy Characteristics Sensitivity (Sens). The change in sensor output in response to a A change through the primary conductor. The sensitivity is the product of the magnetic circuit sensitivity (G/ A) and the linear IC amplifier gain (mv/g). The linear IC amplifier gain is programmed at the factory to optimize the sensitivity (mv/a) for the full-scale current of the device. Noise (V NOISE ). The product of the linear IC amplifier gain (mv/g) and the noise floor for the Allegro Hall effect linear IC ( G). The noise floor is derived from the thermal and shot noise observed in Hall elements. Dividing the noise (mv) by the sensitivity (mv/a) provides the smallest current that the device is able to resolve. Linearity (E LIN ). The degree to which the voltage output from the sensor varies in direct proportion to the primary current through its full-scale amplitude. Nonlinearity in the output can be attributed to the saturation of the flux concentrator approaching the full-scale current. The following equation is used to derive the linearity: Δ gain % sat ( V { [ IOUT_full-scale amperes V IOUT(Q) ) (V IOUT_half-scale amperes V IOUT(Q) ) where V IOUT_full-scale amperes = the output voltage (V) when the sensed current approximates full-scale ±I P. Symmetry (E SYM ). The degree to which the absolute voltage output from the sensor varies in proportion to either a positive or negative full-scale primary current. The following formula is used to derive symmetry: V IOUT_+ full-scale amperes V IOUT(Q) V IOUT(Q) V IOUT_ full-scale amperes Quiescent output voltage (V IOUT(Q) ). The output of the sensor when the primary current is zero. For a unipolar supply voltage, it nominally remains at V CC. Thus, translates into V IOUT(Q) =.5 V. Variation in V IOUT(Q) can be attributed to the resolution of the Allegro linear IC quiescent voltage trim and thermal drift. Electrical offset voltage (V OE ). The deviation of the device output from its ideal quiescent value of V CC / due to nonmagnetic causes. To convert this voltage to amperes, divide by the device sensitivity, Sens. Accuracy (E TOT ). The accuracy represents the maximum deviation of the actual output from its ideal value. This is also known as the total ouput error. The accuracy is illustrated graphically in the output voltage versus current chart at right. { [ Accuracy is divided into four areas: A at 5 C. Accuracy of sensing zero current flow at 5 C, without the effects of temperature. A over Δ temperature. Accuracy of sensing zero current flow including temperature effects. Full-scale current at 5 C. Accuracy of sensing the full-scale current at 5 C, without the effects of temperature. Full-scale current over Δ temperature. Accuracy of sensing fullscale current flow including temperature effects. Ratiometry. The ratiometric feature means that its A output, V IOUT(Q), (nominally equal to V CC /) and sensitivity, Sens, are proportional to its supply voltage, V CC. The following formula is used to derive the ratiometric change in A output voltage, V IOUT(Q)RAT (%). V IOUT(Q) / V IOUT(Q)5V V CC / 5 V The ratiometric change in sensitivity, Sens RAT (%), is defined as: I P (A) I P(min) Sens / Sens 5V V CC / 5 V Output Voltage versus Sensed Current Accuracy at A and at Full-Scale Current Accuracy Oe v r Temp erature Accuracy 5 C Only Accuracy 5 C Only Accuracy Oe v r Temp erature Increasing V IOUT (V) A Average V IOUT Accuracy 5 C Only Full Scale I P(max) Accuracy Oe v r Temp erature +I P (A) Decreasing V IOUT (V) 5 Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5) 53-5

12 Definitions of Dynamic Response Characteristics Power-On Time (t PO ). When the supply is ramped to its operating voltage, the device requires a finite time to power its internal components before responding to an input magnetic field. Power-On Time, t PO, is defined as the time it takes for the output voltage to settle within ±% of its steady state value under an applied magnetic field, after the power supply has reached its minimum specified operating voltage, V CC (min), as shown in the chart at right. Rise time (t r ). The time interval between a) when the sensor reaches % of its full scale value, and b) when it reaches 9% of its full scale value. The rise time to a step response is used to derive the bandwidth of the current sensor, in which ƒ( 3 db) =.35 / t r. Both t r and t RESPONSE are detrimentally affected by eddy current losses observed in the conductive IC ground plane. I (%) 9 Primary Current Transducer Output Rise Time, t r t t PO (μs) Power on Time versus External Filter Capacitance I P = 5 A I P = A 3 5 C F (nf) Noise vs. Filter Cap Noise versus External Filter Capacitance Step Response T A =5 C Output (mv) 5 A Excitation Signal Noise (p-p) (ma) t r (μs).. C F (nf) Rise Time versus External Filter Capacitance Expanded in chart at right } 3 5 C F (nf) C F (nf) t r (μs) t r (μs) Rise Time versus External Filter Capacitance C F (nf) 5 Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5) 53-5

13 Chopper Stabilization Technique Chopper Stabilization is an innovative circuit technique that is used to minimize the offset voltage of a Hall element and an associated on-chip amplifier. Allegro patented a Chopper Stabilization technique that nearly eliminates Hall IC output drift induced by temperature or package stress effects. This offset reduction technique is based on a signal modulation-demodulation process. Modulation is used to separate the undesired dc offset signal from the magnetically induced signal in the frequency domain. Then, using a low-pass filter, the modulated dc offset is suppressed while the magnetically induced signal passes through the filter. As a result of this chopper stabilization approach, the output voltage from the Hall IC is desensitized to the effects of temperature and mechanical stress. This technique produces devices that have an extremely stable Electrical Offset Voltage, are immune to thermal stress, and have precise recoverability after temperature cycling. This technique is made possible through the use of a BiCMOS process that allows the use of low-offset and low-noise amplifiers in combination with high-density logic integration and sample and hold circuits. Hall Element Regulator Clock/Logic Amp Sample and Hold Concept of Chopper Stabilization Technique Low-Pass Filter Typical Applications V PEAK I P C BYP. μf 7 ACS7 3 5 I P R F kω 7 ACS7 3 5 C OUT. μf V OUT R MΩ C F nf R 33 kω Application. Peak Detecting Circuit C BYP. μf R F kω V OUT + R kω C F nf R3 33 kω C. μf R kω U LT7 D NW C D N9 C. μf V RESET Q N7 A-to-D Converter Application. Rectified Output. 3.3 V scaling and rectification application for A-to-D converters. Replaces current transformer solutions with simpler ACS circuit. C is a function of the load resistance and filtering desired. R can be omitted if the full range is desired. I P C BYP. μf ACS7 3 5 I P C BYP. μf R kω R + kω LM ACS7 3 5 R F kω C F. μf R 33 kω R kω V OUT C F nf R3 3.3 kω U LMV735 D N9 V OUT C pf Application 3. This configuration increases gain to mv/a (tested using the ACS7ELC-5A). R PU kω Application 5. A Overcurrent Fault Latch. Fault threshold set by R and R. This circuit latches an overcurrent fault and holds it until the 5 V rail is powered down. Fault 5 Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5)

14 Improving Sensing System Accuracy Using the Pin In low-frequency sensing applications, it is often advantageous to add a simple RC filter to the output of the sensor. Such a lowpass filter improves the signal-to-noise ratio, and therefore the resolution, of the sensor output signal. However, the addition of an RC filter to the output of a sensor IC can result in undesirable sensor output attenuation even for dc signals. Signal attenuation, V ATT, is a result of the resistive divider effect between the resistance of the external filter, R F (see Application ), and the input impedance and resistance of the customer interface circuit, R INTFC. The transfer function of this resistive divider is given by: R INTFC V ATT = V IOUT. R F + R INTFC Even if R F and R INTFC are designed to match, the two individual resistance values will most likely drift by different amounts over temperature. Therefore, signal attenuation will vary as a function of temperature. Note that, in many cases, the input impedance, R INTFC, of a typical analog-to-digital converter (ADC) can be as low as kω. The ACS7 contains an internal resistor, a pin connection to the printed circuit board, and an internal buffer amplifier. With this circuit architecture, users can implement a simple RC filter via the addition of a capacitor, C F (see Application 7) from the pin to ground. The buffer amplifier inside of the ACS7 (located after the internal resistor and pin connection) eliminates the attenuation caused by the resistive divider effect described in the equation for V ATT. Therefore, the ACS7 device is ideal for use in high-accuracy applications that cannot afford the signal attenuation associated with the use of an external RC low-pass filter. Pin 3 Pin Pin Application. When a low pass filter is constructed externally to a standard Hall effect device, a resistive divider may exist between the filter resistor, R F, and the resistance of the customer interface circuit, R INTFC. This resistive divider will cause excessive attenuation, as given by the transfer function for V ATT.. F Dynamic Offset Cancellation Voltage Regulator Amp To all subcircuits Filter Allegro ACS7 Out Pin 7 N.C. Pin R F Resistive Divider Input Application Interface Circuit Low Pass Filter Gain Temperature Coefficient Offset C F nf R INTFC Trim Control Pin Pin Pin 5 Pin Application 7. Using the pin provided on the ACS7 eliminates the attenuation effects of the resistor divider between R F and R INTFC, shown in Application. Pin Pin Pin 3 Pin Hall Current Drive Dynamic Offset Cancellation Sense Temperature Coefficient Trim Sense Trim Signal Recovery Ampere Offset Adjust Buffer Amplifier and Resistor Allegro ACS7 Pin 7 Input Application Interface Circuit R INTFC Pin 5 Pin C F nf 5 Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5) 53-5

15 Package LC, -pin SOIC.9 ± A 3.9 ±.. ±.. REF X. C Branded Face SEATING PLANE.75 MAX BSC C.5 BSC SEATING PLANE GAUGE PLANE C PCB Layout Reference View NNNNNNN PPT-AAA LLLLL B Standard Branding Reference View A For Reference Only; not for tooling use (reference MS-AA) Dimensions in millimeters Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown Terminal # mark area B Branding scale and appearance at supplier discretion C Reference land pattern layout (reference IPC735 D SOIC7PX75-M); all pads a minimum of. mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances N = Device part number P = Package Designator T = Device temperature range A = Amperage L = Lot number Belly Brand = Country of Origin Copyright -9, The products described herein are manufactured under one or more of the following U.S. patents: 5,9,37; 5,,39;,7,359; 7,75,7; 7,,7; 7,5,53; 7,5,; or other patents pending. reserves the right to make, from time to time, such de par tures from the detail spec i fi ca tions as may be required to permit improvements in the per for mance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current. Allegro s products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system. The in for ma tion in clud ed herein is believed to be ac cu rate and reliable. How ev er, assumes no responsibility for its use; nor for any in fringe ment of patents or other rights of third parties which may result from its use. For the latest version of this document, visit our website: 5 Northeast Cutoff, Box 53 Worcester, Massachusetts 5-3 (5)

Typical Application +5 V 8 VCC 7 VIOUT 1 IP+ 2 IP+ V OUT ACS IP FILTER 4 IP 5 GND C F

Typical Application +5 V 8 VCC 7 VIOUT 1 IP+ 2 IP+ V OUT ACS IP FILTER 4 IP 5 GND C F with. kvrms Voltage Isolation and a Low-Resistance Current Conductor Features and Benefits Low-noise analog signal path Device bandwidth is set via the pin 5 μs output rise time in response to step input

More information

Typical Application +5 V VCC 2 V OUT ACS712 FILTER 4 IP GND. C F 1 nf

Typical Application +5 V VCC 2 V OUT ACS712 FILTER 4 IP GND. C F 1 nf Features and Benefits Low-noise analog signal path Device bandwidth is set via the new pin 5 μs output rise time in response to step input current khz bandwidth Total output error.5% at T A = 5 C Small

More information

Not for New Design. For existing customer transition, and for new customers or new applications,

Not for New Design. For existing customer transition, and for new customers or new applications, Not for New Design These parts are in production but have been determined to be NOT FOR NEW DESIGN. This classification indicates that sale of this device is currently restricted to existing customer applications.

More information

Not for New Design. For existing customer transition, and for new customers or new applications,

Not for New Design. For existing customer transition, and for new customers or new applications, Not for New Design These parts are in production but have been determined to be NOT FOR NEW DESIGN. This classification indicates that sale of this device is currently restricted to existing customer applications.

More information

Typical Application 8 VCC 7 VIOUT 1 IP+ 2 IP+ V OUT IP 5 ACS IP FILTER 4. C F 1 nf GND

Typical Application 8 VCC 7 VIOUT 1 IP+ 2 IP+ V OUT IP 5 ACS IP FILTER 4. C F 1 nf GND Fully Integrated, Hall Effect-Based Linear Current Sensor with Features and Benefits Low-noise analog signal path Device bandwidth is set via the new pin 5 μs output rise time in response to step input

More information

Not for New Design. For existing customer transition, and for new customers or new applications,

Not for New Design. For existing customer transition, and for new customers or new applications, Automotive Grade, Fully Integrated, Hall Effect-Based Linear Current Sensor IC with. kvrms Voltage Isolation and a Low-Resistance Current Conductor Not for New Design These parts are in production but

More information

Typical Application +5 V 8 VCC 7 VIOUT 1 IP+ 2 IP+ V OUT ACS IP FILTER 4 IP 5 GND C F

Typical Application +5 V 8 VCC 7 VIOUT 1 IP+ 2 IP+ V OUT ACS IP FILTER 4 IP 5 GND C F Fully Integrated, Hall Effect-Based Linear Current Sensor with. kvrms Voltage Isolation and a Low-Resistance Current Conductor Features and Benefits Low-noise analog signal path Device db point is set

More information

Limited Availability Product

Limited Availability Product Limited Availability Product This device is in production, but is limited to existing customers. Contact factory for additional information. Date of status change: November 2, 2009 Recommended Substitutions:

More information

Discontinued Product

Discontinued Product Discontinued Product These parts are no longer in production The device should not be purchased for new design applications. Samples are no longer available. Date of status change: May 4, 2009 Recommended

More information

Typical Application C BYP C F 3 R F

Typical Application C BYP C F 3 R F Features and Benefits Monolithic Hall IC for high reliability Single +5 V supply 3 kv RMS isolation voltage between terminals 4/5 and pins 1/2/3 for up to 1 minute 35 khz bandwidth Automotive temperature

More information

Typical Application VCC IP+ ACS755 GND C F 3 R F

Typical Application VCC IP+ ACS755 GND C F 3 R F Features and Benefits Monolithic Hall IC for high reliability Single +5 V supply 3 kv RMS isolation voltage between terminals /5 and pins 1/2/3 for up to 1 minute 35 khz bandwidth Automotive temperature

More information

Typical Application VCC IP+ ACS755 GND C F 3 R F

Typical Application VCC IP+ ACS755 GND C F 3 R F Features and Benefits Monolithic Hall IC for high reliability Single +5 V supply 3 kv RMS isolation voltage between terminals 4/5 and pins 1/2/3 for up to 1 minute 35 khz bandwidth Automotive temperature

More information

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: May 1, 2008.

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: May 1, 2008. Last Time Buy These parts are in production but have been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice has been given. Sale of this device is currently

More information

Typical Application IP+ ACS756 GND C F 5 IP VIOUT 3 R F

Typical Application IP+ ACS756 GND C F 5 IP VIOUT 3 R F Features and Benefits Industry-leading noise performance through proprietary amplifier and filter design techniques Total output error 0.8% at T A = 25 C Small package size, with easy mounting capability

More information

Current Sensor: ACS752SCA-050

Current Sensor: ACS752SCA-050 5 4 The Allegro ACS75x family of current sensors provides economical and precise solutions for current sensing in industrial, automotive, commercial, and communications systems. The device package allows

More information

Current Sensor: ACS750xCA-050

Current Sensor: ACS750xCA-050 5 4 The Allegro ACS75x family of current sensors provides economical and precise solutions for current sensing in industrial, automotive, commercial, and communications systems. The device package allows

More information

Current Sensor: ACS755SCB-200

Current Sensor: ACS755SCB-200 Pin 1: VCC Pin 2: GND Pin 3: VOUT Terminal 4: IP+ Terminal 5: IP AB SO LUTE MAX I MUM RAT INGS Supply Voltage, V CC...16 V Reverse Supply Voltage, V RCC... 16 V Output Voltage, V OUT...16 V Reverse Output

More information

Current Sensor: ACS754SCB-200

Current Sensor: ACS754SCB-200 Pin 1: VCC Pin 2: GND Pin 3: VOUT Terminal 4: IP+ Terminal 5: IP AB SO LUTE MAX I MUM RAT INGS Supply Voltage, V CC...16 V Reverse Supply Voltage, V RCC... 16 V Output Voltage, V OUT...16 V Reverse Output

More information

Current Sensor: ACS754xCB-100

Current Sensor: ACS754xCB-100 Pin 1: VCC Pin 2: GND Pin 3: VOUT 5 4 1 2 3 Package CB-PFF 5 1 2 3 Package CB-PSF 1 2 3 5 4 Package CB-PSS 4 Terminal 4: IP+ Terminal 5: IP AB SO LUTE MAX I MUM RAT INGS Supply Voltage, V CC...16 V Output

More information

Not for New Design. For existing customer transition, and for new customers or new applications,

Not for New Design. For existing customer transition, and for new customers or new applications, Fully Integrated, Hall Effect-Based Linear Current Sensor IC Not for New Design These parts are in production but have been determined to be NOT FOR NEW DESIGN. This classification indicates that sale

More information

ACS718. High Isolation Linear Current Sensor IC with 850 µω Current Conductor ACS718. Package: 16-Pin SOICW (suffix MA)

ACS718. High Isolation Linear Current Sensor IC with 850 µω Current Conductor ACS718. Package: 16-Pin SOICW (suffix MA) FEATURES AND BENEFITS IEC/UL 60950-1 Ed. 2 certified to: Dielectric Strength = 4800 Vrms (tested for 60 seconds) Basic Isolation = 1550 Vpeak Reinforced Isolation = 800 Vpeak Small footprint, low-profile

More information

Current Sensor: ACS750xCA-100

Current Sensor: ACS750xCA-100 5 Pin 1: V CC Pin 2: Gnd Pin 3: Output 4 1 2 3 Terminal 4: I p+ Terminal 5: I p- ABSOLUTE MAXIMUM RATINGS Operating Temperature S... 2 to +85ºC E... 4 to +85ºC Supply Voltage, Vcc...16 V Output Voltage...16

More information

ACS717. High Isolation, Linear Current Sensor IC with 850 µω Current Conductor ACS717. Package: 16-Pin SOICW (suffix MA)

ACS717. High Isolation, Linear Current Sensor IC with 850 µω Current Conductor ACS717. Package: 16-Pin SOICW (suffix MA) FEATURES AND BENEFITS IEC/UL 60950-1 Ed. 2 certified to: Dielectric Strength = 4800 Vrms (tested for 60 seconds) Basic Isolation = 1550 Vpeak Reinforced Isolation = 800 Vpeak Small footprint, low-profile

More information

ACS717. High Isolation, Linear Current Sensor IC with 850 µω Current Conductor ACS717. PACKAGE: 16-Pin SOICW (suffix MA)

ACS717. High Isolation, Linear Current Sensor IC with 850 µω Current Conductor ACS717. PACKAGE: 16-Pin SOICW (suffix MA) High Isolation, Linear Current Sensor IC with FEATURES AND BENEFITS IEC/UL 60950-1 Ed. 2 certified to: Dielectric Strength = 4800 Vrms (tested for 60 seconds) Basic Isolation = 1550 Vpeak Reinforced Isolation

More information

ACS khz Bandwidth, High Voltage Isolation Current Sensor with Integrated Overcurrent Detection

ACS khz Bandwidth, High Voltage Isolation Current Sensor with Integrated Overcurrent Detection Features and Benefits Industry-leading noise performance with greatly improved bandwidth through proprietary amplifier and filter design techniques Small footprint package suitable for space-constrained

More information

ACS724LMA. Automotive Grade, High-Accuracy, Hall-Effect-Based Current Sensor IC with Common-Mode Field Rejection in High-Isolation SOIC16 Package

ACS724LMA. Automotive Grade, High-Accuracy, Hall-Effect-Based Current Sensor IC with Common-Mode Field Rejection in High-Isolation SOIC16 Package with Common-Mode Field Rejection in High-Isolation SOIC6 Package FEATURES AND BENEFITS AEC-Q automotive qualified Differential Hall sensing rejects common-mode fields Patented integrated digital temperature

More information

ACS724. Automotive-Grade, Galvanically Isolated Current Sensor IC With Common-Mode Field Rejection in a Small-Footprint SOIC8 Package ACS724

ACS724. Automotive-Grade, Galvanically Isolated Current Sensor IC With Common-Mode Field Rejection in a Small-Footprint SOIC8 Package ACS724 FEATURES AND BENEFITS AEC-Q qualified Differential Hall sensing rejects common-mode fields. mω primary conductor resistance for low power loss and high inrush current withstand capability Integrated shield

More information

ACS725KMA. High-Accuracy, Hall-Effect-Based Current Sensor IC with Common-Mode Field Rejection in High-Isolation SOIC16 Package DESCRIPTION

ACS725KMA. High-Accuracy, Hall-Effect-Based Current Sensor IC with Common-Mode Field Rejection in High-Isolation SOIC16 Package DESCRIPTION FEATURES AND BENEFITS Differential Hall sensing rejects common-mode fields Patented integrated digital temperature compensation circuitry allows for near closed loop accuracy over temperature in an open

More information

ACS724KMA. High-Accuracy, Hall-Effect-Based Current Sensor IC with Common-Mode Field Rejection in High-Isolation SOIC16 Package DESCRIPTION

ACS724KMA. High-Accuracy, Hall-Effect-Based Current Sensor IC with Common-Mode Field Rejection in High-Isolation SOIC16 Package DESCRIPTION FEATURES AND BENEFITS Differential Hall sensing rejects common-mode fields Patented integrated digital temperature compensation circuitry allows for near closed loop accuracy over temperature in an open

More information

ACS723KMA High Accuracy, Hall-Effect-Based Current Sensor IC in High Isolation SOIC16 Package

ACS723KMA High Accuracy, Hall-Effect-Based Current Sensor IC in High Isolation SOIC16 Package FEATURES AND BENEFITS Patented integrated digital temperature compensation circuitry allows for near closed loop accuracy over temperature in an open loop sensor UL695-1 (ed. 2) certified Dielectric Strength

More information

ACS724. Automotive-Grade, Galvanically Isolated Current Sensor IC With Common-Mode Field Rejection in a Small-Footprint SOIC8 Package ACS724

ACS724. Automotive-Grade, Galvanically Isolated Current Sensor IC With Common-Mode Field Rejection in a Small-Footprint SOIC8 Package ACS724 FEATURES AND BENEFITS AEC-Q qualified Differential Hall sensing rejects common-mode fields. mω primary conductor resistance for low power loss and high inrush current withstand capability Integrated shield

More information

ACS MHz Bandwidth, Galvanically Isolated Current Sensor IC in Small Footprint SOIC8 Package. Package: 8-Pin SOIC (suffix LC) ACS730

ACS MHz Bandwidth, Galvanically Isolated Current Sensor IC in Small Footprint SOIC8 Package. Package: 8-Pin SOIC (suffix LC) ACS730 FEATURES AND BENEFITS Industry-leading noise performance with greatly improved bandwidth through proprietary amplifier and filter design techniques High bandwidth 1 MHz analog output Patented integrated

More information

ACS732 and ACS MHz Bandwidth, Galvanically Isolated Current Sensor IC in SOIC-16 Package. PACKAGE: 16-Pin SOICW (suffix LA) ACS732/ ACS733

ACS732 and ACS MHz Bandwidth, Galvanically Isolated Current Sensor IC in SOIC-16 Package. PACKAGE: 16-Pin SOICW (suffix LA) ACS732/ ACS733 FEATURES AND BENEFITS AEC-Q1 automotive qualified High bandwidth, 1 MHz analog output Differential Hall sensing rejects common-mode fields High-isolation SOIC16 wide body package provides galvanic isolation

More information

ACS732 and ACS MHz Bandwidth, Galvanically Isolated Current Sensor IC in SOIC-16 Package. PACKAGE: 16-Pin SOICW (suffix LA) ACS732/ ACS733

ACS732 and ACS MHz Bandwidth, Galvanically Isolated Current Sensor IC in SOIC-16 Package. PACKAGE: 16-Pin SOICW (suffix LA) ACS732/ ACS733 FEATURES AND BENEFITS AEC-Q1 automotive qualified High bandwidth, 1 MHz analog output Differential Hall sensing rejects common-mode fields High-isolation SOIC16 wide body package provides galvanic isolation

More information

ACS khz Bandwidth, High Voltage Isolation Current Sensor with Integrated Overcurrent Detection

ACS khz Bandwidth, High Voltage Isolation Current Sensor with Integrated Overcurrent Detection Features and Benefits Industry-leading noise performance with greatly improved bandwidth through proprietary amplifier and filter design techniques Small footprint package suitable for space-constrained

More information

A3949. DMOS Full-Bridge Motor Driver. Features and Benefits Single supply operation Very small outline package Low R DS(ON)

A3949. DMOS Full-Bridge Motor Driver. Features and Benefits Single supply operation Very small outline package Low R DS(ON) Features and Benefits Single supply operation Very small outline package Low R DS(ON) outputs Sleep function Internal UVLO Crossover current protection Thermal shutdown protection Packages: Description

More information

A1225, A1227, and A1229. Hall Effect Latch for High Temperature Operation

A1225, A1227, and A1229. Hall Effect Latch for High Temperature Operation A, A27, and A29 Features and Benefits Symmetrical switchpoints Superior temperature stability Operation from unregulated supply Open-drain ma output Reverse Battery protection Activate with small, commercially

More information

High-Temperature Chopper-Stabilized Precision Hall-Effect Switch for 5 V Applications

High-Temperature Chopper-Stabilized Precision Hall-Effect Switch for 5 V Applications APS112 Hall-Effect Switch for V Applications FEATURES AND BENEFITS Optimized for applications with regulated power rails Operation from 2.8 to. V AEC-Q1 automotive qualified Operation up to 17 C junction

More information

Chopper Stabilized Precision Hall Effect Switches

Chopper Stabilized Precision Hall Effect Switches A1, A11, and A11 Features and Benefits Unipolar switchpoints Resistant to physical stress Superior temperature stability Output short-circuit protection Operation from unregulated supply Reverse battery

More information

Not for New Design. For existing customer transition, and for new customers or new applications,

Not for New Design. For existing customer transition, and for new customers or new applications, With 1 µω Current Conductor and Optimized Performance at 3.3 V Not for New Design These parts are in production but have been determined to be NOT FOR NEW DESIGN. This classification indicates that sale

More information

Cosemitech. Automotive Product Group. FEATURES and FUNCTIONAL DIAGRAM

Cosemitech. Automotive Product Group. FEATURES and FUNCTIONAL DIAGRAM FEATURES and FUNCTIONAL DIAGRAM PACKAGE 0.8 mω primary conductor resistance for low power loss and high inrush current withstand capability Integrated shield virtually eliminates capacitive coupling from

More information

Chopper Stabilized Precision Hall Effect Latches

Chopper Stabilized Precision Hall Effect Latches A122, A1221, Features and Benefits Symmetrical latch switchpoints Resistant to physical stress Superior temperature stability Output short-circuit protection Operation from unregulated supply down to 3

More information

A1321, A1322, and A1323

A1321, A1322, and A1323 Features and enefits Temperature-stable quiescent output voltage Precise recoverability after temperature cycling Output voltage proportional to magnetic flux density Ratiometric rail-to-rail output Improved

More information

A1126. Chopper Stabilized Omnipolar Hall-Effect Switch. Description

A1126. Chopper Stabilized Omnipolar Hall-Effect Switch. Description Features and Benefits Omnipolar operation Low switchpoint drift Superior temperature stability Insensitive to physical stress Reverse battery protection Robust EMC capability Robust ESD protection Packages:

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: October, for the AEUA-T

More information

A3909. Dual Full Bridge Motor Driver. Description. Features and Benefits. Packages: Functional Block Diagram

A3909. Dual Full Bridge Motor Driver. Description. Features and Benefits. Packages: Functional Block Diagram Features and Benefits Low R DS(on) outputs Drives two DC motors or single stepper motor Low power standby (Sleep) mode with zero current drain Thermal shutdown protection Parallel operation option for.8

More information

Not for New Design. For existing customer transition, and for new customers or new applications,

Not for New Design. For existing customer transition, and for new customers or new applications, Not for New Design These parts are in production but have been determined to be NOT FOR NEW DESIGN. This classification indicates that sale of this device is currently restricted to existing customer applications.

More information

Chopper Stabilized Precision Hall Effect Switches

Chopper Stabilized Precision Hall Effect Switches Features and Benefits Unipolar switchpoints Resistant to physical stress Superior temperature stability Output short-circuit protection Operation from unregulated supply Reverse battery protection Solid-state

More information

A1388 and A1389. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package

A1388 and A1389. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package FEATURES AND BENEFITS 5.0 V supply operation QVO temperature coefficient programmed at Allegro for improved accuracy Miniature package options High-bandwidth, low-noise analog output High-speed chopping

More information

Not for New Design. For existing customer transition, and for new customers or new applications,

Not for New Design. For existing customer transition, and for new customers or new applications, Not for New Design These parts are in production but have been determined to be NOT FOR NEW DESIGN. This classification indicates that sale of this device is currently restricted to existing customer applications.

More information

A4950. Full-Bridge DMOS PWM Motor Driver. Description

A4950. Full-Bridge DMOS PWM Motor Driver. Description Features and Benefits Low R DS(on) outputs Overcurrent protection (OCP) Motor short protection Motor lead short to ground protection Motor lead short to battery protection Low Power Standby mode Adjustable

More information

ACS High Sensitivity, 1 MHz, GMR-Based Current Sensor IC in Space-Saving, Low Resistance QFN and SOIC-8 Packages PACKAGES TYPICAL APPLICATION

ACS High Sensitivity, 1 MHz, GMR-Based Current Sensor IC in Space-Saving, Low Resistance QFN and SOIC-8 Packages PACKAGES TYPICAL APPLICATION FEATURES AND BENEFITS High sensitivity current sensor IC for sensing up to 5 A (DC or AC) 1 MHz bandwidth with response time

More information

Not for New Design. For existing customer transition, and for new customers or new applications,

Not for New Design. For existing customer transition, and for new customers or new applications, Not for New Design These parts are in production but have been determined to be NOT FOR NEW DESIGN. This classification indicates that sale of this device is currently restricted to existing customer applications.

More information

A4941. Three-Phase Sensorless Fan Driver

A4941. Three-Phase Sensorless Fan Driver Features and Benefits Sensorless (no Hall sensors required) Soft switching for reduced audible noise Minimal external components PWM speed input FG speed output Low power standby mode Lock detection Optional

More information

A3290 and A3291 Chopper Stabilized, Precision Hall Effect Latches for Consumer and Industrial Applications

A3290 and A3291 Chopper Stabilized, Precision Hall Effect Latches for Consumer and Industrial Applications for Consumer and Industrial Applications Features and enefits Symmetrical switchpoints Resistant to physical stress Superior temperature stability Output short-circuit protection Operation from unregulated

More information

A1308 and A1309. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package

A1308 and A1309. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package FEATURES AND BENEFITS 5 V supply operation QVO temperature coefficient programmed at Allegro for improved accuracy Miniature package options High-bandwidth, low-noise analog output High-speed chopping

More information

A1301 and A1302. Continuous-Time Ratiometric Linear Hall Effect Sensor ICs

A1301 and A1302. Continuous-Time Ratiometric Linear Hall Effect Sensor ICs Features and enefits Low-noise output Fast power-on time Ratiometric rail-to-rail output 4.5 to 6.0 V operation Solid-state reliability Factory-programmed at end-of-line for optimum performance Robust

More information

A1318 and A1319. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package

A1318 and A1319. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package Features and Benefits 3.3 V supply operation QVO temperature coefficient programmed at Allegro for improved accuracy Miniature package options High-bandwidth, low-noise analog output High-speed chopping

More information

A6850. Dual Channel Switch Interface IC. Features and Benefits 4.75 to 26.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback

A6850. Dual Channel Switch Interface IC. Features and Benefits 4.75 to 26.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback Features and Benefits 4.75 to 6.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback Survive short-to-battery and short-to-ground faults Survive 40 V load dump >4 kv ESD rating on

More information

UDN2987x-6 DABIC-5 8-Channel Source Driver with Overcurrent Protection

UDN2987x-6 DABIC-5 8-Channel Source Driver with Overcurrent Protection Features and Benefits 4.75 to 35 V driver supply voltage Output enable-disable (OE/R) 350 ma output source current Overcurrent protected Internal ground clamp diodes Output Breakdown Voltage 35 V minimum

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: October 31, 011 Recommended

More information

Discontinued Product

Discontinued Product Dual Full-Bridge PWM Motor Driver Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status

More information

Low Current Ultrasensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

Low Current Ultrasensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches Chopper-Stabilized Unipolar Hall Effect Switches Features and Benefits Chopper stabilization Low switchpoint drift over operating temperature range Low sensitivity to stress Factory programmed at end-of-line

More information

ACS High Sensitivity, 1 MHz, GMR-Based Current Sensor IC in Space-Saving Low Resistance QFN package ACS70331 PACKAGE TYPICAL APPLICATION

ACS High Sensitivity, 1 MHz, GMR-Based Current Sensor IC in Space-Saving Low Resistance QFN package ACS70331 PACKAGE TYPICAL APPLICATION FEATURES AND BENEFITS High sensitivity current sensor IC for sensing up to 5 A (DC or AC) 1 MHz bandwidth with response time

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: June 2, 214 Recommended

More information

A8499. High Voltage Step-Down Regulator

A8499. High Voltage Step-Down Regulator Features and Benefits 8 to 0 V input range Integrated DMOS switch Adjustable fixed off-time Highly efficient Adjustable. to 4 V output Description The A8499 is a step down regulator that will handle a

More information

Description (continued) The is rated for operation between the ambient temperatures 4 C and 85 C for the E temperature range, and 4 C to C for the L t

Description (continued) The is rated for operation between the ambient temperatures 4 C and 85 C for the E temperature range, and 4 C to C for the L t Chopper-Stabilized Hall-Effect Latch Features and Benefits Chopper stabilization Superior temperature stability Extremely low switchpoint drift Insensitive to physical stress Reverse battery protection

More information

A4954 Dual Full-Bridge DMOS PWM Motor Driver

A4954 Dual Full-Bridge DMOS PWM Motor Driver Dual Full-Bridge DMOS Features and Benefits Low R DS(on) outputs Overcurrent protection (OCP) Motor short protection Motor lead short to ground protection Motor lead short to battery protection Low Power

More information

A8431. White LED Driver Constant Current Step-up Converter

A8431. White LED Driver Constant Current Step-up Converter Features and Benefits Output voltage up to 32 V ( level) 2. to 0 V input Drives up to 4 LEDs at 20 ma from a 2. V supply Drives up to LEDs at 20 ma from a 3 V supply.2 MHz switching frequency 300 ma switch

More information

A4970. Dual Full-Bridge PWM Motor Driver

A4970. Dual Full-Bridge PWM Motor Driver Dual Full-Bridge PWM Motor Driver Features and Benefits 750 ma continuous output current 45 V output sustaining voltage Internal clamp diodes Internal PWM current control Low output saturation voltage

More information

A1260. Chopper Stabilized Precision Vertical Hall-Effect Latch PACKAGES:

A1260. Chopper Stabilized Precision Vertical Hall-Effect Latch PACKAGES: FEATURES AN BENEFITS Magnetic Sensing Parallel to Surface of the Package Highly Sensitive Switch Thresholds Symmetrical Latch Switch Points Operation From Unregulated Supply own to 3 V Small Package Sizes

More information

A3901. Dual Full Bridge Low Voltage Motor Driver

A3901. Dual Full Bridge Low Voltage Motor Driver A39 Features and Benefits ow R DS(on) outputs Full- and half-stepping capability Small package Forward, reverse, and brake modes for DC motors Sleep mode with zero current drain PWM control up to 25 khz

More information

Continuous-Time Switch Family

Continuous-Time Switch Family Features and Benefits Continuous-time operation Fast power-on time Low noise Stable operation over full operating temperature range Reverse battery protection Solid-state reliability Factory-programmed

More information

A6B Bit Serial-Input DMOS Power Driver

A6B Bit Serial-Input DMOS Power Driver Features and Benefits 50 V minimum output clamp voltage 150 ma output current (all outputs simultaneously) 5 Ω typical r DS(on) Low power consumption Replacement for TPIC6B595N and TPIC6B595DW Packages:

More information

3280, 3281, AND 3283 CHOPPER-STABILIZED, PRECISION HALL-EFFECT LATCHES. Suffix ' LT' & ' UA' Pinning (SOT89/TO-243AA & ultra-mini SIP)

3280, 3281, AND 3283 CHOPPER-STABILIZED, PRECISION HALL-EFFECT LATCHES. Suffix ' LT' & ' UA' Pinning (SOT89/TO-243AA & ultra-mini SIP) 28, 281, AND 28 Data Sheet 2769.2b Suffix ' LT' & ' UA' Pinning (SOT89/TO-24AA & ultra-mini SIP) X V CC 1 SUPPLY 2 GROUND PTCT Dwg. PH--2 Pinning is shown viewed from branded side. OUTPUT The A28--, A281--,

More information

A1266. Micropower Ultrasensitive 3D Hall-Effect Switch PACKAGES:

A1266. Micropower Ultrasensitive 3D Hall-Effect Switch PACKAGES: Micropower Ultrasensitive 3 Hall-Effect Switch FEATURES AN BENEFITS True 3 sensing Omnipolar operation with either north or south pole. to. operation Low supply current High sensitivity, B OP typically

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: October 31, 2011 Recommended

More information

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: April 30, 2011

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: April 30, 2011 Last Time Buy These parts are in production but have been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice has been given. Sale of this device is currently

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: May, Recommended Substitutions:

More information

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: October 29, 2010

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: October 29, 2010 Last Time Buy This part is in production but has been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice has been given. Sale of this device is currently

More information

ACS72981xLR. High-Precision Linear Hall-Effect-Based Current Sensor IC With 200 µω Current Conductor

ACS72981xLR. High-Precision Linear Hall-Effect-Based Current Sensor IC With 200 µω Current Conductor FEATURES AND BENEFITS AEC-Q100 automotive qualification High-bandwidth 250 khz analog output Less than 2 μs output response time 3.3 V and 5 V supply operation Ultralow power loss: 200 μω internal conductor

More information

A3282. Features and Benefits. Chopper stabilization Superior temperature stability Extremely low switchpoint drift Insensitive to physical stress

A3282. Features and Benefits. Chopper stabilization Superior temperature stability Extremely low switchpoint drift Insensitive to physical stress Package LH, 3-pin Surface Mount GND 3 1 3 2 1 2 Package UA, 3-pin SIP The A3282 Hall-effect sensor is a temperature stable, stress-resistant latch. Superior high-temperature performance is made possible

More information

Discontinued Product

Discontinued Product A323 Chopper-Stabilized Hall-Effect Bipolar Switch Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available.

More information

A6850. Dual Channel Switch Interface IC. Features and Benefits 4.75 to 26.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback

A6850. Dual Channel Switch Interface IC. Features and Benefits 4.75 to 26.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback Features and Benefits 4.75 to 6.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback Survive short-to-battery and short-to-ground faults Survive 40 V load dump >4 kv ESD rating on

More information

A3984. DMOS Microstepping Driver with Translator

A3984. DMOS Microstepping Driver with Translator Features and Benefits Low RDS(ON) outputs Automatic current decay mode detection/selection and current decay modes Synchronous rectification for low power dissipation Internal UVLO and thermal shutdown

More information

Distributed by: www.jameco.com 1-8-81-4242 The content and copyrights of the attached material are the property of its owner. Data Sheet 27621.2d HALL-EF FECT SWITCH Suffix LT & UA Pinning (SOT89/TO-24AA

More information

A3995. DMOS Dual Full Bridge PWM Motor Driver

A3995. DMOS Dual Full Bridge PWM Motor Driver Features and Benefits 6 V output rating.4 A, DC motor driver Synchronous rectification Internal undervoltage lockout (UVLO) Thermal shutdown circuitry Crossover-current protection Very thin profile QFN

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: January 30, 2012 Recommended

More information

ACS773. High Accuracy, Hall-Effect-Based, 200 khz Bandwidth, Galvanically Isolated Current Sensor IC with 100 µω Current Conductor DESCRIPTION

ACS773. High Accuracy, Hall-Effect-Based, 200 khz Bandwidth, Galvanically Isolated Current Sensor IC with 100 µω Current Conductor DESCRIPTION 2 khz Bandwidth, Galvanically Isolated FEATURES AND BENEFITS AEC-Q1 Grade 1 qualified Typical of 2.5 μs output response time 3.3 V supply operation Ultra-low power loss: 1 μω internal conductor resistance

More information

A1101, A1102, A1103, A1104, and A1106

A1101, A1102, A1103, A1104, and A1106 Package LH, 3-pin Surface Mount GND 3 1 2 1 2 VCC VOUT Package UA, 3-pin SIP 3 The Allegro A111-A114 and A116 Hall-effect switches are next generation replacements for the popular Allegro 312x and 314x

More information

A3280, A3281, and A3283 Chopper-Stabilized, Precision Hall-Ef fect Latches

A3280, A3281, and A3283 Chopper-Stabilized, Precision Hall-Ef fect Latches , Hall-Ef fect Latches Features and Benefits Symmetrical switch points Resistant to physical stress Superior temperature stability Output short-circuit protection Operation from unregulated supply Reverse

More information

Discontinued Product

Discontinued Product with Hall Commutation and Soft Switching, Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date

More information

A6833. DABiC-5 32-Bit Serial Input Latched Sink Drivers

A6833. DABiC-5 32-Bit Serial Input Latched Sink Drivers DABiC-5 32-Bit Serial Input Latched Sink Drivers Features and Benefits 3.3 to 5 V logic supply range To 10 MHz data input rate 30 V minimum output breakdown Darlington current-sink outputs Low-power CMOS

More information

UDN2987x-6. DABIC-5 8-Channel Source Driver with Overcurrent Protection

UDN2987x-6. DABIC-5 8-Channel Source Driver with Overcurrent Protection Package A, 20-pin DIP Package LW, 20-pin SOIC-W Approximate Scale 1:1 Providing overcurrent protection for each of its eight sourcing outputs, the UDN2987A-6 and UDN2987LW-6 drivers are used as an interface

More information

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: October 29, 2010

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: October 29, 2010 , Last Time Buy The A3283 part is in production but has been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice has been given. Sale of this device is

More information

A3213 and A3214. Micropower Ultra-Sensitive Hall-Effect Switches. Packages:

A3213 and A3214. Micropower Ultra-Sensitive Hall-Effect Switches. Packages: FEATURES AND BENEFITS Micropower operation Operate with north or south pole 2.4 to 5.5 V battery operation Chopper stabilized Superior temperature stability Extremely low switchpoint drift Insensitive

More information

Protected Quad Power Driver

Protected Quad Power Driver Features and Benefits 700 ma output current per channel Independent overcurrent protection for each driver Thermal protection for device and each driver Low output-saturation voltage Integral output flyback

More information

A1230 Ultra-Sensitive Dual-Channel Quadrature Hall-Effect Bipolar Switch

A1230 Ultra-Sensitive Dual-Channel Quadrature Hall-Effect Bipolar Switch Features and Benefits Two matched Hall effect switches on a single substrate mm Hall element spacing Superior temperature stability and industry-leading jitter performance through use of advanced chopperstabilization

More information

A1266. Micropower Ultrasensitive 3D Hall-Effect Switch PACKAGES:

A1266. Micropower Ultrasensitive 3D Hall-Effect Switch PACKAGES: FEATURES AN BENEFITS True 3 sensing Omnipolar operation with either north or south pole. to. operation Low supply current High sensitivity, B OP typically G Chopper-stabilized offset cancellation Superior

More information

ARS ASIL-Compliant Wheel Speed Sensor IC. PACKAGE: 2-pin SIP (suffix UB) Functional Block Diagram VCC GND

ARS ASIL-Compliant Wheel Speed Sensor IC. PACKAGE: 2-pin SIP (suffix UB) Functional Block Diagram VCC GND - FEATURES AND BENEFITS Integrated diagnostics and certified safety design process for ASIL B compliance Integrated capacitor reduces need for external EMI protection components True zero-speed operation

More information