Size: px
Start display at page:

Download ""

Transcription

1 Page 1 of 5 Search: The Web Tripod Report Abuse «Previous Top 100 Next» share: del.icio.us digg reddit furl facebook Ads by Google Matched Tubes/Valves Computer Matched, Full warranty 6L6, E34L, ecc83s Gold and more AMETEK Programmable Power AC / DC / Modular Power Products Electronic Loads / Custom Power Steam-One S.r.l. Valvole ed accessori per il Vapore Regolatori Pressione - Scaricatori FEMTO Low-Noise Amplifier Current, voltage, transimpedance and lock-in amplifier modules 12 Volt Superheterodyne Receiver This Medium Wave AM Superheterodyne receiver works entirely from 12V with no high voltage supply. A valve radio that operates from 12V? Nothing unusual you may think; after all millions of valve car radios were powered by 6 or 12V accumulators. However, these still required the usual V supply which was normally provided by a vibrator power supply, or in some sets, a genemotor. The set described here does not require the high voltage supply. Now, you're probably thinking of the valves released in the late 1950's used in hybrid car radios. These did indeed run off 12V for the plates and screens. The audio output stage in these sets used one or more transistors as even this series of valves was still incapable of much power output at low voltages. No, this set uses ordinary 250V valves of the kind used in mains operated radios and runs entirely from 12V DC. Low voltage operation of valves. My attention was drawn to the possibility of low voltage operation in the mid 1980's when I was doing extensive work with my two valve regenerative receiver. In designing an automatic regeneration control I became aware that the detector valve normally operated at around 20V with the optimum regeneration setting. Later, I built a car radio based on this circuit, and thought it would be interesting to see what happened if I tried 12V B+. So, I unplugged the vibrator and connected a clip lead from the 12V supply to the second B+ filter capacitor which normally had 150V across it. Not only did sounds issue forth, but I was surprised at the performance given the low voltage. It wasn't very loud, but all the usual stations could be tuned in. The valves used were 6BL8 for the detector and 6BM8 for the audio; these being ordinary TV valves. Over subsequent years I tried experimental regenerative detector circuits with 12V high tension with good results. It was clear that they had the same sensitivity as their mains operated counterparts, but with lower output. Eventually, along came the Kosmos Radiomann with its 12V high tension. It was my previous experience with low voltage operation that made me aware that all was not well with the design of this set, which I discuss in detail in that article. Low voltage one or two valve regenerative sets are actually not unusual and circuits have occasionally appeared in various publications over the years. Commonly, an audio output valve is used, such as 1Q5 with something like 9 or 13.5V B+. An audio output valve is used as it passes somewhat greater current at the lower voltage. In fact, such a receiver will provide similar volume into its headphones as a conventional set operating at 45 or 90V. Another method was to use space charge techniques. The type 49 valve is an example of such a valve used here. It is classified as a "dual grid" valve. The problem of course in using mains valves on something like 9V is weak electron flow. But, by applying a positive bias to the grid closest to the cathode, and increased electron flow can be forced to occur. The second grid is used as a control grid in the usual way. The 49 was especially suited for this service, but other circuits did appear using pentodes such as 6C6 or 6SJ7 in a kind of faux space charge mode operating at 6V on the plate. Apparently, the heaters must be run at a reduced (and critical) voltage. I've not had success with these latter designs yet. Hybrid Car Radio Valves. With the advent of power transistors in the late 1950's, a new car radio design appeared where valves were operated at 12V high tension but because of the low output, a power transistor (typically a 2N301 or OC26) was used to drive the speaker at the usual 2 or 3W. The advantage of this new design was elimination of the vibrator and power transformer, making the set more compact, and also reducing power consumption. The valves in the front end (RF, converter, IF, detector) were essentially their 250V mains counterparts, carefully constructed or selected to provide consistent predictable results, and given new type numbers. Even though the plate current is a milliamp or less for each stage, that's still enough to function. Gain is not reduced to the extent that one may think. In many of these sets, a special valve of the space charge type is used to develop sufficient power to drive the output transistor on its own. Best known of this type is the 12K5. It is unlike any mains valve. Other sets continue on with the conventionally constructed valves but use two or more transistors preceding the output transistor to obtain sufficient drive. I discuss the 12V hybrid valves here. It started as a joke. With all the misinformation on the internet, usually coming from those who have "just discovered" valves, I was becoming somewhat annoyed

2 Page 2 of 5 with comments that you need to use space charge valves if you want to use a low voltage supply, or that all the valves in a hybrid car radio are of the space charge type. Knowing full well that mains valves work with 12V high tension and that the supposed "hybrid valves" were in fact quite normal in construction (with the exception of a few space charge audio driver types), I thought I'd prove the naysayers wrong. Something I must say I enjoy doing...people who stick to the same old circuits and won't think outside the square. As regenerative receivers operating at 12V aren't that unusual, the project I decided on would be a normal Medium Wave superhet receiver. It would use the same circuit as a standard mains design of the kind that was made in the millions during the 1950's and 60's, with normal mains valves. Nothing weird that the naysayers could claim was cheating. As it turned out, not only did the receiver work, the performance exceeded by far even my own expectations. Instead of just proving the idea works, this receiver has better sensitivity than many other superhets. A typical superhet. In Australia during the 1950's -60's a typical valve radio running off the mains used one of two valve lineups, or a combination of both. Those using Philips valves would use 6AN7 as the triode hexode frequency converter, 6N8 as the IF amplifier and detector, 6M5 as the audio output, and 6V4 as rectifier. Because the sensitivity of the 6M5 is almost twice that of a 6V6, some sets did not bother with a preceding audio stage. Other variations of this lineup used a 6BH5 as the IF amplifier, with a 6BD7 for the detector and first audio stage. From the opposition came the AWA choice of valves; 6BE6 frequency converter, 6BA6 IF amplifier, 6AV6 detector and first audio, 6AQ5 as audio output and 6X4 as rectifier. As AWA was the Australian associate of RCA, their designs tended to follow American practice. Note that all these valves have 6.3V heaters. Radios with series heaters and B+ derived directly from the mains, as is common in other countries, were no longer made in Australia once DC mains ceased to exist, and even then they were a rarity. They were seen as a dangerous shock hazard by manufacturers and technicians in this country. Thus, most Australian valve radios are fitted with a power transformer. Until the 1950's, mains operated radios simply used a long wire aerial. Ferrite loopsticks started to appear in some sets at this time. Loop aerials of the type attached to the back of the cabinet as is done with U.S mantel radios were generally only ever used here with portables. The design of my set. At the start it was decided to use completely conventional valves in a completely conventional circuit to prove there is nothing unusual being done to obtain the end result. I had the remains of an AWA 568MA chassis which would provide the oscillator coil, IF transformers, and tuning condenser. The aerial coil was missing so I simply wound one using the data I used for this set, ignoring the regeneration tap of course. The converter would be a 6BE6 as the oscillator coil I had was designed for this valve. For the IF, I chose 6BA6 as I have a good quantity, likewise 6AV6 was chosen for the 2nd detector and first audio stage. Previous experimentation with audio output valves had shown 6AQ5 to be a poor performer. 6CM5 was the best I'd tried but the high heater current was undesirable for this set (I wanted to run it off my home lighting plant for long periods). A good compromise was found with the 6CW5/EL86. This valve was originally designed by Philips to drive their 800 ohm speakers in an unusual push pull circuit without a speaker transformer. However, a more common use in Australia was as a TV frame output valve. All the valves chosen for use in this set were taken at random from my stock. All were second hand and untested. Circuit of the 12V Superheterodyne Receiver. Note the circuit uses ordinary mains type valves in the conventional circuit. The design follows any other typical MW superhet receiver. The 6BE6 pentagrid accepts the incoming Kc/s signal and modulates it at the local oscillator frequency. The local oscillator is a conventional Hartley design in the cathode circuit. As the first grid is fed with the local oscillator signal, it modulates the electron stream passing through the 3rd grid which is where the incoming RF is fed in. The difference frequency is fed via a 455Kc/s double tuned transformer to the IF amplifier stage. This is a 6BA6 pentode which is the variable mu version of the 6AU6. A variable mu pentode should be used where the IF amplifier requires its gain to be adjustable, either by an AGC circuit or a manually adjustable bias used to control the receiver's volume. The amplified 455Kc/s signal is then fed via another double tuned transformer to a standard diode detector using the diodes of a 6AV6. After filtering and passing through a 1M volume control, the detected audio is fed into the grid of the 6AV6 triode for amplification, prior to being fed into the 6CW5 power pentode. Again, the circuit is conventional with a 10K to 8 ohm transformer feeding low impedance headphones or a loudspeaker. The DC component of the rectified IF signal is used to provide AGC in the usual way. Up to now, this description would apply to any mains operated valve superhet. Now, let's look at using this circuit with only 12V. How to use valves on 12V. Remembering we're using normal 250V valves, the plate current is going to be very low with only 12V. So first thing is to forget any idea of screen dropping resistors. We aren't going to need them, and they would be a hindrance. Any voltage drop to the plates and screens is to be avoided. What about bias? Again, the plate current is so low on 12V we actually don't need to negatively bias the valves for the purpose of limiting plate current. However, for the purpose of linear signal amplification they still require negative grid voltage. Without bias, the positive

3 Page 3 of 5 going signal would cause grid current to flow resulting in distortion. At 12V the bias voltages are much less than when the valves are run at 250V. In fact, typically a few hundred millivolts. And this voltage is somewhat more critical for correct operation. A volt either way mightn't make a huge difference with a 250V supply, but here with 12V it is the difference between the receiver working well or not at all. How to obtain grid bias? The logical method is of course to use cathode resistors. But in this circuit such resistors would rob the valves of precious plate and screen voltage, so it is not preferred. We could use a bias battery which would overcome this. Such a battery would last until it basically rots away as no current is drawn from it. There is an even better way to get our negative grid voltage with no battery or cathode resistors. Because the required voltage is so low, we can use contact bias. When a valve cathode is heated it emits electrons which are of course negatively charged. The grid being close to the cathode accumulates some of these electrons and thus acquires a negative charge. How great this charge is depends how fast the electrons leak back to the cathode. This is simply determined by a suitable resistor between grid and cathode. The lower the value the faster the electrons leak away, and the lower the negative grid voltage. The circuit is commonly used with high mu triodes like 6AV6 or 12AX7 in low level audio circuits where a resistor of typically 10M is connected from grid to earth. No other bias components are used. Contact bias turned out to work perfectly for all valves in this receiver. It is important to use only a high input resistance meter (e.g. a DMM has a typical input resistance of 10M) when attempting to measure the voltage developed from contact bias. A closer look at the design: Frequency converter. The aerial coil is home made, not having a suitable commercially made example to use. Because of aerial loading problems I included a series capacitor for the aerial input. This has been usual procedure with my regenerative sets, as towards the middle of the broadcast band it is difficult to achieve oscillation. As it turned out, with the superhet it isn't required. However it has been found useful for attenuation where the AGC is insufficient. This illustrates one of the advantages of using a superheterodyne circuit; the input tuned circuit does not have a critical effect on receiver performance. Receiver selectivity and gain are largely determined by the IF stage. The local oscillator circuit is exactly the same as used with a 250V powered receiver. Cathode feedback causes the oscillation. The 47uuF and 22K are the grid leak components and bias the first grid of the 6BE6. In series with the tuning condenser is a 420uuF padder condenser. The value of this is critical to ensure the local oscillator always runs at 455Kc/s above the aerial tuned circuit, from one end of the band to the other. In view of my aerial coil being non adjustable, the padder should be made adjustable instead, but in practice this wasn't necessary. The circuit oscillates strongly from one end of the band to the other with 12V. It was not necessary to increase the feedback or resort to unconventional circuits. AGC is fed into the 3rd grid of the 6BE6 via the aerial coil in the usual way via the 100K decoupling resistor and.068uf RF bypass. Under the receiver. The home made aerial coil is at the top right. IF amplifier. This is the simplest stage of the receiver with the 6BA6 having no cathode or screen resistors. AGC is fed in via the 470K decoupling resistor. The.22uF functions as an RF bypass for the IF transformer grid winding, as well as a time constant to prevent audio signal decreasing receiver gain. Detector& 1st audio. Both diode plates of the 6AV6 are paralleled in view of the simple AGC circuit used. Detected audio appears at the earthy end of the 2nd IF transformer's grid winding. RF is filtered out using the conventional circuit consisting of two 100uF condensers and a 47K resistor. The filtered audio proceeds to a 1M volume control whereupon the required level comes back to the grid of the 6AV6. The plate resistor is the same as one would use on 250V, being 220K. Any RF that has got through is bypassed via a 330uuF condenser. Initially, I used a 10M grid resistor as one does for 250V, but found the bias was way too high, In fact the plate voltage was up around 11V, resulting in distortion. Reducing the grid resistor to 470K brought the plate voltage down to around 6 for proper class A operation, thus clearing up the sound. AGC. Negative DC also appears at the earthy end of the 2nd IF transformer secondary (because of the diode polarity) which is dependent on signal strength. It is thus used for AGC. Again this is completely conventional. Filtering is achieved by the 470K and.22uf time constant. However, a slight problem arose in that the level of contact bias developed across the 470K resistor is a little too high. The problem was that even with weak signals the 6BA6 and 6BE6 were not operating at full gain. I simply used a delay circuit as used in TV circuits to fix this one. By offsetting the negative voltage by means of a 3.3M resistor to B+, the problem was fixed. The value of this resistor is critical and had to be selected for maximum gain. Alternatively, a 2.2M resistor connected to the wiper of a pot across the 12V supply would provide adjustable delay. As can be expected, the AGC voltage developed with such low plate current in the IF amplifier is fairly low and control is limited. A long aerial used near strong transmitters could be problematic, although easily overcome with an attenuator. The other option would be to to forego the AGC altogether and have a manual control of the 6BA6 and 6BE6 bias, to function as a volume control, as was done in the 1930's. Audio output.

4 Page 4 of 5 As can be imagined, this section had the most thought and experiment put into it. While the RF and low level audio stages are happy with 12V B+, audio from a power output stage is severely limited. Ordinary power valves only pass a few milliamps at 12V. This means power output can never be very high. However, with careful choice of valves quite reasonable results can be obtained. In selecting a suitable type, we need to look for ones that have relatively high current at low plate voltages, such as TV deflection pentodes. For example, 6CM5/EL36 passes 100mA at 100V. It can be seen that 6V6 or 6AQ5 would give poor results as these only pass 45mA at 250V. Television audio valves of the type used in stacked audio/if circuits such as 12CA5 or 6BF5 have likely looking possibilities also, but these are not common in Australia. The other thing to look for is high heater current. The higher the heater current, the hotter the cathode and the more electrons emitted. What I decided on using was the 6CW5/EL86. I was going through a box of valves for an unrelated reason and upon spotting it I remembered its characteristics, and thought it worthy of investigation for 12V use. While the 6CM5 is the best "normal" valve that I've tried for 12V audio output work, it does have a high heater current at 1.2A, which is a lot for only 11mW audio power! In view of the receiver being operated for long periods off my 12V home lighting plant, I wanted to keep current consumption under 1A. The 6CW5 is an excellent compromise with its 760mA heater. This valve passes 70mA at 170V so looked promising. Indeed it proved to be, providing good sound level in a quiet room with just a 4" speaker. Optimum load turned out to be 10K and the grid resistor for contact bias, 1M. Output power is only 3.3mW before distortion. While that sounds horrendously low, it is actually enough to cause a definite vibration to be felt on the speaker cone. Naturally, a well baffled 12" speaker would give a somewhat louder sound. Sound through headphones is of course much louder, and can be made uncomfortably so, quite easily. Top view. Speaker transformer is at the left rear. Filter choke is immediately behind the speaker. Power supply. The incoming 12V is fed via a 4A fuse. Although the current consumption is only around 900mA, a 4A fuse allows for the switch on surge when the heaters are cold. Because all the valve heaters are 6.3V they are connected in series parallel. The combined heater currents of the 6BE6, 6BA6 and 6AV6 is 900mA. Thus, 140mA has to be shunted across the 6CW5 when its 760mA heater is connected in series. One could use 12BE6, 12BA6 and 12AV6 where the output valve also had a 12.6V heater and use a conventional parallel circuit. Entire B+ consumption is only 4mA! Because of noise on my 12V supply coming from various loads, it was necessary to filter the B+. Here, I obtained excellent results using a small iron cored filter choke of the type used in a modern car radio. It measured 5mH, so perhaps an ordinary RFC could be used. A choke was used instead of a resistor to avoid voltage drop. The 220uF provides further filtering and bypassing. If the radio is not used on a noisy supply, these components are not needed. RF bypassing for the front end B+ supply is by a 1uF polyester condenser. Electrolytics are unsuitable for this application. As the valves are all indirectly heated, it is not necessary to filter the heater supply. No reverse polarity protection is provided. One advantage of valves is that they aren't damaged by reverse polarity. The only components in a valve radio that might be damaged are the electrolytic condensers connected the B+ supply. There is only one in this set, and a non polarised type could have been used if there was a chance of reverse polarity connection. As it is, the receiver is connected by a polarised plug, and even if it was connected incorrectly, the 220uF would not be immediately damaged.

5 Page 5 of 5 At the rear are the aerial and earth terminals. Note the 12V polarised plug. Performance. The receiver worked immediately upon switch on and brought in all the Sydney stations (about 80km away). This was before I'd even done any alignment! Adjusting the IF transformers and then the trimmer capacitors brought up performance considerably. Finally, adding the 3.3M AGC delay resistor got the receiver sensitive down to the noise level. 2LT in Lithgow and 2BS in Bathurst came in at entertainment quality. After dark, all the usual interstate stations started coming in just like any 240V operated valve superhet. Of course, 2ZB from Wellington (NZ) was also receivable without problems from Sydney's 2KY being only a few channels away. Initially I had being testing the receiver from a 12V regulated power supply, but upon trying it on the 12V house supply the noise was unbearable. This is a result of several switchmode type power supplies being fed from this source. Fortunately, it wasn't too difficult to filter this out of the supply as previously described. Because of the aerial coil being non adjustable, gain does fall off towards the low frequency end of the band. The tracking alignment could be improved by using an adjustable padder, but this is not a priority in view of the ample sensitivity. Weak stations require the volume to be turned full up for speaker listening, while for local stations the audio power output capabilities are exceeded at much lower settings. AGC is limited, and for strong signals better performance is obtained by connecting the aerial in series with the 390uuF condenser. However, my aerial is about 40m long and provides a very strong signal. Further options. As a car receiver the design has possibilities. However, as it is, it would only be suitable for headphone reception and therefore should only be used by passengers. The aerial coupling would also need to be made tighter in view of the shorter aerial used on a car. Several possibilities would exist here, such as feeding the aerial into a tapping on the secondary winding, or even to the entire winding via a small capacitor. The capacitance of the aerial lead in would have to be taken into account when doing this. (This is why AM car radios have a user adjustable trimmer capacitor). As far as increasing audio power output is concerned, one could parallel another 6CW5, adjusting load impedance and perhaps bias to suit. However, a single 6CM5 will give nearly twice the power output as this arrangement with slightly less heater current. An interesting option in view of the very low B+ current drawn by the output stage would be to connect one or more 9V batteries in series with the 12V supply to the plate and screen of the 6CW5. A considerable increase in audio power output would be obtainable in this way. One could have the extra batteries able to be switched in as required, and thus they would last a very long time. Of course, bias and load impedance would need to selected for increased voltage operation. If several watts are desired, then an audio IC such as a TD2002/TDA2003/LM383 could be driven from a cathode follower after the detector. For example, one could replace the 6AV6 with a 12AU7, having one triode connected as a diode for the detector, and the second triode as a cathode follower to drive the IC. It should also be possible to simply drive a one or two transistor amplifier from the existing speaker transformer, either from the secondary winding or a tapping on the primary. In this case it might be possible to replace the 6CW5 with a lesser power valve. Note that I have not tried these circuits and they would require some experimentation. Home me: cablehack at yahoo dot com Ads by Google Toroidal transformers 100% UK manufactured toroidal transformers from 10VA to 1kVA Vacuum Tubes New, old and obscure Buy it at Antique Electronic Supply Aerospace RF Amplifiers We design & manufacture solid state RF/Microwave devices for aerospace. 6V, 12V, 24V DC Lighting DC Fluorescent Lamps, DC CFL Lamps 12V 24V DC Solar Light Bulb

A 100-Watt Transmitter Using a Pair of VT1625s

A 100-Watt Transmitter Using a Pair of VT1625s 12/16/2007 6:00 PM VT1625 100 Watt Transmitter A 100-Watt Transmitter Using a Pair of VT1625s FIG. 10.6 A 100-watt transmitter for five bands, using salvaged TV power transformer and surplus 1625 amplifier

More information

A GOOD REGENERATIVE RECEIVER WITH SIMPLE FINE TUNING (2008)

A GOOD REGENERATIVE RECEIVER WITH SIMPLE FINE TUNING (2008) A GOOD REGENERATIVE RECEIVER WITH SIMPLE FINE TUNING (2008) A good SSB-CW-AM regenerative receiver with a fine tuning by moving the wooden stick with a grounded piece of PCB towards the coil. A good regenerative

More information

1 TRANSISTOR CIRCUITS

1 TRANSISTOR CIRCUITS FM TRANSMITTERS The first group of circuits we will discuss are FM TRANSMITTERS. They can be called SPY TRANSMITTERS, FM BUGS, or a number of other interesting names. They all do the same thing. They transmit

More information

Radar. Radio. Electronics. Television. .104f 4E011 UNITED ELECTRONICS LABORATORIES LOUISVILLE

Radar. Radio. Electronics. Television. .104f 4E011 UNITED ELECTRONICS LABORATORIES LOUISVILLE Electronics Radio Television.104f Radar UNITED ELECTRONICS LABORATORIES LOUISVILLE KENTUCKY REVISED 1967 4E011 1:1111E111611 COPYRIGHT 1956 UNITED ELECTRONICS LABORATORIES POWER SUPPLIES ASSIGNMENT 23

More information

THE 1956 ZENITH ROYAL 500 TRANSISTOR OWL S EYES RADIO.

THE 1956 ZENITH ROYAL 500 TRANSISTOR OWL S EYES RADIO. THE 1956 ZENITH ROYAL 500 TRANSISTOR OWL S EYES RADIO. Dr. H. Holden. Feb. 2018. Introduction: The Zenith Royal 500 radio appeared in 1956, two years later than the Regency TR1 which was the first commercial

More information

51J-4 COMMUNICATIONS RECEIVER

51J-4 COMMUNICATIONS RECEIVER 51J-4 COMMUNICATIONS RECEIVER Transcribed from 520-5014-00 August 15, 1954 GENERAL DESCRIPTION The Collins 51J-4 Receiver is designed for communication applications where stability and dial accuracy of

More information

The Electro-Magnetic Spectrum

The Electro-Magnetic Spectrum The Electro-Magnetic Spectrum Part Three In This Issue: All about Tubes How a diode rectifier works How a triode amplifier works How the mixer in your receiver works Dear Friends: For quite some time I

More information

His Master s Voice SERVICE MANUAL FIVE-VALVE VIBRATOR POWERED BATTERY RECEIVERS. fo r. Model 329 Model 359. Dual - Wave Broadcast

His Master s Voice SERVICE MANUAL FIVE-VALVE VIBRATOR POWERED BATTERY RECEIVERS. fo r. Model 329 Model 359. Dual - Wave Broadcast PRIVATE A N D C O N F ID E N T IA L FOR TRADE USE O N L Y His Master s Voice I f SERVICE MANUAL fo r FIVE-VALVE VIBRATOR POWERED BATTERY RECEIVERS Dual - Wave Broadcast Model 329 Model 359 TECHNICAL SPECIFICATION

More information

SUPERHETERODYNE RECEIVERS. fesso 14 RRT N. Ashland Ave., Chicago 14, Illinois

SUPERHETERODYNE RECEIVERS. fesso 14 RRT N. Ashland Ave., Chicago 14, Illinois SUPERHETERODYNE RECEIVERS fesso 14 RRT -9 2533 N. Ashland Ave., Chicago 14, Illinois Radio Reception and Transmission LESSON RRT -9 SUPERHETERODYNE RECEIVERS CHRONOLOGICAL HISTORY OF RADIO AND TELEVISION

More information

Copyright 2016, R. Eckweiler & OCARC, Inc. Page 1 of 8

Copyright 2016, R. Eckweiler & OCARC, Inc. Page 1 of 8 HOM rev. new Heathkit of the Month: by Bob Eckweiler, AF6C Heathkit of the Month #72 - HW-12/22/32 SSB Transceivers Pt. II AMATEUR RADIO - SWL Heathkit HW-12 / HW-22 / HW-32 Single-Bander SSB Transceivers

More information

file:///c /BoatAnchors/Hammarlund/HQ170A/HQ170SVC.TXT Dear OM: This form is being prepared to provide prompt attention to a complaint as a result of trouble that may be experienced in the field. In addition

More information

Balanced Line Driver & Receiver

Balanced Line Driver & Receiver Balanced Line Driver & Receiver Rod Elliott (ESP) Introduction Sometimes, you just can't get rid of that %$#*& hum, no matter what you do. Especially with long interconnects (such as to a powered sub-woofer),

More information

RF and Optical Bolometer

RF and Optical Bolometer RF and Optical Bolometer When RF energy is delivered to a resistive load it dissipates heat. If the load has a relatively poor thermal coupling to its surrounding environment its temperature will rise.

More information

Long Loopstick Antenna

Long Loopstick Antenna Long Loopstick Antenna Wound on a 3 foot length of PVC pipe, the long loopstick antenna was an experiment to try to improve AM radio reception without using a long wire or ground. It works fairly well

More information

Copyright 2016, R. Eckweiler & OCARC, Inc. Page 1 of 7

Copyright 2016, R. Eckweiler & OCARC, Inc. Page 1 of 7 Heathkit of the Month: by Bob Eckweiler, AF6C ELECTRONIC TEST EQUIPMENT Heathkit IM-38 AC Vacuum Tube Voltmeter (VTVM). Introduction: Back in March of 2013 Heathkit of the Month #47 discussed the Heathkit

More information

Ear+ Purist HD. Ear+ HD II High Definition Stereo Headphone Amplifier

Ear+ Purist HD. Ear+ HD II High Definition Stereo Headphone Amplifier Ear+ Purist HD Ear+ HD II High Definition Stereo Headphone Amplifier Users' Manual Rev Mar 8/19 Mapletree Audio Design R. R. 1, Seeley's Bay, Ontario, Canada, K0H 2N0 (613) 387-3830 www.mapletreeaudio.com

More information

You Just Brought an Old Radio Home: Now What Do You Do?

You Just Brought an Old Radio Home: Now What Do You Do? You Just Brought an Old Radio Home: Now What Do You Do? Raymond Cady goldenageradiorestoration.com Whether you are just beginning to collect antique radios or you have been at it for a number of years,

More information

The Amazing All-Band Receiver

The Amazing All-Band Receiver The Amazing All-Band Receiver The Amazing All-Band Receiver is basically a diode detector followed by a high-gain audio amplifier. The detector uses a biased Schottky diode for excellent sensitivity and

More information

GRID CONTROLLED POWER SUPPLY IS A VERSATILE UNIT Uses Pair of RCA-2050 s for Wide Voltage Range

GRID CONTROLLED POWER SUPPLY IS A VERSATILE UNIT Uses Pair of RCA-2050 s for Wide Voltage Range 10/30/07 11:55 PM Thyratrons GRID CONTROLLED POWER SUPPLY IS A VERSATILE UNIT Uses Pair of RCA-2050 s for Wide Voltage Range By J. H. OWENS, W2FTW and G. D. HANCHETT, W1AK/2 RCA Ham Tips Volume 6, Number

More information

HOM rev. new. Heath of the Month #80 - K-1 All-Wave Receiver. Heathkit of the Month #80: by Bob Eckweiler, AF6C AMATEUR RADIO - SWL

HOM rev. new. Heath of the Month #80 - K-1 All-Wave Receiver. Heathkit of the Month #80: by Bob Eckweiler, AF6C AMATEUR RADIO - SWL Heathkit of the Month #80: by Bob Eckweiler, AF6C AMATEUR RADIO - SWL The Heathkit K-1 Three-Tube All-Wave Beginner s Receiver Some K-1 All-Wave Receiver History: The first piece of radio equipment using

More information

For the filter shown (suitable for bandpass audio use) with bandwidth B and center frequency f, and gain A:

For the filter shown (suitable for bandpass audio use) with bandwidth B and center frequency f, and gain A: Basic Op Amps The operational amplifier (Op Amp) is useful for a wide variety of applications. In the previous part of this article basic theory and a few elementary circuits were discussed. In order to

More information

MC2301. Features and Benefits. Promotional Highlights TUBE POWER AMPLIFIER MCINTOSH LABORATORY INC., 2 CHAMBERS STREET, BINGHAMTON, NEW YORK 13903

MC2301. Features and Benefits. Promotional Highlights TUBE POWER AMPLIFIER MCINTOSH LABORATORY INC., 2 CHAMBERS STREET, BINGHAMTON, NEW YORK 13903 MC2301 Product Preview Page 1 McIntosh Laboratory, Inc., Binghamton, NY 13903 Design Engineering Department PRODUCT PREVIEW MC2301 TUBE POWER AMPLIFIER Project 1336 Promotional Highlights 300 Watts Mono

More information

HOMEBREW Q-MULTIPLIER

HOMEBREW Q-MULTIPLIER HOMEBREW Q-MULTIPLIER This circuit can boost the signal strength in your receiver by 1 or 2 S-units, giving approximately 10 db gain. A Q-multiplier amplifies the Q of the first IF transformer so that

More information

PRICEn. PUBLICATION No 71 MANUAL RECEIVERS

PRICEn. PUBLICATION No 71 MANUAL RECEIVERS RECEIVERS MANUAL PRICEn PUBLICATION No 71 MODERN BATTERY RECEIVERS' MANUAL MODERN BATTERY RECEIVERS' MANUAL by EDWIN N. BRADLEY BERNARDS (PUBLISHERS) LONDON LTD. CONTENTS s PAGE Chapter 1. MODERN BATTERY

More information

1.1 Original Amplifier Professional construction well made. No markings. Based on R&H Feb Watt Amplifier.

1.1 Original Amplifier Professional construction well made. No markings. Based on R&H Feb Watt Amplifier. 4/03/2018 Australian 5W Combo Page 1 of 6 1. Summary Combo 5W Valve Amplifier and 8 Rola speaker. Unknown maker., Dec 2017. 1.1 Original Amplifier Professional construction well made. No markings. Based

More information

GARC Regenerative radio night.

GARC Regenerative radio night. GARC Regenerative radio night. A follow on project from the highly successful Crystal set night. Aim. It is hoped that we can continue on from the very high level of interest and participation that occurred

More information

A 75-Watt Transmitter for 3 Bands Simplified Shielding and Filtering for TVI BY DONALD H. MIX, W1TS ARRL Handbook 1953 and QST, October 1951

A 75-Watt Transmitter for 3 Bands Simplified Shielding and Filtering for TVI BY DONALD H. MIX, W1TS ARRL Handbook 1953 and QST, October 1951 A 75-Watt Transmitter for 3 Bands Simplified Shielding and Filtering for TVI BY DONALD H. MIX, W1TS ARRL Handbook 1953 and QST, October 1951 The transmitter shown in the photographs is a 3-stage 75-watt

More information

WA3RNC 30 METER CRYSTALPLEXER TRANSMITTER KIT ASSEMBLY INSTRUCTIONS

WA3RNC 30 METER CRYSTALPLEXER TRANSMITTER KIT ASSEMBLY INSTRUCTIONS WA3RNC 30 METER CRYSTALPLEXER TRANSMITTER KIT ASSEMBLY INSTRUCTIONS Description The WA3RNC 30 Meter Crystalplexer is a low power crystal controlled QRP transmitter offering a significantly improved tuning

More information

The Vibrator Power Supply

The Vibrator Power Supply The Vibrator Power Supply Function: The function of the vibrator power supply is like that of the AC operated supply - to provide the necessary voltages for the receiver. In this case the voltage source

More information

This material is adapted from the website vintage Radio World and written by Tony Thompson

This material is adapted from the website vintage Radio World   and written by Tony Thompson This material is adapted from the website vintage Radio World www.vintageradioworld.co.uk and written by Tony Thompson VALVES It's quite possible that you've never encountered valve technology, especially

More information

UNITED MOTORS SERVICE D IV ISIO N OF GENERAL M O TO RS C O R P O R A T IO N. General Offices - Detroit AUTO RADIO BULLETIN

UNITED MOTORS SERVICE D IV ISIO N OF GENERAL M O TO RS C O R P O R A T IO N. General Offices - Detroit AUTO RADIO BULLETIN UNITED MOTORS SERVICE D IV ISIO N OF GENERAL M O TO RS C O R P O R A T IO N General Offices - Detroit AUTO RADIO BULLETIN Page 1 FIRST ISSUE SUBJECT: SERVICE INSTRUCTIONS - CHEVROLET TRUCK MODEL 987187

More information

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY Oscillators Table of Contents Lesson One Lesson Two Lesson Three Introduction to Oscillators...3 Flip-Flops...19 Logic Clocks...37 Lesson Four Filters and Waveforms...53 Lesson Five Troubleshooting Oscillators...69

More information

KWM-2/2A Transceiver THE COLLINS KWM-2/2A TRANSCEIVER

KWM-2/2A Transceiver THE COLLINS KWM-2/2A TRANSCEIVER KWM-2/2A Transceiver Click the photo to see a larger photo Click "Back" button on browser to return Courtesy of Norm - WA3KEY THE COLLINS KWM-2/2A TRANSCEIVER Unmatched for versatility, dependability and

More information

ELECTRICAL Cathode... coated unipotential Heater Voltage Volts Heater Current

ELECTRICAL Cathode... coated unipotential Heater Voltage Volts Heater Current Power Pentode The E34LS is a power pentode designed especially for high fidelity audio systems. It has a plate dissipation of 30 watts and delivers high power without drawing control-grid current. The

More information

Ear+ Purist HD. Ear+ HD High Definition Stereo Headphone Amplifier

Ear+ Purist HD. Ear+ HD High Definition Stereo Headphone Amplifier Ear Purist HD Ear HD High Definition Stereo Headphone Amplifier 2AX7 Users' Manual ev Oct. 7/3 Mapletree Audio Design loyd Peppard.., Seeley's Bay, Ontario, Canada, K0H 2N0 (63) 387-3830 www.mapletreeaudio.com

More information

Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras

Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras Lecture - 6 Full Wave Rectifier and Peak Detector In

More information

Page 1 of 6 Search: The Web Tripod Report Abuse «Previous Top 100 Next» Ads by Google Radio Frequency Electronics Find Electronics Solutions For Your Business. Get It Done Now! www.business.com share:

More information

The Hartley Oscillator

The Hartley Oscillator The Hartley Oscillator One of the main disadvantages of the basic LC Oscillator circuit we looked at in the previous tutorial is that they have no means of controlling the amplitude of the oscillations

More information

Amateur Radio Examination EXAMINATION PAPER No. 276 MARKER S COPY

Amateur Radio Examination EXAMINATION PAPER No. 276 MARKER S COPY 01-3-(a) The Amateur Service in New Zealand is administered through this prime document: a the New Zealand Radiocommunications Regulations b the Broadcasting Act c the Telecommunications Act d the Radio

More information

SWL Receiving Antenna Experiments

SWL Receiving Antenna Experiments SWL Receiving Antenna Experiments Introduction I have a lot to learn about SWL antennas. What follows are some brief experiments I performed in late October 2005. I have been experimenting with a half

More information

Burning Amp 2. by Nelson Pass. Introduction. Concept

Burning Amp 2. by Nelson Pass. Introduction. Concept Burning Amp 2 by Nelson Pass Introduction In Burning Amp 1 we examined an amplifier circuit designed to complement the hardware we gave away to some attendees at last October's Burning Amp Festival in

More information

RCA REVIEW. A Quarterly Journal of Radio Progress Published in July, October, January and April of Each Year by

RCA REVIEW. A Quarterly Journal of Radio Progress Published in July, October, January and April of Each Year by RCA REVIEW A Quarterly Journal of Radio Progress Published in July, October, January and April of Each Year by RCA INSTITUTES TECHNICAL PRESS A Department of RCA Institutes, Inc. 75 Varick Street, New

More information

4/30/2012. General Class Element 3 Course Presentation. Practical Circuits. Practical Circuits. Subelement G7. 2 Exam Questions, 2 Groups

4/30/2012. General Class Element 3 Course Presentation. Practical Circuits. Practical Circuits. Subelement G7. 2 Exam Questions, 2 Groups General Class Element 3 Course Presentation ti ELEMENT 3 SUB ELEMENTS General Licensing Class Subelement G7 2 Exam Questions, 2 Groups G1 Commission s Rules G2 Operating Procedures G3 Radio Wave Propagation

More information

Assembly Manual V1R2B-Rev1.0D

Assembly Manual V1R2B-Rev1.0D Assembly Manual V1R2B-Rev1.0D for 4 State QRP MagicBox - Solid State Transmit/Receive System Designed by: Jim Kortge, K8IQY Copyright 2009-2012 - All rights reserved This system is the result of some brainstorming

More information

Contents. 1. Essential Electronics 1. Preface Acknowledgements

Contents. 1. Essential Electronics 1. Preface Acknowledgements Contents Preface Acknowledgements ix xi 1. Essential Electronics 1 1.1: Current 2 1.2: Voltage 5 1.3: Power 6 1.4: Signals and Averages 7 1.4.1: Mean Average 7 1.4.2: Rectified Average 8 1.4.3: RMS Average

More information

General Licensing Class Circuits

General Licensing Class Circuits General Licensing Class Circuits Valid July 1, 2011 Through June 30, 2015 1 Amateur Radio General Class Element 3 Course Presentation ELEMENT 3 SUB-ELEMENTS (Groupings) Your Passing CSCE Your New General

More information

Power Supplies and Circuits. Bill Sheets K2MQJ Rudolf F. Graf KA2CWL

Power Supplies and Circuits. Bill Sheets K2MQJ Rudolf F. Graf KA2CWL Power Supplies and Circuits Bill Sheets K2MQJ Rudolf F. Graf KA2CWL The power supply is an often neglected important item for any electronics experimenter. No one seems to get very excited about mundane

More information

Copyright 2014, R. Eckweiler & OCARC, Inc. Page 1 of 6

Copyright 2014, R. Eckweiler & OCARC, Inc. Page 1 of 6 HOM rev. new Heathkit of the Month: by Bob Eckweiler, AF6C Heathkit of the Month #59 - IG-72 Audio Generator TEST EQUIPMENT Heathkit IG-72 Audio Generator. Introduction: The IG-72 Audio Oscillator is a

More information

INSTRUCTIONS FOR INSTALLATION AND OPERATION OF THE MEISSNER SIGNAL SHIFTER MODEL EX

INSTRUCTIONS FOR INSTALLATION AND OPERATION OF THE MEISSNER SIGNAL SHIFTER MODEL EX INSTRUCTIONS FOR INSTALLATION AND OPERATION OF THE MEISSNER SIGNAL SHIFTER MODEL EX I. INTRODUCTION A. The MEISSNER SIGNAL SHIFTER is a variable frequency exciter, with output over the entire ranges of

More information

Building the Sawdust Regenerative Receiver

Building the Sawdust Regenerative Receiver Building the Sawdust Regenerative Receiver Introduction The Sawdust is a super regenerative receiver using the basic Armstrong design architecture. The receiver uses one toroidal transformer to provide

More information

Stealth 60i Integrated Stereo/Mono Power Amplifier

Stealth 60i Integrated Stereo/Mono Power Amplifier Stealth 60i Integrated Stereo/Mono Power Amplifier Users' Manual (Beta) Rev. Apr. 11/16 Mapletree Audio Design Lloyd Peppard R. R. 1, Seeley's Bay, Ontario, Canada, K0H 2N0 (613) 387-3830 info@mapletreeaudio.com

More information

MISCELLANEOUS. Figure 1.

MISCELLANEOUS. Figure 1. Reading 41 Ron Bertrand VK2DQ http://www.radioelectronicschool.com MISCELLANEOUS The purpose of this reading is to catch anything that may have slipped through the previous forty readings or just does

More information

The ROSE 80 CW Transceiver (Part 1 of 3)

The ROSE 80 CW Transceiver (Part 1 of 3) Build a 5 watt, 80 meter QRP CW Transceiver!!! Page 1 of 10 The ROSE 80 CW Transceiver (Part 1 of 3) Build a 5 watt, 80 meter QRP CW Transceiver!!! (Designed by N1HFX) A great deal of interest has been

More information

Construction notes for the symmetrical 400 watt amplifier

Construction notes for the symmetrical 400 watt amplifier Construction notes for the symmetrical 400 watt amplifier Introduction The symmetrical amplifier is an update of one of my designs, which appeared in the Australian electronics magazine Silicon Chip in

More information

Building the Sawdust Regenerative Receiver

Building the Sawdust Regenerative Receiver Building the Sawdust Regenerative Receiver Introduction The Sawdust is a super regenerative receiver using the basic Armstrong design architecture. The receiver uses one toroidal transformer to provide

More information

Restoring an Atwater Kent Model 84. by Al Smith 25 Stonehedge Rd. Lincoln, MA 01773

Restoring an Atwater Kent Model 84. by Al Smith 25 Stonehedge Rd. Lincoln, MA 01773 Restoring an Atwater Kent Model 84 by Al Smith 25 Stonehedge Rd. Lincoln, MA 01773 I recently restored an Atwater Kent model 84 for a non-technical friend. In the process, I ran into a number of problems,

More information

070 ELECTRONICS WORKS EXAMINATION STRUCTURE

070 ELECTRONICS WORKS EXAMINATION STRUCTURE 070 ELECTRONICS WORKS EXAMINATION STRUCTURE The trade will be examined under the following components or subject grouping: Electronic Devices and Circuit, Radio Communication and Television. EXAMINATION

More information

Tuned Radio Frequency Receiver (TRF) The most elementary receiver design, consisting of RF amplifier stages, detector and audio amplifier stages.

Tuned Radio Frequency Receiver (TRF) The most elementary receiver design, consisting of RF amplifier stages, detector and audio amplifier stages. Figure 3-1 Simple radio receiver block diagram. Tuned Radio Frequency Receiver (TRF) The most elementary receiver design, consisting of RF amplifier stages, detector and audio amplifier stages. Jeffrey

More information

Professional Equalizer-Preamp Suitable for Home Use

Professional Equalizer-Preamp Suitable for Home Use A combined Professional Equalizer-Preamp Suitable for Home Use KENNETH W. BETSH* Designed originally for broadcast-station use, this preamplifier can be adapted to any installation where it would be desirable

More information

Chapter 3. Question Mar No

Chapter 3. Question Mar No Chapter 3 Sr Question Mar No k. 1 Write any two drawbacks of TRF radio receiver 1. Instability due to oscillatory nature of RF amplifier.. Variation in bandwidth over tuning range. 3. Insufficient selectivity

More information

Electrical Fundamentals and Basic Components Chapters T2, T3, G4

Electrical Fundamentals and Basic Components Chapters T2, T3, G4 Electrical Fundamentals and Basic Components Chapters T2, T3, G4 Some Basic Math, Electrical Fundamentals, AC Power, The Basics of Basic Components, A Little More Component Detail, Reactance and Impedance

More information

SUBELEMENT T6 Electrical components: semiconductors; circuit diagrams; component functions 4 Exam Questions - 4 Groups

SUBELEMENT T6 Electrical components: semiconductors; circuit diagrams; component functions 4 Exam Questions - 4 Groups SUBELEMENT T6 Electrical components: semiconductors; circuit diagrams; component functions 4 Exam Questions - 4 Groups 1 T6A Electrical components: fixed and variable resistors; capacitors and inductors;

More information

UNITED MOTORS SERVICE AUTO RADIO BULLETIN

UNITED MOTORS SERVICE AUTO RADIO BULLETIN UNITED MOTORS SERVICE DIVISION OF GENERAL MOTORS CORPORATION General Offices - Detroit AUTO RADIO BULLETIN Bulletin 6D-854 Date 11-1-54 Page 1 FIRST ISSUE GENERAL SUBJECT: SERVICE INSTRUCTIONS - 12V CHEVROLET

More information

RIDER'S VOLUME XVIII HOW IT WORKS AND COMPLETE INDEX FOR VOLUMES XVI, XVII AND XVIII JOHN F. RIDER PUBLISHER, INC. 480 Canal Street New York 13, N. Y.

RIDER'S VOLUME XVIII HOW IT WORKS AND COMPLETE INDEX FOR VOLUMES XVI, XVII AND XVIII JOHN F. RIDER PUBLISHER, INC. 480 Canal Street New York 13, N. Y. RIDER'S VOLUME XVIII HOW IT WORKS AND COMPLETE INDEX FOR VOLUMES XVI, XVII AND XVIII P JOHN F. RIDER PUBLISHER, INC. 480 Canal Street New York 13, N. Y. TABLE OF CONTENTS DETECTOR CIRCUITS IN AM -FM RECEIVERS

More information

Tweed Champ 5F1 (assembling the board)

Tweed Champ 5F1 (assembling the board) Tweed Champ 5F1 (assembling the board) The Beginning of Great Tone - In 1958, the Fender Champ with it's 8 speaker and 5 watts of power became the mother of great tone. By combining the new 12AX7 with

More information

MZ2 HEADPHONE AMPLIFIER, PREAMP, & STEREO AMPLIFIER USER GUIDE

MZ2 HEADPHONE AMPLIFIER, PREAMP, & STEREO AMPLIFIER USER GUIDE MZ2 HEADPHONE AMPLIFIER, PREAMP, & STEREO AMPLIFIER USER GUIDE Linear Tube Audio Takoma Park, MD, USA WARNING: For safety, the cover of this amplifier should be secured at all times. DC voltages as high

More information

N3ZI Kits General Coverage Receiver, Assembly & Operations Manual (For Jun 2011 PCB ) Version 3.33, Jan 2012

N3ZI Kits General Coverage Receiver, Assembly & Operations Manual (For Jun 2011 PCB ) Version 3.33, Jan 2012 N3ZI Kits General Coverage Receiver, Assembly & Operations Manual (For Jun 2011 PCB ) Version 3.33, Jan 2012 Thank you for purchasing my general coverage receiver kit. You can use the photo above as a

More information

Contents. 1. Fundamentals of Amplification The Small-Signal Pentode 40. Acknowledgements. Some Useful Formulae

Contents. 1. Fundamentals of Amplification The Small-Signal Pentode 40. Acknowledgements. Some Useful Formulae Contents Preface Acknowledgements Some Useful Formulae vii ix x 1. Fundamentals of Amplification 1 1.1: Basic Theory of Valves 2 1.2: Valve Diodes 2 1.3: Triodes 4 1.4: Anode Resistance, r a 6 1.5: Amplification

More information

How The Transmitter Works

How The Transmitter Works Mike Bray, K8DDB Refer to the schematic of the transmitter on page 7 of the manual. The crystal-controlled oscillator, V generates a small amount of r.f. power which is used to drive the amplifier, V2.

More information

HF Receivers, Part 2

HF Receivers, Part 2 HF Receivers, Part 2 Superhet building blocks: AM, SSB/CW, FM receivers Adam Farson VA7OJ View an excellent tutorial on receivers NSARC HF Operators HF Receivers 2 1 The RF Amplifier (Preamp)! Typical

More information

? 5? 1N0 FORTV I LLE COLE. Vol. 14 JUNE, 1949 No. 6 PAID U. S. POSTAGE. CORNELL-DUBILIER ELECTRIC CORP. Hamilton Boulevard, South Plainfield, N. J.

? 5? 1N0 FORTV I LLE COLE. Vol. 14 JUNE, 1949 No. 6 PAID U. S. POSTAGE. CORNELL-DUBILIER ELECTRIC CORP. Hamilton Boulevard, South Plainfield, N. J. Vol. 14 JUNE, 1949 No. 6 CORNELL-DUBILIER ELECTRIC CORP. Hamilton Boulevard, South Plainfield, N. J. POSTMASTER: If undeliverable for any reason, ncttfy stating reason, on Form 3547 postage tot which is

More information

THÖRESS F2A11 Stereo Integrated Amplifier...

THÖRESS F2A11 Stereo Integrated Amplifier... THÖRESS F2A11 Stereo Integrated Amplifier INSTRUCTION MANUAL Thank you for purchasing the THÖRESS F2A11 Stereo Integrated Amplifier. This truly unique tube amplifier offers the music lover the possibility

More information

[Originally Prepared by A. L(Lloyd). Butler - December 1, 1961] [Regenerated in HTML by Lloyd Butler - November, 2010] SUMMARY

[Originally Prepared by A. L(Lloyd). Butler - December 1, 1961] [Regenerated in HTML by Lloyd Butler - November, 2010] SUMMARY HIGH FREQUENCY MOBILE TRANSCEIVER WEAPONS RESEARCH ESTABLISHMENT TYPE 2 INSTRUCTION HANDBOOK [Originally Prepared by A. L(Lloyd). Butler - December 1, 1961] [Regenerated in HTML by Lloyd Butler - November,

More information

3. Diode, Rectifiers, and Power Supplies

3. Diode, Rectifiers, and Power Supplies 3. Diode, Rectifiers, and Power Supplies Semiconductor diodes are active devices which are extremely important for various electrical and electronic circuits. Diodes are active non-linear circuit elements

More information

Build an All-Tube Fuzz/Wah Pedal

Build an All-Tube Fuzz/Wah Pedal Build an All-Tube Fuzz/Wah Pedal by Eric Barbour and Peter Belov In spite of more than 30 years of development and marketing, to this day all commercial guitar "wah" pedals have been solid- state and have

More information

AMPLITUDE MODULATION TRANSMITTERS. feccoti RRT N. Ashland Ave., Chicago 14, Illinois

AMPLITUDE MODULATION TRANSMITTERS. feccoti RRT N. Ashland Ave., Chicago 14, Illinois AMPLITUDE MODULATION TRANSMITTERS feccoti RRT -14 2533 N. Ashland Ave., Chicago 14, Illinois Radio Reception and Transmission LESSON RRT -14 AMPLITUDE MODULATION TRANSMITTERS CHRONOLOGICAL HISTORY OF

More information

To put the Transmitter into operation, the following procedure should be carried out:

To put the Transmitter into operation, the following procedure should be carried out: TUNING The KW VANGUARD Transmitter Operating & Tuning Procedure Adjust the three mains voltage selectors at rear of chassis to appropriate voltage. Connect mains lead to A.C. supply (Green is earth). Plug

More information

Common-emitter amplifier, no feedback, with reference waveforms for comparison.

Common-emitter amplifier, no feedback, with reference waveforms for comparison. Feedback If some percentage of an amplifier's output signal is connected to the input, so that the amplifier amplifies part of its own output signal, we have what is known as feedback. Feedback comes in

More information

Western Electric D V a c u u m T u b e

Western Electric D V a c u u m T u b e 284D Western Electric 2 8 4 D V a c u u m T u b e Classification Fiiamentary air-cooied triode The tube is designed primarily for use as an audio-frequency amplifier or modulator and may be used as a replacement

More information

Copyright 1999 Wheatfield Audio LLC. All rights reserved. Printed in USA 11/99

Copyright 1999 Wheatfield Audio LLC. All rights reserved. Printed in USA 11/99 HA-2 Headphone Amplifier User s Manual Contents Safety... 3 Unpacking, Setup, and Connection... 4 Unpacking the amplifier... 4 Installing the tubes... 4 Connecting the amplifier... 4 Listening with the

More information

Designing Your Own Amplifier, Part 1: Voltage Amplifier Stages

Designing Your Own Amplifier, Part 1: Voltage Amplifier Stages Audio Classroom Designing Your Own Amplifier, Part 1: Voltage Amplifier Stages This article appeared originally in Audiocraft, March 1956. 1956 by Audiocom, Inc. BY NORMAN H. CROWHURST How, do you go about

More information

Building a Bitx20 Version 3

Building a Bitx20 Version 3 Building a Bitx20 Version 3 The board can be broken into sections and then built and tested one section at a time. This will make troubleshooting easier as any problems will be confined to one small section.

More information

UNITED MOTORS SERVICE. DIVISION OF GENERAL MOTORS CORPORATION General Offices - Detroit AUTO RADIO BULLETIN

UNITED MOTORS SERVICE. DIVISION OF GENERAL MOTORS CORPORATION General Offices - Detroit AUTO RADIO BULLETIN UNITED MOTORS SERVICE DIVISION OF GENERAL MOTORS CORPORATION General Offices - Detroit AUTO RADIO BULLETIN Bulletin 6D-848 Chevrolet 986515 Page 1 SUBJECT: SERVICE INSTRUCTIONS CHEVROLET CUSTOM DELUXE

More information

Applications of diodes

Applications of diodes Applications of diodes Learners should be able to: (a) describe the I V characteristics of a silicon diode (b) describe the use of diodes for component protection in DC circuits and half-wave rectification

More information

Topic Advanced Radio Receivers. Explain that an RF amplifier can be used to improve sensitivity;

Topic Advanced Radio Receivers. Explain that an RF amplifier can be used to improve sensitivity; Learning Objectives: At the end of this topic you will be able to; Explain that an RF amplifier can be used to improve sensitivity; Explain that a superheterodyne receiver offers improved selectivity and

More information

Troubleshooting Tutorial Page 1 Tech Note 4

Troubleshooting Tutorial Page 1 Tech Note 4 Page 1 Tech Note 4 Tools Required: RCA shorting plugs (Fabricate using Radio Shack # 274-339) Digital Voltmeter Soldering Iron & Associated items Screw drivers, Pliers (including needle nose), wire cutters

More information

Amateur Radio Examination EXAMINATION PAPER No. 275 MARKER S COPY

Amateur Radio Examination EXAMINATION PAPER No. 275 MARKER S COPY 01-6-(d) An Amateur Station is quoted in the regulations as a station: a for training new radio operators b using amateur equipment for commercial purposes c for public emergency purposes d in the Amateur

More information

CON NEX HP. OWNER'S MANUAL Full Channel AM/FM Amateur Mobile Transceiver TABLE OF CONTENTS TUNING THE ANTENNA FOR OPTIMUM S.W.R..

CON NEX HP. OWNER'S MANUAL Full Channel AM/FM Amateur Mobile Transceiver TABLE OF CONTENTS TUNING THE ANTENNA FOR OPTIMUM S.W.R.. TABLE OF CONTENTS PAGE SPECIFICATIONS... 2 INSTALLATION... 3 LOCATION... 3 CON NEX - 4300HP MOUNTING THE RADIO... 3 IGNITION NOISE INTERFERENCE... 4 ANTENNA... 4 TUNING THE ANTENNA FOR OPTIMUM S.W.R..

More information

NATIONAL. rfr1. Radio.Trician. Lesson Text No. 13. (2nd Edition) RADIO FREQUENCY AMPLIFICATION

NATIONAL. rfr1. Radio.Trician. Lesson Text No. 13. (2nd Edition) RADIO FREQUENCY AMPLIFICATION NATIONAL RADIO institute Complete Cour s è in PRACTICAL RADIO IIII rfr1 á IIIIIIIIIIIIIIUIIIIIIIIIIIIt1I111IUIit111 II',_ Radio.Trician (Trade Mark Reg. U. S. Patent GRìce) Lesson Text No. 13 (2nd Edition)

More information

ZN414Z, ZN415E, ZN416E AM RADIO RECEIVERS

ZN414Z, ZN415E, ZN416E AM RADIO RECEIVERS GEC PLESSEY [SEMICONDUCTORS ZN414Z, ZN415E, ZN416E AM RADIO RECEIVERS FEATURES Single cell operation (1.1 to 1.6 volt, operating range) Low current consumption 150kHz to 3MHz frequency range (i.e. full

More information

Super Stealth Monobloc Power Amplifier

Super Stealth Monobloc Power Amplifier Super Stealth Monobloc Power Amplifier Special Edition Users' Manual Rev. Oct. /1 Mapletree Audio Design Lloyd Peppard R. R. 1, Seeley's Bay, Ontario, Canada, K0H N0 (61) -0 info@mapletreeaudio.com http://www.mapletreeaudio.com

More information

Western Electric PRII URAM AMPLIFIER 11H A

Western Electric PRII URAM AMPLIFIER 11H A Western Electric PRII URAM AMPLIFIER s 11H A HIKE WORII The part played by Bell Telephone Laboratories and by Western Electric in radio telephone broadcasting is the history of the radio art. In 1922 a

More information

The KW 76A MOBILE RECEIVER

The KW 76A MOBILE RECEIVER The KW 76A MOBILE RECEIVER The KW 76A Receiver is designed primarily for mobile operation. The compact layout makes it particularly suitable for under dash mounting in a vehicle. When used at a Home station

More information

Super Stealth + Monobloc Power Amplifier

Super Stealth + Monobloc Power Amplifier Super Stealth Monobloc Power Amplifier Users' Manual Rev. Nov. 9/ Mapletree Audio Design Lloyd Peppard R. R., Seeley's Bay, Ontario, Canada, K0H N0 (6) 7-0 info@mapletreeaudio.com http://www.mapletreeaudio.com

More information

First Watt SIT-3 Power Amplifier

First Watt SIT-3 Power Amplifier First Watt SIT-3 Power Amplifier OWNERS MANUAL Introduction The SIT-3 is the very latest example of single-ended / single-stage Class A amplifiers using the SIT (aka VFET) power transistor exclusive to

More information

PRACTICAL TRANSISTOR RECEIVERS BOOK I 30 COMPLETELY DIFFERENT RECEIVERS CLIVE SINCLAIR. Complete Circuit Diagrams with list of BERNARDS RADIO MANUALS

PRACTICAL TRANSISTOR RECEIVERS BOOK I 30 COMPLETELY DIFFERENT RECEIVERS CLIVE SINCLAIR. Complete Circuit Diagrams with list of BERNARDS RADIO MANUALS PRACTICAL TRANSISTOR RECEIVERS BOOK I 30 COMPLETELY DIFFERENT RECEIVERS by CLIVE SINCLAIR Complete Circuit Diagrams with list of British and American Transistors BERNARDS RADIO MANUALS TRANSISTOR SERIES

More information

The Power Supply INDEX. For any enquiries Colin Mitchell

The Power Supply INDEX. For any enquiries  Colin Mitchell For any enquiries email Colin Mitchell The Power Supply INDEX AC Adjustable 3-Terminal Regulator Ammeter Basic Power Supply Battery Bench Power Supply Capacity of a battery Cell Capacity Tester Current

More information

AN IMPROVED SHORTWAVE REGENERATIVE RECEIVER

AN IMPROVED SHORTWAVE REGENERATIVE RECEIVER AN IMPROVED SHORTWAVE REGENERATIVE RECEIVER Ramón Vargas Patrón rvargas@inictel-uni.edu.pe INICTEL-UNI Sensitivity and selectivity are issues that will invariably concern a short wave listener when he

More information

Transistors As RF Power Amplifiers

Transistors As RF Power Amplifiers A PUBLICATION OF THE RCA ELECTRON TUBE DIVISION VOL. 21, NO. 4 1961, RADIO CORPORATION OF AMERICA DECEMBER, 1961 Transistors As RF Power Amplifiers By J. B. Fisher, WA2CMR/6 Field Sales Engineering RCA

More information