1 TRANSISTOR CIRCUITS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "1 TRANSISTOR CIRCUITS"

Transcription

1 FM TRANSMITTERS The first group of circuits we will discuss are FM TRANSMITTERS. They can be called SPY TRANSMITTERS, FM BUGS, or a number of other interesting names. They all do the same thing. They transmit on the FM band in the range 88MHz to 108MHz. Most of them can be adjusted to transmit above or below the band and you need a radio that will pick up these frequencies, to detect them. Since the FM band is almost entirely filled with radio stations, we will be providing details on how to adjust a radio so it will scan EITHER above the band or below the band. Most radios can only be adjusted 10MHz above or below but this will be enough to provide a "blank" space for your transmitter. FM transmission provides perfect quality and when one of these transmitters is used in a house and received on a good quality radio, you cannot tell if the person is actually talking in the next room or via an FM link, through a radio. This means all the FM bugs have the same perfect audio, but some circuits will detect fainter sounds and others will transmit further. Some circuits can be handled without drifting off-frequency and others are designed to be very small or fit on top of a 9v battery. By building these circuits you will learn an enormous amount about high frequency, audio and getting the maximum output with the least current. This is the main aim of this article. It will add a number of "building blocks" to your understanding of electronics. Before I start, there are two things that particularly annoy me. The first is a circuit diagram with C1, R1 etc and a parts list identifying the values. Circuit diagrams like this are obviously drawn by a nonelectronics person. The whole concept of looking at a circuit diagram and seeing the values gives the reader an indication of how each section will work. A section may be operating very lightly with high value components or it may be working very hard with low value components. The whole idea of providing a circuit diagram with marked components is to give the reader an immediate understanding of how the circuit is operating. The second thing that annoys me is the labelling of parts on a PC board as R1, C1 etc. Again, the board has been designed by a non-technical person. Why design a board without component values? Do they think the values will change? How can you assemble a board without referring to a circuit diagram? The whole purpose of well-designed PC board is to build it without referring to any other data. Keep this in mind when designed your own boards. Also, don't name your boards "A51/834-2." Give then a name you can remember or one that refers to the application it will perform. Let's start: 1 TRANSISTOR CIRCUITS There are a number of 1 transistor FM transistors on the market in kit-form and already assembled. These circuits are interesting to look at but do not really perform very well. 1. They do not have a good transmitting range. 2. They do not detect low-level sound, and 3. They do not operate very well on 1.5v. No transmitter can be expected to operate very well on 1.5v. If you want to use a single cell, use a lithium cell as it produces 3v. 4. Some have a coil etched on the PC board. No FM transmitter will perform very well with a coil etched on the board. Why use 1.5v????? Transistors do not operate very well below 0.9v and the collector load resistor needs a small voltage so it can perform its task (the same applies to an emitter resistor) and thus the lowest voltage for a circuit is 1.5v. If only a single cells is used, there is not allowance for a voltage-drop as the cell becomes depleted. Always use 3v as the lowest supply voltage. THE SIMPLEST CIRCUIT The following circuit is the simplest FM circuit you can get. It has no microphone but the coil is so MICROPHONIC that it will pick up noises in the room via vibrations on a table. The circuit does not have any section that determines the frequency. In the next circuit and all those that follow, the section that determines the frequency of operation is called the TUNED CIRCUIT or

2 TANK CIRCUIT and consists of a coil and capacitor. The transistor and components surrounding the tuned circuit simply keep the tuned circuit operating at its RESONANT FREQUENCY. This circuit does not have this feature. The transistor turns on via the 47k and this puts a pulse through the 15 turn winding. The magnetic flux from this winding passes through the 6 turn winding and into the base of the transistor via the 22n capacitor. This pulse is amplified by the transistor and the circuit is kept active. The frequency is determined by the 6 turn coil. By moving the turns together, the frequency will decrease. The circuit transmits at 90MHz. It has a very poor range and consumes 16mA. THE SIMPLEST BUG The components soldered to the 2 cells Rear view of the simplest bug

3 After making a transmitter, you will want to know if it is transmitting. In the case above, the circuit will only produce a carrier and this will be heard on the radio as a "quiet spot." Rather than chasing up and down the dial, Talking Electronics has produced a piece of test equipment to let you know the bug is transmitting and the approx frequency of transmission. It is called FIELD STRENGTH METER MkII. The photo below shows the Field Strength Meter near the bug. The plastic knob on the trimmer allows adjustment without affecting the detecting circuit. Simply turn the knob (with the two antennas near each other) and the 3 LEDs on the project will illuminate. Field Strength Meter and Bug So far we have seen an unstable circuit in action. Placing a finger near the bug will change the frequency. This is totally unsuitable. A GOOD ONE TRANSISTOR CIRCUIT The next circuit uses a TUNED CIRCUIT or TANK CIRCUIT to create the operating frequency. This is clearly shown in the diagram. For best performance the circuit should be built on a PC board with all components fitted close to each other. The photo below shows the circuit using a coil etched on the board. This type of coil is totally unsuitable. It does not have a high "Q" and the range is very poor. The board cannot be touched as the capacitance of your body causes the circuit to drift. A wound coil will improve the stability considerably. See photos below for the details of a wound coil. A good one transistor circuit

4 Do not use an etched coil A PNP DESIGN Before we go to an improved design, here is an unusual circuit using a PNP (BC 557) transistor. Firstly, PNP transistors do not work as well as NPN transistors. I would reverse the 4k7 and electret mic as the voltage between base and 0v rail is very small and the 4k7 is not biasing the transistor. The range will be 50 to 100 metres and the current is about 3mA. Simple 1 transistor FM Transmitter

5 The 22n is not shown. This is a later addition. AN IMPROVED DESIGN This design uses a "slug tuned coil" to set the frequency. This means the slug can be screwed in and out of the coil. This type of circuit does not offer any improvement in stability over the previous circuit. (In later circuits we will show how to improve stability. The main way to improve stability is to add a "buffer" stage. This separates the oscillator stage from the output.) The antenna is connected to the collector of the transistor and this "loads" the circuit and will cause drift if the bug is touched. The range of this circuit is about 200 metres and current consumption is about 7mA. The microphone has been separated from the oscillator and this allows the gain of the microphone to be set via the 22k resistor. Lowering the resistor will make the microphone more sensitive. This circuit is the best you can get with one transistor. MORE STABILITY If you want more stability, the antenna can be tapped off the top of the tank circuit. This actually does two things. It keeps the antenna away from the highly active collector and turns the coil into an autotransformer where the energy from the 8 turns is passed to a single turn. This effectively increases the current into the antenna. And that is exactly what we want. The range is not as far but the stability is better. The frequency will not drift as much when the bug is held. As the tap is taken towards the collector, the output increase but the stability deceases.

6 LOW-VALUE EMITTER RESISTOR The next circuit has been picked out for its low emitter resistor on the oscillator. This resistor does not have to be a very low value as the transistor is working at its maximum potential, due to the high frequency and a low emitter resistor will simply consume more current without improving the output. The emitter resistor is too low

7 Two photos of the bug STEREO TO MONO To combine two channels to a mono output, the following circuit can be used: 2 TRANSISTOR CIRCUITS The next progressive step is to add a transistor to give the electret microphone more sensitivity. The electret microphone contains a Field Effect Transistor and you can consider it to be a stage of amplification. That's why the electret microphone has a very good output. A further stage of amplification will give the bug extremely good sensitivity and you will be able to pick up the sound of a pin dropping on a wooden floor. Many of the 1 transistor circuits over-drive the microphone and this will create a noise like bacon and eggs frying. The microphone's used by Talking Electronics require a load resistor of 47k for a 6v supply and 22k for a 3v supply. The voltage across the microphone is about 300mV to 600mV. Only a very simple self-biasing common-emitter stage is needed. This will give a gain of approx 70 for a 3v supply. The next circuit shows this audio amplifier, added to the previous transmitter circuit. This circuit is the best design using 2 transistors on a 3v supply. The circuit takes about 7mA and produces a range of about metres.

8 2 Transistor FM Transmitter Five points to note in the circuit above: 1. The tank circuit has a fixed 39p and is adjusted by a 2-10p trimmer. The coil is stretched to get the desired position on the band and the trimmer fine tunes the location. 2. The microphone coupling is a 22n ceramic. This value is sufficient for the location as its capacitive reactance at 3-4kHz is about 4k and the input to the audio stage is fairly high, as noted by the 1M on the base. 3. The 1u between the audio stage and oscillator is needed as the base has a lower impedance as noted by the 47k base-bias resistor. 4. The 22n across the power rails is needed to keep the rails "tight." Its impedance at 100MHz is much less than one ohm and it improves the performance of the oscillator enormously. 5. The coil in the tank circuit is 5 turns of enameled wire with air core. This is much better than a coil made on a PC board and is cheaper than a bought inductor. The secret to long range is high activity in the oscillator stage. The tank circuit (made up of the coil and capacitors across it) will produce a voltage higher than the supply voltage due to the effect known as "collapsing magnetic field" and this occurs when the coil collapses and passes its reverse voltage to the capacitor. The antenna is also connected to this point and it receives this high waveform and passes the energy to the atmosphere as electromagnetic radiation. When the circuit is tightly constructed on a PC board, the frequency will not drift very much if the antenna is touched. This is due to the circuit design and layout as well as the use of large-value capacitors in the oscillator. If low value capacitors are used, the effect of your body has a greater effect on changing the frequency. THE VOYAGER The only way to get a higher output from two transistors is to increase the supply voltage. The following circuit is available from Talking Electronics as a surface-mount kit, with some components through-hole. The project is called THE VOYAGER.

9 Voyager on a 9v Battery All the elements of good design have been achieved in this project. The circuit has a slightly higher output than the 3v circuit above, but most of the voltage is lost across the emitter resistor and not converted to RF. The main advantage of this design is being able to connect to a 9v battery. In a technical sense, about half the energy is wasted as the stages actually require about 4v - 5v for maximum output. The Voyager has been copied by many kit-makers but none has surpassed its performance. Here is a "knock-off" of our older design. It is mounted flat on a 9v battery:

10 Here are 2 more two-transistor circuits using a 9v supply. We have also included the technical limitations of the circuits: DAVID'S DESIGN: Faults with this circuit: 1. Very low microphone load resistor. 2. 4u7 not needed from microphone. 22n is sufficient. 3. 3p3 is very low for BC 547. May need to be higher. - 10p preferred. 4. Bridge biasing of audio stage is not needed. Simple biasing is adequate. 5. Base biasing of oscillator is very wasteful in current n is very high for base bias of oscillator - restricts incoming audio. A BIRD'S NEST DESIGN

11 Faults with this circuit: 1. Load resistor for microphone is very low - should be 47k 2.10u on output of microphone is not needed - 22n is sufficient. 3. Current through audio state is very high. Load resistor should be 47k 4. Base biasing of oscillator very wasteful. 5. Load resistor for oscillator (emitter resistor) is very low 6. Feedback capacitor for oscillator should be 10p. 7. No ceramic in tank circuit. Adding a ceramic makes it easier to adjust the trimmer capacitor. 8. No capacitor across the battery. See the layout below: Birds-nest of above circuit showing how tight the circuit can be made. There is nothing wrong with a bird's nest. It is very easy to experiment with components and wiring that can be seen and changed without having to work on a PC board. The only problem with the bird's nest above is the lack of an earth plane. When you have an earth plane, the signal can push against the large mass of an earth rail (or battery) so that it can push the signal out the antenna.

12 The circuit on proto-typing board - a quick way to build a project. The oscillator components must be kept near each other, otherwise the circuit will not oscillate! The circuits we have discussed so far demonstrate the maximum output that can be achieved from a 3v to 9v supply and the maximum sensitivity from the microphone. The next stage in the development of a better circuit involves a BUFFER STAGE so the oscillator is not driving the antenna. This will give the circuit more stability and more output. The simplest buffer is shown in the following HAND-HELD MICROPHONE CIRCUIT: HAND-HELD MICROPHONE The following circuit is suitable for a hand-held microphone. It does not have an audio stage but that makes it ideal as a microphone, to prevent feedback. The output has a buffer stage to keep the oscillator away from the antenna. This gives the project the greatest amount of stability. To get good audio amplification, and a stable oscillator and the ability to handle the circuit without it drifting, we need 3 transistors. These circuits are on the following page.

13 P1 P2 P3 3-TRANSISTOR CIRCUITS Three transistors will give a wide range of designs. Here are 6 circuits showing how to connect a buffer stage to an oscillator. But first we need to show the buffer can be connected to the oscillator stage via point A or point B. Point A has a higher amplitude but since this point is a high-impedance point, any energy taken from this point will affect the amplitude of the oscillator. Point B a low-impedance point, but has a much lower amplitude Connecting a buffer to point A or point B Thus we have a decision to make. I prefer the collector take-off point as it has a larger signal and this signal can be passed to the buffer stage via a small capacitor to fully drive the buffer transistor. The capacitor will actually convert a large signal with low current into a smaller signal with higher current. This is one of amazing things a capacitor will do. You may think point A is a low impedance point as it is just a fraction of an ohm away from the positive rail. But the inductor (coil) is creating a voltage and waveform at point A and if any load is applied at this point, the waveform will decrease, because the inductor does not have much "strength" to produce the waveform. To understand this more clearly, you need to know how the stage works so you can see how delicate the circuit is. When the power is applied, the circuit start to operate due to the 47k bias resistor on the base. The next point to note is the base is held rigid by the 1n on the base. This capacitor has an impedance of less than one ohm at 100MHz and you can consider the 1n as a 2v battery wit an impedance of 1 ohm or a one ohm resistor sitting on top of a 2v battery. In any case the base is held very rigid by the 1n. Now we come to understanding how an NPN transistor "turns on."

14 It can be turned on in two ways. The emitter can be held rigid and the base can be raised to 0.6v and if the voltage is raised slightly more and the base is fed with current, the transistor will conduct and current will flow in the collector-emitter circuit. This is the case with the transistor in the audio stage. The emitter is held rigid and the base is fed with current, once the base is above 0.65v. The other way to turn on an NPN transistor is to hold the base firm and lower the emitter. Once the emitter is lower than the base by 0.65v, the transistor turns on and if the base is lowered slightly more, the transistor turns on more. This may be difficult to visualise, but it is occurring in the oscillator stage. Let's advance a few cycles and see what is happening. The transistor turns on and the collector pushed the top of the 10p capacitor towards the emitter. The energy in the capacitor gets converted to a small voltage and larger current. We said before, that a capacitor can do this. The small voltage pushes the emitted lower and this turns on the transistor. More current flows though the 470R and this has the effect of turning off the transistor. The two actions fight against each other and the capacitor wins. The end result is the transistor is turned on and a little bit of energy is pumped into the capacitor in the tuned circuit. At this instant, the coil does not get energy from the transistor because a coil resists any quick flow of current into it and it acts like a very large resistor. The energy in the 10p is now spent and the transistor turns off slightly. The energy from the capacitor passes to the coil and when the capacitor can no-longer keep the flux in the coil increasing, there comes a point where the flux starts to collapse. This flux produces a voltage that is larger than before and is opposite to the previous voltage. This is one of the amazing things of a coil and capacitor in parallel. The voltage at the lower end of the coil-capacitor combination is higher than the supply and this raises the top plate of the 10p capacitor. This rises the voltage on the emitter and turns the transistor off completely. This allows the tank circuit to produce its amazing HIGH VOLTAGE without the transistor loading the circuit. But he coil/capacitor is a very delicate arrangement and it is producing the high voltage at very low current as it is converting the original low voltage small current into high voltage very low current. If we put a load on the circuit at point "A" we will reduce the voltage and may freeze the circuit. The following 9 circuits show different ways to "tap-off" the waveform and amplify it in a stage called a BUFFER. The BUFFER converts a HIGH IMPEDANCE signal into a LOW IMPEDANCE signal as the antenna is commonly referred to as a 50 OHM LOAD. The simplest buffer is shown the following circuit. It is a common emitter stage with a resistive load. 1. STABILITY

15 BC547 is not suitable as a buffer A BC 547 transistor is not very good at amplifying at 100MHz. The circuit above does not give a greater range than the 2-transistor version, but the stability is much greater. The antenna can be touched without the bug drifting off frequency. 2. INCREASED RANGE To increase the range, the output must be increased. This can be done by using an RF transistor and adding an inductor. This effectively converts more of the current taken by the circuit into RF output. The output is classified as an untuned circuit. Use an RF transistor for the Buffer 3. MORE RANGE More output can be obtained by increasing the voltage and adding a capacitor to the output to tune the buffer stage. The 5-30p must be adjusted each time the frequency of the bug is changed. This is best done with a field strength meter. See Talking Electronics Field Strength Meter project.

16 A tuned output stage delivers more output The 2N3563 is capable of passing 15mA in the buffer stage and about 30% is delivered as RF. This makes the transmitter capable of delivering about 22mW. 4. DIFFERENT COUPLING We have already mentioned the fact that a capacitor can convert a large waveform with low current into a small waveform with large current. The following circuit taps off the inductor at a point of low amplitude to put the least load on the tank circuit. The coupling capacitor has been increased to transfer enough energy at low amplitude. This coupling has exactly the same result as shown in circuit 3. Circuit 3 is preferred as it is easier to connect to the collector than tap the inductor. Tapping the oscillator tuned circuit 5. A PNP BUFFER A PNP transistor can be used in the buffer stage, but as we said before the BC557 is not as good as an NPN transistor, when operating at high frequencies.

17 A PNP in the buffer is not a good performer 6. WASTED POWER The following circuit (from the web) takes 30mA. This is wasted current. As we said before, any voltage above 4.5v is excess and any current above 12mA for this type of circuit is excess. A BC 557 cannot deal with any more than 5mA collector-emitter current. Any more than 5mA is wasted. That's why you need an RF transistor in the output. The buffer is taking excess current 7. EMITTER TAP The following circuit taps the emitter of the oscillator stage. We have already explained the collector or the emitter can be tapped and produce about the same results.

18 Tapping the emitter of the oscillator transistor 8. CLASS "C" OUTPUT The following circuit uses no biasing on the output transistor. It gets all the energy to activate the base from the oscillator stage. While this is possible, the amount of energy needed is very large and the oscillator cannot provide enough energy to fully drive the output stage. Class "C" output 9. ADJUSTABLE OSCILLATOR COIL To make a circuit more compact or cheaper (of if you don't have a trimmer), the oscillator coil can be adjusted by stretching or compressing. When the coil is stretched, the frequency increases. The buffer circuit has to be adjusted too, to get the greatest output.

19 Adjustable oscillator coil (no trimmer capacitor) 10. POOR DESIGN Here is a circuit with poor design. It goes against 6 of the things we have mentioned above. The first poor design is the low value resistance for the microphone. For 9v, the microphone load resistor should be 47k. If a low value is used, the microphone will will over-amplify and create a background noise similar to bacon and eggs frying. The 100k separating the microphone from the base of the audio transistor is not needed. If the microphone is operated at its correct level of current, this resistor will not be needed. The BC 547 is self biased via the 1k and 100k, so the 22k resistor on the base is not needed. The 100R on the emitter of the BC338 is a very low value for 9v supply. The coil is on the PC board has a very low "Q" and the current taken by the circuit is excessive when the emitter resistor is 100R. The 22p in series with 2-30p gives a value about 2p to 12p and this is very small for this tank circuit. Series capacitors make it very difficult to adjust the frequency as the trimmer is having a lot of effect on changing the frequency when it is in series with another capacitor. The final unusual feature is the 10u and 100u electrolytics. We have already mentioned that electrolytics do not have any effect with frequencies around 100MHz. It seems the designer had difficulties with audio instability, due to the low value of resistance on the microphone and tried to fix the problem with electrolytics. The circuit has 4 unnecessary components and if you are going into manufacturing, with will be a costly mistake. This project is to be avoided if you want a good range with low current consumption. Some of our other circuits are a better choice. The photo below shows the assembled circuit.

20 This covers all the possible combinations for the greatest output with three transistors using a 3v to 9v supply. If you want to improve any of the circuits we have covered, here are some helpful tips: It's handy to know the effective reactance (resistance) of a capacitor at the operating frequency of the circuit. If we assume 100MHz, the resistance is as follows: Capacitance 5.6p 300R

21 10p 22p 47p 1n 22n 166R 75R 35R 1R6 much less than 1R 3k7 1u R Now we come to understanding what the values mean. It depends where the capacitor is placed. A 22n across the power rails will be like a small battery equal to the voltage of the supply, but with an internal resistance of less than one ohm. When a battery has a low internal impedance, a high current can be taken without the voltage dropping. You may not think the oscillator circuit takes a high current but if the average is 10mA, there will be times when the circuit requires 20mA, and times when it needs 1mA. If the voltage dips when the circuit is trying to charge a capacitor, for example, the capacitor will not get charges to its maximum. This is what happens with the circuits above. AS soon as you put a 22n across the battery, the output increase a small amount. Not only does the output increase, but the increase stays throughout the life of the battery, especially when it is getting flat. So the 22n across the battery is very important. A ceramic capacitor is able to supply this tiny amount of charge very quickly and this is needed as the circuit is working at 100,000,000 times per second. An electrolytic is not able to supply a tiny amount of charge at this fast rate and so an electrolytic is not suitable for the supply "decoupler." A decoupler is the name given to any capacitor that is placed across the supply rails to suppress spikes or prevent the effects of one stage from interfering with another stage. It "decouples" or "separates." When a capacitor is used to "couple" one stage to the next, such as the 22n between the microphone and base of the audio amplifier, the capacitor has a certain resistance at the frequency of the signal and since this is audio, it has an effective resistance of about 4k. If you put a 4k resistor in place of the 22n, you can see any signal produced by the microphone is only a few kilo ohms away from the base of the audio transistor. The audio transistor has an input impedance of about 4k and thus the two resistances can be seen as joined together in series with the input of the transistor at their middle. They form a voltage divider in which 50% of the signal produced by the microphone is delivered to the transistor. This is a very simple way to see the situation, so that if the 22n is replaced by a 1n, very little of the signal produced by the microphone will be delivered to the transistor. But if the 22n is replaced by a 1u, abut 95% of the signal will be delivered. That's a choice you have to make. Experiment with the two values and see if the improvement is noticeable. When a capacitor is used to stabilize a voltage in a building block, such as the 1n on the base of the oscillator, it is acting just like the 22n across the supply and it appears as tiny battery with a voltage of about 2v and a resistance of about 2 ohms. This type of battery will deliver 1 amp, so you can see the 1n will keep the base very stable. The 10p to 47p coupling the oscillator to the output stage, is equivalent to a very low resistor so nearly all the energy of the oscillator is being passed to the output stage. This is only a very simple way to look at the operation of each capacitor but it gives an idea of why each value has been chosen. It's a pity the designer of circuit #10 did not read these notes before trying to design a kit for the electronics market. GOING FURTHER The next stage to improve the output, matches the impedance of the output stage to the impedance of the antenna. The impedance of the output stage is about 1k to 5k, and the impedance of the antenna is

22 about 50 ohms. This creates an enormous matching problem but one effective way is with an RF transformer. An RF transformer is simply a transformer that operates at high frequency. It can be air cored or ferrite cored. The type of ferrite needed for 100MHz is F28. The following circuit uses a small ferrite slug 2.6mm dia x 6mm long, F28 material. A slug is the screwed rod that screws into a coil and is adjusted to change the matching of the windings or the frequency of the coil or transformer. To create an output transformer for circuit 6 above, wind 11 turns onto the slug and 4 turns over the 11 turns. The ferrite core will do two things. Firstly it provides a high amount of energy to pass from the primary winding to the antenna. and secondly it will prevent harmonics passing to the antenna. The only way to prove the effectiveness of the transformer is with a field test and the range increased nearly 100%, over the tuned output design in circuit 9. Matching the output to the antenna via a transformer

EARWIG. The Complete EARWIG. Earwig Circuit

EARWIG. The Complete EARWIG. Earwig Circuit EARWIG This kit is designed and manufactured by TALKING ELECTRONICS For the latest price see: talkingelectronics.com The Complete EARWIG A bug in a matchbox... Earwig Circuit This is an easy to build FM

More information

The Infinity Bug. This is an amazing project... Order kit Fully assembled version $199 Order Infinity Bug

The Infinity Bug. This is an amazing project... Order kit Fully assembled version $199 Order Infinity Bug The Infinity Bug This is an amazing project... us$55.00 plus $6.50 post Order kit Fully assembled version $199 Order Infinity Bug The INFINITY BUG is connected across the phone-line of a distant phone

More information

The Hartley Oscillator

The Hartley Oscillator The Hartley Oscillator One of the main disadvantages of the basic LC Oscillator circuit we looked at in the previous tutorial is that they have no means of controlling the amplitude of the oscillations

More information

The G4EGQ RAE COURSE Lesson 9 Transmitters Lesson 8 looked at a simple transmitter exciter comprising of oscillator, buffer and multiplier stages.

The G4EGQ RAE COURSE Lesson 9 Transmitters Lesson 8 looked at a simple transmitter exciter comprising of oscillator, buffer and multiplier stages. Lesson 8 looked at a simple transmitter exciter comprising of oscillator, buffer and multiplier stages. The power amplifier The output from the exciter is usually very low and it is necessary to amplify

More information

1. What is the unit of electromotive force? (a) volt (b) ampere (c) watt (d) ohm. 2. The resonant frequency of a tuned (LRC) circuit is given by

1. What is the unit of electromotive force? (a) volt (b) ampere (c) watt (d) ohm. 2. The resonant frequency of a tuned (LRC) circuit is given by Department of Examinations, Sri Lanka EXAMINATION FOR THE AMATEUR RADIO OPERATORS CERTIFICATE OF PROFICIENCY ISSUED BY THE DIRECTOR GENERAL OF TELECOMMUNICATIONS, SRI LANKA 2004 (NOVICE CLASS) Basic Electricity,

More information

SILVERFISH. The thinnest bug to ever be presented - 100metre range SILVERFISH CIRCUIT

SILVERFISH. The thinnest bug to ever be presented - 100metre range SILVERFISH CIRCUIT SILVERFISH The thinnest bug to ever be presented - 100metre range SILVERFISH CIRCUIT This must be the world s smallest bug to be presented in kit form. As Small as a credit card and as flat as a couple

More information

SPECIFICATIONS: Subcarrier Frequency 5.5MHz adjustable, FM Modulated +/- 50KHz. 2nd 11MHz >40dB down from 5.5MHz

SPECIFICATIONS: Subcarrier Frequency 5.5MHz adjustable, FM Modulated +/- 50KHz. 2nd 11MHz >40dB down from 5.5MHz Mini-kits AUDIO / SUBCARRIER KIT EME75 Version4 SPECIFICATIONS: Subcarrier Frequency 5.5MHz adjustable, FM Modulated +/- 50KHz Subcarrier Output 1.5v p-p Output @ 5.5MHz DESCRIPTION & FEATURES: The Notes

More information

CHAPTER 3 PROJECT METHODOLOGY

CHAPTER 3 PROJECT METHODOLOGY CHAPTER 3 PROJECT METHODOLOGY 3.1 Introduction This chapter will cover the details explanation of methodology that is being used to make this project complete and working well. Many methodology or findings

More information

BJT Amplifier Power Amp Overview(H.21)

BJT Amplifier Power Amp Overview(H.21) BJT Amplifier Power Amp Overview(H.21) 20170616-2 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

EXPERIMENT #2 CARRIER OSCILLATOR

EXPERIMENT #2 CARRIER OSCILLATOR EXPERIMENT #2 CARRIER OSCILLATOR INTRODUCTION: The oscillator is usually the first stage of any transmitter. Its job is to create a radio-frequency carrier that can be amplified and modulated before being

More information

TELEPHONE BUG KIT MODEL K-35. Assembly and Instruction Manual

TELEPHONE BUG KIT MODEL K-35. Assembly and Instruction Manual TELEPHONE BUG KIT MODEL K-35 Assembly and Instruction Manual Elenco Electronics, Inc. Copyright 2010, 1989 by Elenco Electronics, Inc. All rights reserved. Revised 2010 REV-L 753235 No part of this book

More information

THE 1956 ZENITH ROYAL 500 TRANSISTOR OWL S EYES RADIO.

THE 1956 ZENITH ROYAL 500 TRANSISTOR OWL S EYES RADIO. THE 1956 ZENITH ROYAL 500 TRANSISTOR OWL S EYES RADIO. Dr. H. Holden. Feb. 2018. Introduction: The Zenith Royal 500 radio appeared in 1956, two years later than the Regency TR1 which was the first commercial

More information

No.01 Transistor Tester

No.01 Transistor Tester Blocks used Tester Circuits No.01 Transistor Tester Electronic components may break down if used or connected improperly. Let s start with a simple tester circuit project designed to teach you how to handle

More information

S-Pixie QRP Kit. Student Manual. Revision V 1-0

S-Pixie QRP Kit. Student Manual. Revision V 1-0 S-Pixie QRP Kit Student Manual Revision V 1-0 Introduction The Pixie 2 is a small, versatile radio transceiver that is very popular with QRP (low power) amateur radio operators the world over. It reflects

More information

RF and Optical Bolometer

RF and Optical Bolometer RF and Optical Bolometer When RF energy is delivered to a resistive load it dissipates heat. If the load has a relatively poor thermal coupling to its surrounding environment its temperature will rise.

More information

A GOOD REGENERATIVE RECEIVER WITH SIMPLE FINE TUNING (2008)

A GOOD REGENERATIVE RECEIVER WITH SIMPLE FINE TUNING (2008) A GOOD REGENERATIVE RECEIVER WITH SIMPLE FINE TUNING (2008) A good SSB-CW-AM regenerative receiver with a fine tuning by moving the wooden stick with a grounded piece of PCB towards the coil. A good regenerative

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT III TUNED AMPLIFIERS PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT III TUNED AMPLIFIERS PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT III TUNED AMPLIFIERS PART A (2 Marks) 1. What is meant by tuned amplifiers? Tuned amplifiers are amplifiers that are designed to reject a certain

More information

The Power Supply INDEX. For any enquiries Colin Mitchell

The Power Supply INDEX. For any enquiries  Colin Mitchell For any enquiries email Colin Mitchell The Power Supply INDEX AC Adjustable 3-Terminal Regulator Ammeter Basic Power Supply Battery Bench Power Supply Capacity of a battery Cell Capacity Tester Current

More information

Parallel Port Relay Interface

Parallel Port Relay Interface Parallel Port Relay Interface Below are three examples of controlling a relay from the PC's parallel printer port (LPT1 or LPT2). Figure A shows a solid state relay controlled by one of the parallel port

More information

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward SEMICONDUCTOR PHYSICS-2 [Transistor, constructional characteristics, biasing of transistors, transistor configuration, transistor as an amplifier, transistor as a switch, transistor as an oscillator] Transistor

More information

MISCELLANEOUS. Figure 1.

MISCELLANEOUS. Figure 1. Reading 41 Ron Bertrand VK2DQ http://www.radioelectronicschool.com MISCELLANEOUS The purpose of this reading is to catch anything that may have slipped through the previous forty readings or just does

More information

The ROSE 80 CW Transceiver (Part 1 of 3)

The ROSE 80 CW Transceiver (Part 1 of 3) Build a 5 watt, 80 meter QRP CW Transceiver!!! Page 1 of 10 The ROSE 80 CW Transceiver (Part 1 of 3) Build a 5 watt, 80 meter QRP CW Transceiver!!! (Designed by N1HFX) A great deal of interest has been

More information

Technical Specifications - Characteristics

Technical Specifications - Characteristics Watt FM TRANSMITTER General Description This is a small but quite powerful FM transmitter having three RF stages incorporating an audio preamplifier for better modulation. t has an output power of 4 Watts

More information

G6ALU 20W FET PA Construction Information

G6ALU 20W FET PA Construction Information G6ALU 20W FET PA Construction Information The requirement This amplifier was designed specifically to complement the Pic-A-Star transceiver developed by Peter Rhodes G3XJP. From the band pass filter an

More information

Introduction LOADING COIL COUNTERPOISE ATTACHMENT ANTENNA ATTACHMENT. Figure 1: MFJ-1625 Window/Balcony Mount Antenna

Introduction LOADING COIL COUNTERPOISE ATTACHMENT ANTENNA ATTACHMENT. Figure 1: MFJ-1625 Window/Balcony Mount Antenna Introduction MFJ-1625 The MFJ-1625 is a 200 Watt antenna tuner that was designed to provide portable or permanent HF communications on 80 through 10 meters and VHF on 6 meters. The universal mount design

More information

SWL Receiving Antenna Experiments

SWL Receiving Antenna Experiments SWL Receiving Antenna Experiments Introduction I have a lot to learn about SWL antennas. What follows are some brief experiments I performed in late October 2005. I have been experimenting with a half

More information

Learning Objectives:

Learning Objectives: Learning Objectives: At the end of this topic you will be able to; recall the conditions for maximum voltage transfer between sub-systems; analyse a unity gain op-amp voltage follower, used in impedance

More information

Receiver Operation at the Component Level

Receiver Operation at the Component Level Receiver Operation at the Component Level Unit 9. Activity 9.4. How a Receiver Works Purpose: The objective of this lesson is to allow the student to explore how a receiver works at the component level.

More information

Basic Electronics Course Part 2

Basic Electronics Course Part 2 Basic Electronics Course Part 2 Simple Projects using basic components Including Transistors & Pots Following are instructions to complete several electronic exercises Image 7. Components used in Part

More information

WA3RNC 30 METER CRYSTALPLEXER TRANSMITTER KIT ASSEMBLY INSTRUCTIONS

WA3RNC 30 METER CRYSTALPLEXER TRANSMITTER KIT ASSEMBLY INSTRUCTIONS WA3RNC 30 METER CRYSTALPLEXER TRANSMITTER KIT ASSEMBLY INSTRUCTIONS Description The WA3RNC 30 Meter Crystalplexer is a low power crystal controlled QRP transmitter offering a significantly improved tuning

More information

TUNED AMPLIFIERS. Tank circuits.

TUNED AMPLIFIERS. Tank circuits. Tank circuits. TUNED AMPLIFIERS Analysis of single tuned amplifier, Double tuned, stagger tuned amplifiers. Instability of tuned amplifiers, stabilization techniques, Narrow band neutralization using coil,

More information

ALWAYS ATTACH THE SAFETY ROPE TO A STABLE SUPPORT BEFORE ATTEMPTING TO ATTACH THE UNIVERSAL MOUNT TO A WINDOW FRAME OR RAIL.

ALWAYS ATTACH THE SAFETY ROPE TO A STABLE SUPPORT BEFORE ATTEMPTING TO ATTACH THE UNIVERSAL MOUNT TO A WINDOW FRAME OR RAIL. MFJ-1623 Introduction The MFJ-1623 was designed to provide portable or permanent HF communications on 30 through 10 meters and VHF on 6 meters. The universal mount design allows the user to install the

More information

LM1868 AM FM Radio System

LM1868 AM FM Radio System LM1868 AM FM Radio System General Description The combination of the LM1868 and an FM tuner will provide all the necessary functions for a 0 5 watt AM FM radio Included in the LM 1868 are the audio power

More information

Amateur Wireless Station Operators License Exam

Amateur Wireless Station Operators License Exam Amateur Wireless Station Operators License Exam Study material 2017 South India Amateur Radio Society, Chennai CHAPTER 5 1 Chapter 5 Amateur Wireless Station Operators License Exam Study Material Chapter

More information

Projects under $10.00 Simple projects to build...

Projects under $10.00 Simple projects to build... Projects under $10.00 Simple projects to build... Home These projects have all been designed by Talking Electronics and they all have a purpose... they show you how to make interesting things. LIST OF

More information

Chapter 4: AM Transmitters

Chapter 4: AM Transmitters Chapter 4: AM Transmitters Chapter 4 Objectives At the conclusion of this chapter, the reader will be able to: Draw a block diagram of a high or low-level AM transmitter, giving typical signals at each

More information

V6.2 SoftRock Lite Builder s Notes. November 17, 2006

V6.2 SoftRock Lite Builder s Notes. November 17, 2006 V6.2 SoftRock Lite Builder s Notes November 17, 2006 Be sure to use a grounded tip soldering iron in building the v6.2 SoftRock circuit board. The soldering iron needs to have a small tip, (0.05-0.1 inch

More information

SoftRock v6.0 Builder s Notes. May 22, 2006

SoftRock v6.0 Builder s Notes. May 22, 2006 SoftRock v6.0 Builder s Notes May 22, 2006 Be sure to use a grounded tip soldering iron in building the v6.0 SoftRock circuit board. The soldering iron needs to have a small tip, (0.05-0.1 inch diameter),

More information

METAL DETECTOR KIT MODEL K-26. Assembly and Instruction Manual ELENCO

METAL DETECTOR KIT MODEL K-26. Assembly and Instruction Manual ELENCO METAL DETECTOR KIT MODEL K-26 Assembly and Instruction Manual ELENCO Copyright 2012, 1989 by Elenco Electronics, Inc. All rights reserved. Revised 2012 REV-F 753226 No part of this book shall be reproduced

More information

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

Power Amplifiers. Class A Amplifier

Power Amplifiers. Class A Amplifier Power Amplifiers The Power amplifiers amplify the power level of the signal. This amplification is done in the last stage in audio applications. The applications related to radio frequencies employ radio

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3.

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. What is difference between electron and hole? 4. Why electrons have

More information

HAMTRONICS TB901 FM EXCITER INSTALLATION, OPERATION, & MAINTENANCE

HAMTRONICS TB901 FM EXCITER INSTALLATION, OPERATION, & MAINTENANCE HAMTRONICS TB901 FM EXCITER INSTALLATION, OPERATION, & MAINTENANCE GENERAL INFORMATION. The TB901 is a single-channel low power fm transmitter (exciter) designed to provide 300-600 milliwatts continuous

More information

LBI-30398N. MAINTENANCE MANUAL MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS. Page. DESCRIPTION...

LBI-30398N. MAINTENANCE MANUAL MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS. Page. DESCRIPTION... MAINTENANCE MANUAL 138-174 MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 LBI-30398N TABLE OF CONTENTS DESCRIPTION...Front Cover CIRCUIT ANALYSIS... 1 MODIFICATION INSTRUCTIONS... 4 PARTS LIST AND PRODUCTION

More information

Chapter.8: Oscillators

Chapter.8: Oscillators Chapter.8: Oscillators Objectives: To understand The basic operation of an Oscillator the working of low frequency oscillators RC phase shift oscillator Wien bridge Oscillator the working of tuned oscillator

More information

MINI FM PHONE TRANSMITTER KIT

MINI FM PHONE TRANSMITTER KIT MINI FM PHONE TRANSMITTER KIT Description: This is a subminiature FM telephone transmitter capable of transmitting both sides of a telephone conversation to most any FM receiver up to 1/4 mile away. When

More information

VHF Super-Regenerative Receiver

VHF Super-Regenerative Receiver VHF Super-Regenerative Receiver I have started straight with the circuit out of the ARRL handbook, by Charles Kitchen N1TEV. I didn't have a 6v8 zener, or a few other part values, so I had to substitute

More information

N3ZI Kits General Coverage Receiver, Assembly & Operations Manual (For Jun 2011 PCB ) Version 3.33, Jan 2012

N3ZI Kits General Coverage Receiver, Assembly & Operations Manual (For Jun 2011 PCB ) Version 3.33, Jan 2012 N3ZI Kits General Coverage Receiver, Assembly & Operations Manual (For Jun 2011 PCB ) Version 3.33, Jan 2012 Thank you for purchasing my general coverage receiver kit. You can use the photo above as a

More information

Chapter 6. FM Circuits

Chapter 6. FM Circuits Chapter 6 FM Circuits Topics Covered 6-1: Frequency Modulators 6-2: Frequency Demodulators Objectives You should be able to: Explain the operation of an FM modulators and demodulators. Compare and contrast;

More information

Basic Harris DX Transmitter Tutorial

Basic Harris DX Transmitter Tutorial BASIC DX TUTORIAL Basic Harris DX Transmitter Tutorial Basic DX Theory The Harris DX Transmitters series, introduced in 1986, have proven to be the most efficient method of Amplitude Modulation at medium

More information

ERICSSONZ LBI-30398P. MAINTENANCE MANUAL MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS

ERICSSONZ LBI-30398P. MAINTENANCE MANUAL MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS MAINTENANCE MANUAL 138-174 MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 TABLE OF CONTENTS Page DESCRIPTION... Front Cover CIRCUIT ANALYSIS...1 MODIFICATION INSTRUCTIONS...4 PARTS LIST...5 PRODUCTION

More information

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 Lab 1 Power Amplifier Circuits Issued August 25, 2009 Due: September 11, 2009

More information

Exercise 1: RF Stage, Mixer, and IF Filter

Exercise 1: RF Stage, Mixer, and IF Filter SSB Reception Analog Communications Exercise 1: RF Stage, Mixer, and IF Filter EXERCISE OBJECTIVE DISCUSSION On the circuit board, you will set up the SSB transmitter to transmit a 1000 khz SSB signal

More information

Hidden Active Cellphone Detector.

Hidden Active Cellphone Detector. Hidden Active Cellphone Detector Introduction: It is a handy, pocket-size mobile transmission detector or sniffer. It is a circuit for a mobile transmission detector which can detect use of a mobile phone

More information

ZN414Z, ZN415E, ZN416E AM RADIO RECEIVERS

ZN414Z, ZN415E, ZN416E AM RADIO RECEIVERS GEC PLESSEY [SEMICONDUCTORS ZN414Z, ZN415E, ZN416E AM RADIO RECEIVERS FEATURES Single cell operation (1.1 to 1.6 volt, operating range) Low current consumption 150kHz to 3MHz frequency range (i.e. full

More information

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi 2.1 INTRODUCTION An electronic circuit which is designed to generate a periodic waveform continuously at

More information

Input and output coupling

Input and output coupling Input and output coupling To overcome the challenge of creating necessary DC bias voltage for an amplifier's input signal without resorting to the insertion of a battery in series with the AC signal source,

More information

11. Audio Amp. LM386 Low Power Amplifier:

11. Audio Amp. LM386 Low Power Amplifier: EECE208 INTRO TO EE LAB Dr. Charles Kim 11. Audio Amp Objectives: The main purpose of this laboratory exercise is to design an audio amplifier based on the LM386 Low Voltage Audio Power Amplifier chip

More information

AM/FM-108TK FM_RF_AMP

AM/FM-108TK FM_RF_AMP V1 is 50 mv at 88Mhz V2 is 7.73 Volts dc o Real circuit has supply voltage of 7.73 due to Ir drop across 220 ohm R25 and 100 ohm R9 Ir25 = (8.85-7.75V)/220 ohm = 5 ma Ir9 = (7.75-7.37V)/100 ohm = 3.8 ma

More information

A 75-Watt Transmitter for 3 Bands Simplified Shielding and Filtering for TVI BY DONALD H. MIX, W1TS ARRL Handbook 1953 and QST, October 1951

A 75-Watt Transmitter for 3 Bands Simplified Shielding and Filtering for TVI BY DONALD H. MIX, W1TS ARRL Handbook 1953 and QST, October 1951 A 75-Watt Transmitter for 3 Bands Simplified Shielding and Filtering for TVI BY DONALD H. MIX, W1TS ARRL Handbook 1953 and QST, October 1951 The transmitter shown in the photographs is a 3-stage 75-watt

More information

REPAIRING THE RM KL400 LINEAR AMPLIFIER.

REPAIRING THE RM KL400 LINEAR AMPLIFIER. REPAIRING THE RM KL400 LINEAR AMPLIFIER. Les Carpenter G4CNH December 2012 Page 1 of 20 The following is a step by step guide to fixing your KL400 amplifier. Each part will be individually tested up to

More information

1 of 7 12/20/ :04 PM

1 of 7 12/20/ :04 PM 1 of 7 12/20/2007 11:04 PM Trusted Resource for the Working RF Engineer [ C o m p o n e n t s ] Build An E-pHEMT Low-Noise Amplifier Although often associated with power amplifiers, E-pHEMT devices are

More information

KN-Q10 Assembly Manual

KN-Q10 Assembly Manual KN-Q10 Assembly Manual Translated by Adam Rong, BD6CR/4 with permission from Ke Shi, BA6BF Edited by Stephen, VK2RH Revision B, Oct 14, 2010 Thank you for purchasing the KN-Q10 4 Band SSB/CW Dual Mode

More information

GRID DIP METER DESIGN

GRID DIP METER DESIGN GRID DIP METER DESIGN BY G0CWA MAY 2013 This, my next offering of test equipment is an exceptionally useful item of test equipment with many uses, some are listed below. To coin a phrase given to me by

More information

RadiØKit Μ CW HAM RADIO TRANSCEIVER KIT. Assembly and operating manual

RadiØKit Μ CW HAM RADIO TRANSCEIVER KIT. Assembly and operating manual RadiØKit-120 20Μ CW HAM RADIO TRANSCEIVER KIT Assembly and operating manual Boreiou Ipirou 78 Kolonos Athens- Greece - 10444 Tel: 210.5150527 210.5132673 www.freebytes.com Thank you for buying RadiØKit-1,

More information

WINTER 14 EXAMINATION. Model Answer. 1) The answers should be examined by key words and not as word-to-word as given in the

WINTER 14 EXAMINATION. Model Answer. 1) The answers should be examined by key words and not as word-to-word as given in the WINTER 14 EXAMINATION Subject Code: 17213 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

General Licensing Class Circuits

General Licensing Class Circuits General Licensing Class Circuits Valid July 1, 2011 Through June 30, 2015 1 Amateur Radio General Class Element 3 Course Presentation ELEMENT 3 SUB-ELEMENTS (Groupings) Your Passing CSCE Your New General

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Power Amplifiers. Introduction to Power Amplifiers. Amplifiers. Module

Power Amplifiers. Introduction to Power Amplifiers. Amplifiers. Module Module 5 Amplifiers Introduction to What you ll learn in Module 5. Section 5.0 Introduction to. Understand the Operation of. Section 5.1 Power Transistors & Heat Sinks. Power Transistor Construction. Power

More information

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture 38 Unit junction Transistor (UJT) (Characteristics, UJT Relaxation oscillator,

More information

E L E C R A F T K N B 1 N O I S E B L A N K E R

E L E C R A F T K N B 1 N O I S E B L A N K E R Introduction E L E C R A F T K N B N O I S E B L A N K E R Assembly and Operating Instructions Revision C, Jan. 8, 200. Copyright 200, Elecraft; All Rights Reserved The KNB noise blanker can be used to

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

Homework Assignment 03

Homework Assignment 03 Question (75 points) Homework Assignment 03 Overview Tuned Radio Frequency (TRF) receivers are some of the simplest type of radio receivers. They consist of a parallel RLC bandpass filter with bandwidth

More information

Applications Note RF Transmitter and Antenna Design Hints

Applications Note RF Transmitter and Antenna Design Hints This application note covers the TH7107,TH71071,TH71072,TH7108,TH71081,TH72011,TH72031,TH7204 Single Frequency Transmitters. These transmitters have different features and cover different bands but they

More information

CON NEX HP. OWNER'S MANUAL Full Channel AM/FM Amateur Mobile Transceiver TABLE OF CONTENTS TUNING THE ANTENNA FOR OPTIMUM S.W.R..

CON NEX HP. OWNER'S MANUAL Full Channel AM/FM Amateur Mobile Transceiver TABLE OF CONTENTS TUNING THE ANTENNA FOR OPTIMUM S.W.R.. TABLE OF CONTENTS PAGE SPECIFICATIONS... 2 INSTALLATION... 3 LOCATION... 3 CON NEX - 4300HP MOUNTING THE RADIO... 3 IGNITION NOISE INTERFERENCE... 4 ANTENNA... 4 TUNING THE ANTENNA FOR OPTIMUM S.W.R..

More information

THE INTERMEDIATE VFO

THE INTERMEDIATE VFO THE INTERMEDIATE VFO Some Intermediate tutors have reported difficulties in either obtaining parts for the RSGB Intermediate textbook VFO or in getting the VFO going once they have the parts. This alternative

More information

ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder

ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya opovic, University of Colorado, Boulder LECTURE 3 MICROWAVE AMLIFIERS: INTRODUCTION L3.1. TRANSISTORS AS BILATERAL MULTIORTS Transistor

More information

Radio Station Setup and Electrical Principles

Radio Station Setup and Electrical Principles Radio Station Setup and Electrical Principles Covers sections: T4A-T5D Seth Price, N3MRA February 20, 2016 Outline 4.1 Station Setup 4.2 Operating Controls 4.3 Electronic Principles 4.4 Ohm s Law 4.5 Power

More information

Application Note 1360

Application Note 1360 ADA-4743 +17 dbm P1dB Avago Darlington Amplifier Application Note 1360 Description Avago Technologies Darlington Amplifier, ADA-4743 is a low current silicon gain block RFIC amplifier housed in a 4-lead

More information

Wimborne Publishing, reproduce for personal use only

Wimborne Publishing, reproduce for personal use only In part 1 we looked at some of the principles involved with measuring magnetic fields. This time, we take a more practical approach and look at some experimental circuits. The circuits illustrated are

More information

SWR myths and mysteries.

SWR myths and mysteries. SWR myths and mysteries. By Andrew Barron ZL3DW September 2012 This article will explain some of the often misunderstood facts about antenna SWR at HF and uncover some popular misconceptions. The questions

More information

A 40m Direct Conversion Receiver project to upgrade from ZR to ZS

A 40m Direct Conversion Receiver project to upgrade from ZR to ZS A 40m Direct Conversion Receiver project to upgrade from ZR to ZS Hannes Coetzee, ZS6BZP, B.Eng Elektronic (Pretoria) A simple receiver with a low component count is described for the 40m Amateur band.

More information

Building the Sawdust Regenerative Receiver

Building the Sawdust Regenerative Receiver Building the Sawdust Regenerative Receiver Introduction The Sawdust is a super regenerative receiver using the basic Armstrong design architecture. The receiver uses one toroidal transformer to provide

More information

Physics of Music Projects Final Report

Physics of Music Projects Final Report Physics of Music Projects Final Report John P Alsterda Prof. Steven Errede Physics 498 POM May 15, 2009 1 Abstract The following projects were completed in the spring of 2009 to investigate the physics

More information

Analysis and Design of a Simple Operational Amplifier

Analysis and Design of a Simple Operational Amplifier by Kenneth A. Kuhn December 26, 2004, rev. Jan. 1, 2009 Introduction The purpose of this article is to introduce the student to the internal circuits of an operational amplifier by studying the analysis

More information

EE12: Laboratory Project (Part-2) AM Transmitter

EE12: Laboratory Project (Part-2) AM Transmitter EE12: Laboratory Project (Part-2) AM Transmitter ECE Department, Tufts University Spring 2008 1 Objective This laboratory exercise is the second part of the EE12 project of building an AM transmitter in

More information

FREQUENCY AGILE FM MODULATOR INSTRUCTION BOOK IB

FREQUENCY AGILE FM MODULATOR INSTRUCTION BOOK IB FMT615C FREQUENCY AGILE FM MODULATOR INSTRUCTION BOOK IB1215-02 TABLE OF CONTENTS SECTION SUBJECT 1.0 Introduction 2.0 Installation & Operating Instructions 3.0 Specification 4.0 Functional Description

More information

75 Meter SSB Project Design by KD1JV Built by Paul Jorgenson KE7HR NSS 39382FE

75 Meter SSB Project Design by KD1JV Built by Paul Jorgenson KE7HR NSS 39382FE 75 Meter SSB Project Design by KD1JV Built by Paul Jorgenson KE7HR NSS 39382FE After completing a 75 meter DSB project (and using it underground, caving), I wanted to try building a SSB rig. I was searching

More information

Interference & Suppression Page 59

Interference & Suppression Page 59 INTERFERENCE Interference & Suppression Page 59 Front-End Overload, Cross-Modulation What is meant by receiver overload? Interference caused by strong signals from a nearby transmitter What is one way

More information

4/30/2012. General Class Element 3 Course Presentation. Practical Circuits. Practical Circuits. Subelement G7. 2 Exam Questions, 2 Groups

4/30/2012. General Class Element 3 Course Presentation. Practical Circuits. Practical Circuits. Subelement G7. 2 Exam Questions, 2 Groups General Class Element 3 Course Presentation ti ELEMENT 3 SUB ELEMENTS General Licensing Class Subelement G7 2 Exam Questions, 2 Groups G1 Commission s Rules G2 Operating Procedures G3 Radio Wave Propagation

More information

Building a Bitx20 Version 3

Building a Bitx20 Version 3 Building a Bitx20 Version 3 The board can be broken into sections and then built and tested one section at a time. This will make troubleshooting easier as any problems will be confined to one small section.

More information

Medium Power 137kHz Linear Power Amplifier G4JNT Sept 2010

Medium Power 137kHz Linear Power Amplifier G4JNT Sept 2010 Medium Power 137kHz Linear Power Amplifier G4JNT Sept 2010 This project was conceived on the back of an envelope after running a WSPR beacon thorough my 600 Watt switch mode Power Amplifier, and setting

More information

DIODE / TRANSISTOR TESTER KIT

DIODE / TRANSISTOR TESTER KIT DIODE / TRANSISTOR TESTER KIT MODEL DT-100K Assembly and Instruction Manual Elenco Electronics, Inc. Copyright 1988 Elenco Electronics, Inc. Revised 2002 REV-K 753110 DT-100 PARTS LIST If you are a student,

More information

PartIIILectures. Multistage Amplifiers

PartIIILectures. Multistage Amplifiers University of missan Electronic II, Second year 2015-2016 PartIIILectures Assistant Lecture: 1 Multistage and Compound Amplifiers Basic Definitions: 1- Gain of Multistage Amplifier: Fig.(1-1) A general

More information

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Amateur Radio Examination EXAMINATION PAPER No. 275 MARKER S COPY

Amateur Radio Examination EXAMINATION PAPER No. 275 MARKER S COPY 01-6-(d) An Amateur Station is quoted in the regulations as a station: a for training new radio operators b using amateur equipment for commercial purposes c for public emergency purposes d in the Amateur

More information

FM RADIO KIT ESSENTIAL INFORMATION. Version 2.0 GET IN TUNE WITH THIS

FM RADIO KIT ESSENTIAL INFORMATION. Version 2.0 GET IN TUNE WITH THIS ESSENTIAL INFORMATION BUILD INSTRUCTIONS CHECKING YOUR PCB & FAULT-FINDING MECHANICAL DETAILS HOW THE KIT WORKS GET IN TUNE WITH THIS FM RADIO KIT Version 2.0 Build Instructions Before you start, take

More information

ssb transceiver single-band using the LM373 communications IC

ssb transceiver single-band using the LM373 communications IC single-band ssb transceiver using the LM373 communications IC How to use the versatile LM373 and several other ICs to build a compact ssb transceiver for 14 MHz About two years ago a new products announcement

More information

EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs. Typical Operating Circuit. 10nH 1000pF MAX2620 BIAS SUPPLY

EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs. Typical Operating Circuit. 10nH 1000pF MAX2620 BIAS SUPPLY 19-1248; Rev 1; 5/98 EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated General Description The combines a low-noise oscillator with two output buffers in a low-cost, plastic surface-mount, ultra-small

More information