Chopper Stabilized Precision Hall Effect Switches

Size: px
Start display at page:

Download "Chopper Stabilized Precision Hall Effect Switches"

Transcription

1 A1, A11, and A11 Features and Benefits Unipolar switchpoints Resistant to physical stress Superior temperature stability Output short-circuit protection Operation from unregulated supply Reverse battery protection Solid-state reliability Small package sizes Packages: 3-pin SOT23W (suffix LH) Not to scale 3-pin SIP (suffix UA) Description The A1, A11, and A11 Hall-effect, unipolar switches are extremely temperature-stable and stress-resistant sensor ICs, especially suited for operation over extended temperature ranges to C. Superior high-temperature performance is made possible through dynamic offset cancellation, which reduces the residual offset voltage normally caused by device overmolding, temperature dependencies, and thermal stress. Each device includes on a single silicon chip a voltage regulator, Hall-voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and a short-circuit protected open-drain output to sink up to ma. An on-board regulator permits operation with supply voltages of 3 to V. The advantage of operating down to 3 V is that the device can be used in 3 V applications or with additional external resistance in series with the supply pin for greater protection against high voltage transient events. For the A1 and A11, a south pole of sufficient strength turns the output on. Removal of the magnetic field turns the output off. The A11 is complementary, in that for these devices, a south pole turns the A11 output off, and removal of the magnetic field turns the output on. Two package styles provide a magnetically optimized package for most applications. Package type LH is a modified SOT23W, surface mount package, while UA is a three-lead ultra-mini SIP for through-hole mounting. Each package type is lead (Pb) free (suffix, T), with a 1% matte tin plated leadframe. Functional Block Diagram VCC Regulator Dynamic Offset Cancellation Amp Sample and Hold Low-Pass Filter To All Subcircuits Control Current Limit VOUT GND A1-DS, Rev. 11

2 A1, A11 and A11 Selection Guide Part Number Packing 1 Mounting Ambient, T A (Typ.) Switchpoints A1ELHLX-T 13-in. reel, 1 pieces/reel 3-pin SOT23W surface mount A1ELHLT-T 2 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A1EUA-T Bulk, 5 pieces/bag 3-pin SIP through hole A1LLHLX-T 13-in. reel, 1 pieces/reel 3-pin SOT23W surface mount A1LLHLT-T 2 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A1LUA-T Bulk, 5 pieces/bag 3-pin SIP through hole A11ELHLX-T 13-in. reel, 1 pieces/reel 3-pin SOT23W surface mount A11ELHLT-T 2 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A11EUA-T Bulk, 5 pieces/bag 3-pin SIP through hole A11LLHLX-T 13-in. reel, 1 pieces/reel 3-pin SOT23W surface mount A11LLHLT-T 2 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A11LUA-T Bulk, 5 pieces/bag 3-pin SIP through hole A11ELHLX-T 13-in. reel, 1 pieces/reel 3-pin SOT23W surface mount A11EUA-T Bulk, 5 pieces/bag 3-pin SIP through hole A11LLHLX-T 13-in. reel, 1 pieces/reel 3-pin SOT23W surface mount A11LUA-T Bulk, 5 pieces/bag 3-pin SIP through hole * Contact Allegro for additional packing options. 2Available through authorized Allegro distributors only. 4ºC to 85ºC 4ºC to ºC 4ºC to 85ºC 4ºC to ºC 4ºC to 85ºC 4ºC to ºC B OP B RP Output In South (Positive) Magnetic Field On (logic low) 35 Off (logic high) Worcester, Massachusetts U.S.A ; 2

3 A1, A11 and A11 Absolute Maximum Ratings Characteristic Symbol Notes Rating Units Forward Supply Voltage V CC 26.5 V Reverse Supply Voltage V RCC 3 V Output Off Voltage V OUT 26 V Continuous Output Current I OUT ma Reverse Output Current I ROUT 5 ma Range E 4 to 85 ºC Operating Ambient Temperature T A Range L 4 to ºC Maximum Junction Temperature T J (max) 165 ºC Storage Temperature T stg 65 to 17 ºC GND 3 Pin-out Diagrams Package LH Package UA VCC VOUT VCC GND VOUT Terminal List Name Description Number Package LH Package UA VCC Connects power supply to chip 1 1 VOUT Output from circuit 2 3 GND Ground 3 2 Worcester, Massachusetts U.S.A ; 3

4 A1, A11 and A11 ELECTRICAL CHARACTERISTICS Valid valid over full operating voltage and ambient temperature ranges; unless otherwise noted Characteristics Symbol Test Conditions Min. Typ. 1 Max. Unit 2 Electrical Characteristics Forward Supply Voltage V CC Operating, T J < 165 C 3 V Output Leakage Current I OUTOFF A11 A1, V OUT = V, B < B RP 1 μa A11 V OUT = V, B > B OP 1 μa Output Saturation Voltage V OUT(SAT) A11 A1, I OUT = 2 ma, B > B OP mv A11 I OUT = 2 ma, B < B RP mv Output Current Limit I OM A11 A1, B > B OP 3 6 ma A11 B < B RP 3 6 ma Power-On Time 3 t PO V CC > 3. V, B < B RP (min) 1 G, B > B OP (max) + 1 G μs Chopping Frequency f C 8 khz Output Rise Time 3,4 t r R L = 82 Ω, C S = 2 pf.2 2 μs Output Fall Time 3,4 t f R L = 82 Ω, C S = 2 pf.1 2 μs Supply Current A1, I A11 CC(ON) V CC = V, B > B OP 4 ma A11 V CC = V, B < B RP 4 ma A1, I A11 CC(OFF) V CC = V, B < B RP 4 ma A11 V CC = V, B > B OP 4 ma Reverse Supply Current I RCC V RCC = 3 V 5 ma Supply Zener Clamp Voltage V Z I CC = 5 ma; T A = C 28 V Zener Impedance I Z I CC = 5 ma; T A = C 5 Ω Magnetic Characteristics Operate Point B OP A11 A1, 35 5 G A G Release Point B RP A11 A1, 5 G A G A1, Hysteresis B A11 HYS (B OP B RP ) 1 G A G 1Typical data are are at T A = C and V CC = V, and are for initial design estimations only. 1 G (gauss) =.1 mt (millitesla). Guaranteed by device design and characterization. C S = oscilloscope probe capacitance. Worcester, Massachusetts U.S.A ; 4

5 A1, A11 and A11 THERMAL CHARACTERISTICS may require derating at maximum conditions, see application information Characteristic Symbol Test Conditions Value Units Package Thermal Resistance R θja Package LH, 1-layer PCB with copper limited to solder pads 228 ºC/W Package LH, 2-layer PCB with.463 in. 2 of copper area each side connected by thermal vias 11 ºC/W Package UA, 1-layer PCB with copper limited to solder pads 165 ºC/W Maximum Allowable Power Derating Curve T J(max) = 165ºC; I CC = I CC(max) Package LH, 2-layer PCB (R JA = 11 ºC/W) Package UA, 1-layer PCB (R JA = 165 ºC/W) Package LH, 1-layer PCB (R JA = 228 ºC/W) V CC(max) V CC(min) Power Dissipation, PD (mw) Power Dissipation versus Ambient Temperature Package LH, 2-layer PCB (R JA = 11 ºC/W) Package UA, 1-layer PCB (R JA = 165 ºC/W) Package LH, 1-layer PCB (R JA = 228 ºC/W) Temperature ( C) Worcester, Massachusetts U.S.A ; 5

6 A1, A11 and A11 Characteristic Performance A1, A11, and A11 Electrical Characteristics Average Supply Current (On) versus Ambient Temperature Average Supply Current (On) versus Average Supply Voltage I CC(av) (ma) I CC(av) (ma) Average Supply Current (Off) versus Ambient Temperature Average Supply Current (Off) versus Average Supply Voltage ICC(av) (ma) I CC(av) (ma) Average Output Saturation Voltage versus Ambient Temperature 3 Average Output Saturation Voltage versus Supply Voltage 3 VOUT(sat) (V) V OUT(sat) (V) Worcester, Massachusetts U.S.A ; 6

7 A1, A11 and A11 A1 and A11 Magnetic Characteristics Average Operate Point versus Ambient Temperature Average Operate Point versus Average Supply Voltage BOP (G) B OP (G) Average Release Point versus Ambient Temperature Average Release Point versus Average Supply Voltage BRP (G) B RP (G) Average Switchpoint Hysteresis versus Ambient Temperature Average Switchpoint Hysteresis versus Supply Voltage BHYS (G) B HYS (G) Worcester, Massachusetts U.S.A ; 7

8 A1, A11 and A11 A11 Magnetic Characteristics Operate Point versus Ambient Temperature Operate Point versus Average Supply Voltage B OP (G) B OP (G) Release Point versus Ambient Temperature Release Point versus Average Supply Voltage BRP (G) B RP (G) Switchpoint Hysteresis versus Ambient Temperature Switchpoint Hysteresis versus Supply Voltage BHYS (G) B HYS (G) Worcester, Massachusetts U.S.A ; 8

9 A1, A11 and A11 Functional Description Operation The output of the A1 and A11 devices switches low (turns on) when a magnetic field perpendicular to the Hall element exceeds the operate point threshold, B OP (see panel A of figure 1). When the magnetic field is reduced below the release point, B RP, the device output goes high (turns off). The output of the A11 devices switches high (turns off) when a magnetic field perpendicular to the Hall element exceeds the operate point threshold, B OP (see panel B of figure 1). When the magnetic field is reduced below the release point, B RP, the device output goes low (turns on). After turn-on, the output voltage is V OUT(SAT). The output transistor is capable of sinking current up to the short circuit current limit, I OM, which is a minimum of 3 ma. The difference in the magnetic operate and release points is the hysteresis, B HYS, of the device. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise. Powering-on the device in the hysteresis range (less than B OP and higher than B RP ) will give an indeterminate output state. The correct state is attained after the first excursion beyond B OP or B RP. Applications It is strongly recommended that an external bypass capacitor be connected (in close proximity to the Hall element) between the supply and ground of the device to reduce external noise in the application. As is shown in panel B of figure 1, a.1 μf capacitor is typical. Extensive applications information for Hall effect devicers is available in: Hall-Effect IC Applications Guide, Application Note 2771 Guidelines for Designing Subassemblies Using Hall-Effect Devices, Application Note Soldering Methods for Allegro s Products SMT and Through- Hole, Application Note 269 All are provided in Allegro Electronic Data Book, AMS-72, and the Allegro Web site, V+ V CC V+ V CC V S V OUT Switch to High Switch to Low V OUT(SAT) V OUT Switch to Low Switch to High V OUT(SAT) C BYP.1 μf VCC A1x VOUT GND Output R L B RP B OP B+ B RP B OP B+ B HYS B HYS (A) (B) (C) Figure 1. Device switching behavior. In panels A and B, on the horizontal axis, the B+ direction indicates increasing south polarity magnetic field strength. This behavior can be exhibited when using an electrical circuit such as that shown in panel C. Worcester, Massachusetts U.S.A ; 9

10 A1, A11 and A11 Chopper Stabilization Technique When using Hall effect technology, a limiting factor for switchpoint accuracy is the small signal voltage developed across the Hall element. This voltage is disproportionally small relative to the offset that can be produced at the output of the Hall element. This makes it difficult to process the signal while maintaining an accurate, reliable output over the specified operating temperature and voltage ranges. Chopper stabilization is a unique approach used to minimize Hall offset on the chip. The patented Allegro technique, namely Dynamic Quadrature Offset Cancellation, removes key sources of the output drift induced by thermal and mechanical stresses. This offset reduction technique is based on a signal modulationdemodulation process. The undesired offset signal is separated from the magnetic field-induced signal in the frequency domain, through modulation. The subsequent demodulation acts as a modulation process for the offset, causing the magnetic field induced signal to recover its original spectrum at baseband, while the dc offset becomes a high-frequency signal. The magnetic sourced signal then can pass through a low-pass filter, while the modulated DC offset is suppressed. This configuration is illustrated in figure 2. The chopper stabilization technique uses a 4 khz high frequency clock. For demodulation process, a sample and hold technique is used, where the sampling is performed at twice the chopper frequency (8 khz). This high-frequency operation allows a greater sampling rate, which results in higher accuracy and faster signal-processing capability. This approach desensitizes the chip to the effects of thermal and mechanical stresses, and produces devices that have extremely stable quiescent Hall output voltages and precise recoverability after temperature cycling. This technique is made possible through the use of a BiCMOS process, which allows the use of low-offset, low-noise amplifiers in combination with high-density logic integration and sample-and-hold circuits. The repeatability of magnetic field-induced switching is affected slightly by a chopper technique. However, the Allegro high frequency chopping approach minimizes the affect of jitter and makes it imperceptible in most applications. Applications that are more likely to be sensitive to such degradation are those requiring precise sensing of alternating magnetic fields; for example, speed sensing of ring-magnet targets. For such applications, Allegro recommends its digital device families with lower sensitivity to jitter. For more information on those devices, contact your Allegro sales representative. Regulator Clock/Logic Hall Element Amp Sample and Hold Low-Pass Filter Figure 2. Model of chopper stabilization technique Worcester, Massachusetts U.S.A ; 1

11 A1, A11 and A11 Power Derating The device must be operated below the maximum junction temperature of the device, T J(max). Under certain combinations of peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the application. This section presents a procedure for correlating factors affecting operating T J. (Thermal data is also available on the Allegro MicroSystems website.) The Package Thermal Resistance, R JA, is a figure of merit summarizing the ability of the application and the device to dissipate heat from the junction (die), through all paths to the ambient air. Its primary component is the Effective Thermal Conductivity, K, of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, R JC, is relatively small component of R JA. Ambient air temperature, T A, and air motion are significant external factors, damped by overmolding. The effect of varying power levels (Power Dissipation, P D ), can be estimated. The following formulas represent the fundamental relationships used to estimate T J, at P D. P D = V IN I IN (1) T = P D R JA (2) T J = T A + ΔT (3) For example, given common conditions such as: T A = C, V CC = V, I CC = 1.6 ma, and R JA = 165 C/W, then: A worst-case estimate, P D(max), represents the maximum allowable power level (V CC(max), I CC(max) ), without exceeding T J(max), at a selected R JA and T A. Example: Reliability for V CC at T A = C, package LH, using a minimum-k PCB. Observe the worst-case ratings for the device, specifically: R JA = 228 C/W, T J (max) = 165 C, V CC (max) = V, and I CC (max) = 4 ma. Calculate the maximum allowable power level, P D (max). First, invert equation 3: T max = T J (max) T A = 165 C C = C This provides the allowable increase to T J resulting from internal power dissipation. Then, invert equation 2: P D (max) = T max R JA = C 228 C/W = 66 mw Finally, invert equation 1 with respect to voltage: V CC(est) = P D (max) I CC (max) = 66 mw 4 ma = 16.5 V The result indicates that, at T A, the application and device can dissipate adequate amounts of heat at voltages V CC(est). Compare V CC(est) to V CC (max). If V CC(est) V CC (max), then reliable operation between V CC(est) and V CC (max) requires enhanced R JA. If V CC(est) V CC (max), then operation between V CC(est) and V CC (max) is reliable under these conditions. P D = V CC I CC = V 1.6 ma = 19 mw T = P D R JA = 19 mw 165 C/W = 3 C T J = T A + T = C + 3 C = 28 C Worcester, Massachusetts U.S.A ; 11

12 A1, A11 and A11 Package LH, 3-Pin (SOT-23W) D A D D MIN REF. BSC Seating Plane Gauge Plane B.95 PCB Layout Reference View 8X 1 REF Branded Face 1. ±.13 NNT A.95 BSC Active Area Depth,.28 mm REF.4 ± For Reference Only; not for tooling use (reference dwg. 8284) Dimensions in millimeters Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown C 1 Standard Branding Reference View N = Last two digits of device part number T = Temperature code B Reference land pattern layout All pads a minimum of.2 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances C Branding scale and appearance at supplier discretion D Hall element, not to scale Worcester, Massachusetts U.S.A ;

13 A1, A11 and A11 Package UA, 3-Pin SIP E 2.4 B C 1.52 ± MAX.51 REF E A E Branded Face.79 REF 45 Mold Ejector Pin Indent 1 NNT D Standard Branding Reference View = Supplier emblem N = Last two digits of device part number T = Temperature code.75 ± For Reference Only; not for tooling use (reference DWG-949) Dimensions in millimeters Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown A B C D E Dambar removal protrusion (6X) Gate burr area Active Area Depth,.5 mm REF Branding scale and appearance at supplier discretion Hall element, not to scale NOM Copyright 29-21, reserves the right to make, from time to time, such de par tures from the detail spec i fi ca tions as may be required to permit improvements in the per for mance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current. Allegro s products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system. The in for ma tion in clud ed herein is believed to be ac cu rate and reliable. How ev er, assumes no responsibility for its use; nor for any in fringe ment of patents or other rights of third parties which may result from its use. For the latest version of this document, visit our website: Worcester, Massachusetts U.S.A ; 13

Chopper Stabilized Precision Hall Effect Latches

Chopper Stabilized Precision Hall Effect Latches A122, A1221, Features and Benefits Symmetrical latch switchpoints Resistant to physical stress Superior temperature stability Output short-circuit protection Operation from unregulated supply down to 3

More information

Chopper Stabilized Precision Hall Effect Switches

Chopper Stabilized Precision Hall Effect Switches Features and Benefits Unipolar switchpoints Resistant to physical stress Superior temperature stability Output short-circuit protection Operation from unregulated supply Reverse battery protection Solid-state

More information

A1126. Chopper Stabilized Omnipolar Hall-Effect Switch. Description

A1126. Chopper Stabilized Omnipolar Hall-Effect Switch. Description Features and Benefits Omnipolar operation Low switchpoint drift Superior temperature stability Insensitive to physical stress Reverse battery protection Robust EMC capability Robust ESD protection Packages:

More information

A1225, A1227, and A1229. Hall Effect Latch for High Temperature Operation

A1225, A1227, and A1229. Hall Effect Latch for High Temperature Operation A, A27, and A29 Features and Benefits Symmetrical switchpoints Superior temperature stability Operation from unregulated supply Open-drain ma output Reverse Battery protection Activate with small, commercially

More information

High-Temperature Chopper-Stabilized Precision Hall-Effect Switch for 5 V Applications

High-Temperature Chopper-Stabilized Precision Hall-Effect Switch for 5 V Applications APS112 Hall-Effect Switch for V Applications FEATURES AND BENEFITS Optimized for applications with regulated power rails Operation from 2.8 to. V AEC-Q1 automotive qualified Operation up to 17 C junction

More information

Continuous-Time Switch Family

Continuous-Time Switch Family Features and Benefits Continuous-time operation Fast power-on time Low noise Stable operation over full operating temperature range Reverse battery protection Solid-state reliability Factory-programmed

More information

A3282. Features and Benefits. Chopper stabilization Superior temperature stability Extremely low switchpoint drift Insensitive to physical stress

A3282. Features and Benefits. Chopper stabilization Superior temperature stability Extremely low switchpoint drift Insensitive to physical stress Package LH, 3-pin Surface Mount GND 3 1 3 2 1 2 Package UA, 3-pin SIP The A3282 Hall-effect sensor is a temperature stable, stress-resistant latch. Superior high-temperature performance is made possible

More information

Description (continued) The is rated for operation between the ambient temperatures 4 C and 85 C for the E temperature range, and 4 C to C for the L t

Description (continued) The is rated for operation between the ambient temperatures 4 C and 85 C for the E temperature range, and 4 C to C for the L t Chopper-Stabilized Hall-Effect Latch Features and Benefits Chopper stabilization Superior temperature stability Extremely low switchpoint drift Insensitive to physical stress Reverse battery protection

More information

Discontinued Product

Discontinued Product A323 Chopper-Stabilized Hall-Effect Bipolar Switch Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available.

More information

A1101, A1102, A1103, A1104, and A1106

A1101, A1102, A1103, A1104, and A1106 Package LH, 3-pin Surface Mount GND 3 1 2 1 2 VCC VOUT Package UA, 3-pin SIP 3 The Allegro A111-A114 and A116 Hall-effect switches are next generation replacements for the popular Allegro 312x and 314x

More information

A1260. Chopper Stabilized Precision Vertical Hall-Effect Latch PACKAGES:

A1260. Chopper Stabilized Precision Vertical Hall-Effect Latch PACKAGES: FEATURES AN BENEFITS Magnetic Sensing Parallel to Surface of the Package Highly Sensitive Switch Thresholds Symmetrical Latch Switch Points Operation From Unregulated Supply own to 3 V Small Package Sizes

More information

A3290 and A3291 Chopper Stabilized, Precision Hall Effect Latches for Consumer and Industrial Applications

A3290 and A3291 Chopper Stabilized, Precision Hall Effect Latches for Consumer and Industrial Applications for Consumer and Industrial Applications Features and enefits Symmetrical switchpoints Resistant to physical stress Superior temperature stability Output short-circuit protection Operation from unregulated

More information

Low Current Ultrasensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

Low Current Ultrasensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches Chopper-Stabilized Unipolar Hall Effect Switches Features and Benefits Chopper stabilization Low switchpoint drift over operating temperature range Low sensitivity to stress Factory programmed at end-of-line

More information

Continuous-Time Bipolar Switch Family

Continuous-Time Bipolar Switch Family FEATURES AND BENEFITS AEC-Q1 automotive qualified Continuous-time operation Fast power-on time Low noise Stable operation over full operating temperature range Reverse-battery protection Solid-state reliability

More information

Continuous-Time Bipolar Switch Family

Continuous-Time Bipolar Switch Family A1, A2, A3, and A1 Features and Benefits Continuous-time operation Fast power-on time Low noise Stable operation over full operating temperature range Reverse battery protection Solid-state reliability

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: October 31, 2011 Recommended

More information

A3213 and A3214. Micropower Ultra-Sensitive Hall-Effect Switches. Packages:

A3213 and A3214. Micropower Ultra-Sensitive Hall-Effect Switches. Packages: FEATURES AND BENEFITS Micropower operation Operate with north or south pole 2.4 to 5.5 V battery operation Chopper stabilized Superior temperature stability Extremely low switchpoint drift Insensitive

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: October, for the AEUA-T

More information

SW REVISED DECEMBER 2016

SW REVISED DECEMBER 2016 www.senkomicro.com REVISED DECEMBER 2016 Chopper Stabilized, Precision Hall Effect Latches for Consumer and Industrial Applications FEATURES AND BENEFITS Symmetrical Latch switch points Resistant to physical

More information

Continuous-Time Bipolar Switch

Continuous-Time Bipolar Switch FEATURES AN BENEFITS Continuous-time operation Fast power-on time Low noise Stable operation over full operating temperature range Reverse battery protection Solid-state reliability Factory-programmed

More information

Continuous-Time Bipolar Switch Family

Continuous-Time Bipolar Switch Family FEATURES AN BENEFITS AEC-Q1 automotive qualified Continuous-time operation Fast power-on time Low noise Stable operation over full operating temperature range Reverse-battery protection Solid-state reliability

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: June 2, 214 Recommended

More information

3280, 3281, AND 3283 CHOPPER-STABILIZED, PRECISION HALL-EFFECT LATCHES. Suffix ' LT' & ' UA' Pinning (SOT89/TO-243AA & ultra-mini SIP)

3280, 3281, AND 3283 CHOPPER-STABILIZED, PRECISION HALL-EFFECT LATCHES. Suffix ' LT' & ' UA' Pinning (SOT89/TO-243AA & ultra-mini SIP) 28, 281, AND 28 Data Sheet 2769.2b Suffix ' LT' & ' UA' Pinning (SOT89/TO-24AA & ultra-mini SIP) X V CC 1 SUPPLY 2 GROUND PTCT Dwg. PH--2 Pinning is shown viewed from branded side. OUTPUT The A28--, A281--,

More information

A3280, A3281, and A3283 Chopper-Stabilized, Precision Hall-Ef fect Latches

A3280, A3281, and A3283 Chopper-Stabilized, Precision Hall-Ef fect Latches , Hall-Ef fect Latches Features and Benefits Symmetrical switch points Resistant to physical stress Superior temperature stability Output short-circuit protection Operation from unregulated supply Reverse

More information

Distributed by: www.jameco.com 1-8-81-4242 The content and copyrights of the attached material are the property of its owner. Data Sheet 27621.2d HALL-EF FECT SWITCH Suffix LT & UA Pinning (SOT89/TO-24AA

More information

A3290 and A3291 Chopper Stabilized, Precision Hall Effect Latches for Consumer and Industrial Applications

A3290 and A3291 Chopper Stabilized, Precision Hall Effect Latches for Consumer and Industrial Applications for Consumer and Industrial Applications FEATURES AN ENEFITS Symmetrical switchpoints Resistant to physical stress Superior temperature stability Output short-circuit protection Operation from unregulated

More information

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: October 29, 2010

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: October 29, 2010 , Last Time Buy The A3283 part is in production but has been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice has been given. Sale of this device is

More information

Discontinued Product

Discontinued Product Chopper-Stabilized Unipolar Hall-Effect Switches Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available.

More information

A1321, A1322, and A1323

A1321, A1322, and A1323 Features and enefits Temperature-stable quiescent output voltage Precise recoverability after temperature cycling Output voltage proportional to magnetic flux density Ratiometric rail-to-rail output Improved

More information

A1266. Micropower Ultrasensitive 3D Hall-Effect Switch PACKAGES:

A1266. Micropower Ultrasensitive 3D Hall-Effect Switch PACKAGES: Micropower Ultrasensitive 3 Hall-Effect Switch FEATURES AN BENEFITS True 3 sensing Omnipolar operation with either north or south pole. to. operation Low supply current High sensitivity, B OP typically

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: May, Recommended Substitutions:

More information

A3250 and A3251 Field-Programmable, Chopper-Stabilized Unipolar Hall-Effect Switches

A3250 and A3251 Field-Programmable, Chopper-Stabilized Unipolar Hall-Effect Switches A325 and Field-Programmable, Chopper-Stabilized Features and Benefits Chopper stabilization for stable switchpoints throughout operating temperature range Externally programmable operate point (through

More information

ATS635LSE and ATS636LSE Programmable Back Biased Hall-Effect Switch with TPOS Functionality

ATS635LSE and ATS636LSE Programmable Back Biased Hall-Effect Switch with TPOS Functionality Features and Benefits Chopper Stabilization Extremely low switchpoint drift over temperature On-chip Protection Supply transient protection Output short-circuit protection Reverse-battery protection True

More information

A3280, A3281, and A3283 Chopper-Stabilized, Precision Hall-Ef fect Latches

A3280, A3281, and A3283 Chopper-Stabilized, Precision Hall-Ef fect Latches , Hall-Ef fect Latches Features and Benefits Symmetrical switch points Resistant to physical stress Superior temperature stability Output short-circuit protection Operation from unregulated supply Reverse

More information

Discontinued Product

Discontinued Product Chopper-Stabilized Unipolar Hall-Effect Switches Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available.

More information

Continuous-Time Bipolar Switch

Continuous-Time Bipolar Switch A1 2 - FEATURES AN BENEFITS AEC-Q1 automotive qualified Quality managed (QM), ISO 26262:211 compliant Ideal for applications that require pulsing V CC to conserve power Continuous-time operation Fast power-on

More information

A1230 Ultra-Sensitive Dual-Channel Quadrature Hall-Effect Bipolar Switch

A1230 Ultra-Sensitive Dual-Channel Quadrature Hall-Effect Bipolar Switch Features and Benefits Two matched Hall effect switches on a single substrate mm Hall element spacing Superior temperature stability and industry-leading jitter performance through use of advanced chopperstabilization

More information

Discontinued Product

Discontinued Product Chopper-Stabilized Unipolar Hall-Effect Switches Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available.

More information

2-pin ultramini SIP 1.5 mm 4 mm 4 mm (suffix UB) UB package only. To all subcircuits. Clock/Logic. Sample and Hold. Amp.

2-pin ultramini SIP 1.5 mm 4 mm 4 mm (suffix UB) UB package only. To all subcircuits. Clock/Logic. Sample and Hold. Amp. FEATURES AND BENEFITS Choice of factory-set temperature coefficient (TC) for use with ferrite or rare-earth magnets Field programmable for optimized switchpoints AEC-Q100 automotive qualified On-board

More information

SUPPLY GROUND NO (INTERNAL) CONNECTION Data Sheet a SUNSTAR 传感与控制 61 AND 62 Suffix Code 'LH' Pinning (SOT2W) X NC 1

SUPPLY GROUND NO (INTERNAL) CONNECTION Data Sheet a SUNSTAR 传感与控制   61 AND 62 Suffix Code 'LH' Pinning (SOT2W) X NC 1 A61 and A62 2-Wire Chopper Stabilized Hall Effect Switches Discontinued Product These parts are no longer in production The device should not be purchased for new design applications. Samples are no longer

More information

A1266. Micropower Ultrasensitive 3D Hall-Effect Switch PACKAGES:

A1266. Micropower Ultrasensitive 3D Hall-Effect Switch PACKAGES: FEATURES AN BENEFITS True 3 sensing Omnipolar operation with either north or south pole. to. operation Low supply current High sensitivity, B OP typically G Chopper-stabilized offset cancellation Superior

More information

Distributed by: www.jameco.com 1-8-81-4242 The content and copyrights of the attached material are the property of its owner. 28, 281, AND 28 Data Sheet 2769.2e HALL-EF FECT LATCHES Suffix ' LT' & ' UA'

More information

A1171. Micropower Ultrasensitive Hall Effect Switch

A1171. Micropower Ultrasensitive Hall Effect Switch Features and Benefits 1.65 to 3.5 V battery operation Low supply current High sensitivity, B OP typically 3 G (3. mt) Operation with either north or south pole Configurable unipolar or omnipolar magnetic

More information

A3425. Ultra-Sensitive Dual-Channel Quadrature Hall-Effect Bipolar Switch

A3425. Ultra-Sensitive Dual-Channel Quadrature Hall-Effect Bipolar Switch Features and Benefits Two matched Hall effect switches on a single substrate Sensor Hall element spacing approximately mm Superior temperature stability. to operation Integrated ESD diode from OUTPUT and

More information

ARS ASIL-Compliant Wheel Speed Sensor IC. PACKAGE: 2-pin SIP (suffix UB) Functional Block Diagram VCC GND

ARS ASIL-Compliant Wheel Speed Sensor IC. PACKAGE: 2-pin SIP (suffix UB) Functional Block Diagram VCC GND - FEATURES AND BENEFITS Integrated diagnostics and certified safety design process for ASIL B compliance Integrated capacitor reduces need for external EMI protection components True zero-speed operation

More information

Discontinued Product

Discontinued Product with Hall Commutation and Soft Switching, Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: March 4, 2013 Recommended

More information

A1233. Dual-Channel Hall-Effect Direction Detection Sensor IC

A1233. Dual-Channel Hall-Effect Direction Detection Sensor IC - FEATURES AND BENEFITS AEC-Q00 automotive qualified Quality Managed (QM), ISO 66 compliant Precisely aligned dual Hall elements Tightly matched magnetic switchpoints Speed and direction outputs Individual

More information

A1448. Package: 6-contact MLP/DFN 1.5 mm 2 mm 0.40 mm maximum overall height (EW package) Functional Block Diagram.

A1448. Package: 6-contact MLP/DFN 1.5 mm 2 mm 0.40 mm maximum overall height (EW package) Functional Block Diagram. Features and Benefits Low-voltage operation,.8 to 4.2 V Multifunction ONTROL pin input: Direct input PWM for speed control Active braking for fast stop cycle Sleep function to reduce average power consumption

More information

A1388 and A1389. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package

A1388 and A1389. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package FEATURES AND BENEFITS 5.0 V supply operation QVO temperature coefficient programmed at Allegro for improved accuracy Miniature package options High-bandwidth, low-noise analog output High-speed chopping

More information

A3121, A3122, and A3133

A3121, A3122, and A3133 A3121, A3122, and A3133 Hall Effect Switches for High Temperature Operation Discontinued Product These parts are no longer in production The device should not be purchased for new design applications.

More information

A1130, A1131, and A1132 Two-Wire Unipolar Vertical Hall-Effect Switches with Advanced Diagnostics

A1130, A1131, and A1132 Two-Wire Unipolar Vertical Hall-Effect Switches with Advanced Diagnostics 2 - A110, A111, FEATURES AND BENEFITS ISO 26262:2011 compliant Achieves ASIL B as a stand-alone component A 2- SIL documentation available including FMEDA and Safety Manual Continuously operating background

More information

A3909. Dual Full Bridge Motor Driver. Description. Features and Benefits. Packages: Functional Block Diagram

A3909. Dual Full Bridge Motor Driver. Description. Features and Benefits. Packages: Functional Block Diagram Features and Benefits Low R DS(on) outputs Drives two DC motors or single stepper motor Low power standby (Sleep) mode with zero current drain Thermal shutdown protection Parallel operation option for.8

More information

A1318 and A1319. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package

A1318 and A1319. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package Features and Benefits 3.3 V supply operation QVO temperature coefficient programmed at Allegro for improved accuracy Miniature package options High-bandwidth, low-noise analog output High-speed chopping

More information

3141 THRU 3144 SENSITIVE HALL-EFFECT SWITCHES FOR HIGH-TEMPERATURE OPERATION. FEATURES and BENEFITS V CC GROUND OUTPUT SUPPLY

3141 THRU 3144 SENSITIVE HALL-EFFECT SWITCHES FOR HIGH-TEMPERATURE OPERATION. FEATURES and BENEFITS V CC GROUND OUTPUT SUPPLY 3141 THRU 3144 Data Sheet 27621.6B* FOR HIGH-TEMPERATURE OPERATION X These Hall-effect switches are monolithic integrated circuits with tighter magnetic specifications, designed to operate continuously

More information

A1308 and A1309. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package

A1308 and A1309. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package FEATURES AND BENEFITS 5 V supply operation QVO temperature coefficient programmed at Allegro for improved accuracy Miniature package options High-bandwidth, low-noise analog output High-speed chopping

More information

ATS692LSH(RSNPH) Two-Wire, Differential, Vibration Resistant Sensor IC with Speed and Direction Output

ATS692LSH(RSNPH) Two-Wire, Differential, Vibration Resistant Sensor IC with Speed and Direction Output Features and Benefits Two-wire, pulse width output protocol Digital output representing target profile Speed and direction information of target Vibration tolerance Small signal lockout for small amplitude

More information

ATS617LSG. Dynamic, Self-Calibrating, Peak-Detecting, Differential Hall Effect Gear Tooth Sensor IC

ATS617LSG. Dynamic, Self-Calibrating, Peak-Detecting, Differential Hall Effect Gear Tooth Sensor IC Features and Benefits Self-calibrating for tight timing accuracy First-tooth detection Immunity to air gap variation and system offsets Immunity to signature tooth offsets Integrated capacitor provides

More information

HALL-EFFECT SWITCH FOR 2-WIRE APPLICATIONS

HALL-EFFECT SWITCH FOR 2-WIRE APPLICATIONS Data Sheet 27621.3A 3161 X This Hall-effect switch is a monolithic integrated circuit designed to operate continuously over extended temperatures to +85 C. The unipolar switching characteristic makes this

More information

A3949. DMOS Full-Bridge Motor Driver. Features and Benefits Single supply operation Very small outline package Low R DS(ON)

A3949. DMOS Full-Bridge Motor Driver. Features and Benefits Single supply operation Very small outline package Low R DS(ON) Features and Benefits Single supply operation Very small outline package Low R DS(ON) outputs Sleep function Internal UVLO Crossover current protection Thermal shutdown protection Packages: Description

More information

3185 THRU 3189 HALL-EFFECT LATCHES FOR HIGH-TEMPERATURE OPERATION FEATURES. ABSOLUTE MAXIMUM RATINGS at T A = +25 C V CC GROUND OUTPUT SUPPLY

3185 THRU 3189 HALL-EFFECT LATCHES FOR HIGH-TEMPERATURE OPERATION FEATURES. ABSOLUTE MAXIMUM RATINGS at T A = +25 C V CC GROUND OUTPUT SUPPLY 3185 THRU 3189 Data Sheet 2769.2A X V CC These Hall-effect latches are extremely temperature-stable and stressresistant sensors especially suited for operation over extended temperature ranges to +15 C.

More information

A4941. Three-Phase Sensorless Fan Driver

A4941. Three-Phase Sensorless Fan Driver Features and Benefits Sensorless (no Hall sensors required) Soft switching for reduced audible noise Minimal external components PWM speed input FG speed output Low power standby mode Lock detection Optional

More information

A6850. Dual Channel Switch Interface IC. Features and Benefits 4.75 to 26.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback

A6850. Dual Channel Switch Interface IC. Features and Benefits 4.75 to 26.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback Features and Benefits 4.75 to 6.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback Survive short-to-battery and short-to-ground faults Survive 40 V load dump >4 kv ESD rating on

More information

ATS668LSM True Zero-Speed High-Accuracy Gear Tooth Sensor IC

ATS668LSM True Zero-Speed High-Accuracy Gear Tooth Sensor IC FEATURES AND BENEFITS Three-wire back-biased speed sensor optimized for transmission speed-sensing applications Integrated in-package EMC protection circuit allows compliance to most Automotive EMC environments

More information

Discontinued Product

Discontinued Product Discontinued Product These parts are no longer in production The device should not be purchased for new design applications. Samples are no longer available. Date of status change: May 2, 2011 Recommended

More information

A4950. Full-Bridge DMOS PWM Motor Driver. Description

A4950. Full-Bridge DMOS PWM Motor Driver. Description Features and Benefits Low R DS(on) outputs Overcurrent protection (OCP) Motor short protection Motor lead short to ground protection Motor lead short to battery protection Low Power Standby mode Adjustable

More information

Discontinued Product

Discontinued Product True Zero-Speed Low-Jitter High Accuracy Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date

More information

UDN2987x-6 DABIC-5 8-Channel Source Driver with Overcurrent Protection

UDN2987x-6 DABIC-5 8-Channel Source Driver with Overcurrent Protection Features and Benefits 4.75 to 35 V driver supply voltage Output enable-disable (OE/R) 350 ma output source current Overcurrent protected Internal ground clamp diodes Output Breakdown Voltage 35 V minimum

More information

Discontinued Product

Discontinued Product Discontinued Product These parts are no longer in production The device should not be purchased for new design applications. Samples are no longer available. Date of status change: January 31, 211 Recommended

More information

Cosemitech. Automotive Product Group. FEATURES and FUNCTIONAL DIAGRAM

Cosemitech. Automotive Product Group. FEATURES and FUNCTIONAL DIAGRAM FEATURES and FUNCTIONAL DIAGRAM AEC-Q100 automotive qualified Digital Omnipolar-Switch Hall Sensor Superior Temperature Stability Multiple Sensitivity Options (BOP / BRP): ±25 / ±15 Gauss; ±70 /±35 Gauss;

More information

A16100 Three-Wire Differential Sensor IC for Cam Application, Programmable Threshold

A16100 Three-Wire Differential Sensor IC for Cam Application, Programmable Threshold FEATURES AND BENEFITS Allegro UC package with integrated EMC components provides robustness to most automotive EMC requirements Optimized robustness against magnetic offset variation Small signal lockout

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: October 31, 011 Recommended

More information

Discontinued Product

Discontinued Product with Internally or Externally Controlled Sample and Sleep Periods Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are

More information

A1301 and A1302. Continuous-Time Ratiometric Linear Hall Effect Sensor ICs

A1301 and A1302. Continuous-Time Ratiometric Linear Hall Effect Sensor ICs Features and enefits Low-noise output Fast power-on time Ratiometric rail-to-rail output 4.5 to 6.0 V operation Solid-state reliability Factory-programmed at end-of-line for optimum performance Robust

More information

HALL-EFFECT, DIRECTION-DETECTION SENSORS

HALL-EFFECT, DIRECTION-DETECTION SENSORS Data Sheet 2765.1A* 3422 S V CC X SUPPLY LOGIC DIRECTION E1 GROUND E2 X E1 OUTPUT SPEED Dwg. PH-15 Pinning is shown viewed from branded side. ABSOLUTE IMUM RATINGS Supply Voltage, V CC............. 18

More information

ATS688LSN Two-Wire, Zero-Speed Differential Gear Tooth Sensor IC

ATS688LSN Two-Wire, Zero-Speed Differential Gear Tooth Sensor IC FEATURES AND BENEFITS Integrated capacitor reduces requirements for external EMI protection components Fully optimized differential digital gear tooth sensor IC Running mode lockout AGC and reference adjust

More information

A1684LUB Two-Wire, Zero-Speed, High Accuracy Differential Sensor IC

A1684LUB Two-Wire, Zero-Speed, High Accuracy Differential Sensor IC FEATURES AND BENEFITS Integrated capacitor reduces requirement for external EMI protection component Fully optimized differential digital ring magnet and gear tooth sensor IC Running Mode Lockout Unique

More information

A6B Bit Serial-Input DMOS Power Driver

A6B Bit Serial-Input DMOS Power Driver Features and Benefits 50 V minimum output clamp voltage 150 ma output current (all outputs simultaneously) 5 Ω typical r DS(on) Low power consumption Replacement for TPIC6B595N and TPIC6B595DW Packages:

More information

A4970. Dual Full-Bridge PWM Motor Driver

A4970. Dual Full-Bridge PWM Motor Driver Dual Full-Bridge PWM Motor Driver Features and Benefits 750 ma continuous output current 45 V output sustaining voltage Internal clamp diodes Internal PWM current control Low output saturation voltage

More information

Typical Application VCC IP+ ACS755 GND C F 3 R F

Typical Application VCC IP+ ACS755 GND C F 3 R F Features and Benefits Monolithic Hall IC for high reliability Single +5 V supply 3 kv RMS isolation voltage between terminals /5 and pins 1/2/3 for up to 1 minute 35 khz bandwidth Automotive temperature

More information

A4954 Dual Full-Bridge DMOS PWM Motor Driver

A4954 Dual Full-Bridge DMOS PWM Motor Driver Dual Full-Bridge DMOS Features and Benefits Low R DS(on) outputs Overcurrent protection (OCP) Motor short protection Motor lead short to ground protection Motor lead short to battery protection Low Power

More information

ATS643LSH Self-Calibrating, Zero-Speed Differential Gear Tooth Sensor IC with Continuous Update

ATS643LSH Self-Calibrating, Zero-Speed Differential Gear Tooth Sensor IC with Continuous Update Features and Benefits Fully-optimized differential digital gear tooth sensor IC Single chip-ic for high reliability Internal current regulator for 2-wire operation Small mechanical size (8 mm diameter

More information

A6850. Dual Channel Switch Interface IC. Features and Benefits 4.75 to 26.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback

A6850. Dual Channel Switch Interface IC. Features and Benefits 4.75 to 26.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback Features and Benefits 4.75 to 6.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback Survive short-to-battery and short-to-ground faults Survive 40 V load dump >4 kv ESD rating on

More information

For Reference Only DUAL-OUTPUT HALL-EFFECT SWITCH FEATURES. ABSOLUTE MAXIMUM RATINGS at T A = +25 C

For Reference Only DUAL-OUTPUT HALL-EFFECT SWITCH FEATURES. ABSOLUTE MAXIMUM RATINGS at T A = +25 C Data Sheet 27633b Type UGN3235K Hall-effect sensor ICs are bipolar integrated circuits designed for commutation of brushless dc motors, and other rotary encoding applications using multi-pole ring magnets.

More information

A8431. White LED Driver Constant Current Step-up Converter

A8431. White LED Driver Constant Current Step-up Converter Features and Benefits Output voltage up to 32 V ( level) 2. to 0 V input Drives up to 4 LEDs at 20 ma from a 2. V supply Drives up to LEDs at 20 ma from a 3 V supply.2 MHz switching frequency 300 ma switch

More information

Discontinued Product

Discontinued Product Dual Full-Bridge PWM Motor Driver Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status

More information

DISCONTINUED PRODUCT FOR REFERENCE ONLY COMPLEMENTARY OUTPUT POWER HALL LATCH 5275 COMPLEMENTARY OUTPUT POWERHALL LATCH FEATURES

DISCONTINUED PRODUCT FOR REFERENCE ONLY COMPLEMENTARY OUTPUT POWER HALL LATCH 5275 COMPLEMENTARY OUTPUT POWERHALL LATCH FEATURES 5275 POWER HALL LATCH Data Sheet 27632B X V CC 1 SUPPLY ABSOLUTE MAXIMUM RATINGS at T A = +25 C Supply Voltage, V CC............... 14 V Magnetic Flux Density, B...... Unlimited Type UGN5275K latching

More information

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: October 29, 2010

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: October 29, 2010 Last Time Buy This part is in production but has been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice has been given. Sale of this device is currently

More information

ATS675LSE Self-Calibrating TPOS Speed Sensor IC Optimized for Automotive Cam Sensing Applications

ATS675LSE Self-Calibrating TPOS Speed Sensor IC Optimized for Automotive Cam Sensing Applications Features and Benefits Chopper stabilized; optimized for automotive cam sensing applications Rapid transition from TPOS mode to high accuracy running mode switchpoints High immunity to signal anomalies

More information

A6833. DABiC-5 32-Bit Serial Input Latched Sink Drivers

A6833. DABiC-5 32-Bit Serial Input Latched Sink Drivers DABiC-5 32-Bit Serial Input Latched Sink Drivers Features and Benefits 3.3 to 5 V logic supply range To 10 MHz data input rate 30 V minimum output breakdown Darlington current-sink outputs Low-power CMOS

More information

ATS128LSE Highly Programmable, Back-Biased, Hall-Effect Switch with TPOS Functionality

ATS128LSE Highly Programmable, Back-Biased, Hall-Effect Switch with TPOS Functionality Hall-Effect Switch with TPOS Functionality Features and Benefits Chopper stabilization for stable switchpoints throughout operating temperature range User-programmable: Magnetic operate point through the

More information

A8499. High Voltage Step-Down Regulator

A8499. High Voltage Step-Down Regulator Features and Benefits 8 to 0 V input range Integrated DMOS switch Adjustable fixed off-time Highly efficient Adjustable. to 4 V output Description The A8499 is a step down regulator that will handle a

More information

A6818 DABiC-IV 32-Bit Serial Input Latched Source Driver

A6818 DABiC-IV 32-Bit Serial Input Latched Source Driver Features and Benefits Controlled output slew rate 60 V minimum output break down PNP active pull-downs Low-power CMOS logic and latches High-speed data storage High data-input rate Low output-saturation

More information

HALL-EFFECT, DIRECTION-DETECTION SENSORS

HALL-EFFECT, DIRECTION-DETECTION SENSORS S Data Sheet 2765.1B V CC SUPPLY E1 X LOGIC E2 DIRECTION GROUND X E1 OUTPUT SPEED Dwg PH-15 Pinning is shown viewed from branded side. ABSOLUTE IMUM RAT INGS Supply Voltage, V CC.............. 18 V Magnetic

More information

Typical Application VCC IP+ ACS755 GND C F 3 R F

Typical Application VCC IP+ ACS755 GND C F 3 R F Features and Benefits Monolithic Hall IC for high reliability Single +5 V supply 3 kv RMS isolation voltage between terminals 4/5 and pins 1/2/3 for up to 1 minute 35 khz bandwidth Automotive temperature

More information

A Bit Serial Input, Constant-Current Latched LED Driver

A Bit Serial Input, Constant-Current Latched LED Driver Features and Benefits Up to 9 ma constant-current outputs Undervoltage lockout Low-power CMOS logic and latches High data input rate Functional replacement for TB6276BN/BF Packages Not to scale 24-pin

More information

Discontinued Product

Discontinued Product Discontinued Product This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available. Date of status change: November 1, 2010 Recommended

More information

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: April 30, 2011

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: April 30, 2011 DABiC-5 32-Bit Serial Input Latched Sink Drivers Last Time Buy This part is in production but has been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice

More information

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: April 30, 2011

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: April 30, 2011 Last Time Buy This part is in production but has been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice has been given. Sale of this device is currently

More information

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: April 30, 2011

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: April 30, 2011 DABiC-5 32-Bit Serial Input Latched Sink Drivers Last Time Buy This part is in production but has been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice

More information