Chapter 3. Question Mar No

Size: px
Start display at page:

Download "Chapter 3. Question Mar No"

Transcription

1 Chapter 3 Sr Question Mar No k. 1 Write any two drawbacks of TRF radio receiver 1. Instability due to oscillatory nature of RF amplifier.. Variation in bandwidth over tuning range. 3. Insufficient selectivity at high frequencies. Poor adjacent channel rejection capability What is the purpose of keeping RF section before mixer stage? A radio receiver always has a RF section before the mixer stage because: 1. It selects the wanted frequency and rejects the unwanted frequencies.. Amplifier improves quality of receiver output and removes noise from received signal. 3. Better coupling of receiver to the antenna.. Prevention in the re radiation of the local oscillator through the antenna of the receiver 3 State the IF frequency and bandwidth of FM receiver IF for FM receiver: 10.7 MHz. Bandwidth of FM receiver:88mhz to 108 MHz What is the tuning range and IF value of (i) MW band AM and (ii) FM radio receiver? 5 Tuning Range of: MW AM band: 50 to 160 KHz FM Receiver: 88 to 108 MHz Intermediate Frequency (IF) of: MW AM band: 55 KHz. FM Receiver: 10.7 MHz What is tracking? List its types. Tracking is a process in which the local oscillator frequency follows or tracks the signal frequency to have a correct frequency difference. Types of Tracking: 1. Two Point Tracking-1. Padder Tracking.Trimmer Tracking. Three Point Tracking

2 6 What are the different types of FM Detectors 1) Single slope detector ) Balanced slope detector 3) Phase discriminator ) Ratio detector 7 State advantages & disadvantages of balanced slope detector Advantages :- i) It is more efficient than simple slope detector. ii) It is linear. Disadvantages: - i) Amplitude limiting is not provided. ii)difficult to tune 3 tuned circuits to 3 different frequency 8 State the function of limiter ckt. Used in FM Receiver. The function of amplitude limiter is to remove all amplitude variation of FM carrier voltage that may occur due to atmospheric disturbances. Use of amplitude limiter makes the system less noisy Circuit Diagram: 9 State merits of delayed AGC as compared with simple AGC. Merits of Delayed AGC: 1. No reduction in gain for weak signals.. Reduction in gain only for strong signals. 3. Delayed AGC is adjustable 10 Draw the block diagram of AM super heterodyne radio receiver and state the function of each block. Diagram-

3 Explanation- Receiving antenna- AM receiver operates in the frequency range of 50 KHz to 160 KHz. RF stage- Selects wanted signal and rejects all other signals and thus reduces the effect of noise. Mixer- Receives signal from RF stage Fs and the local oscillator Fo, and are mixed to produce intermediate frequency signal IF which is given as: IF=Fo-Fs Ganged Tuning- To maintain a constant difference between the local oscillator and RF signal frequency, gang capacitors are used. IF stage- The IF signal is amplified by the IF amplifier with enough gain. Detector-Amplified signal is detected by the detector to get original modulating signal. The detector also provides control signals to control the gain of IF and RF stage called as AGC. AGC- Automatic gain control controls the gain of RF and IF amplifiers to maintain a constant output level at the speaker even though the signal strength at the antenna varies. 11 State the functions of RF section used in AM radio receiver. State any four advantages of RF A radio receiver always has a RF section because 1. It is a tunable circuit connected to the antenna terminals.. It selects the wanted frequency and rejects the unwanted frequencies. 3. Amplifier improves quality of receiver output.. Better coupling of receiver to the antenna. 5. Prevention in the reradiation of the local oscillator through the antenna of the receiver.

4 Advantages: advantages- 1. Greater gain i.e. better sensitivity. Improved image frequency rejection 3. Improved signal to noise ratio. Better selectivity 1 Define intermediate frequency (IF).why local oscillator frequency (f0) is made greater than signal frequency (Fs) in radio receiver? The intermediate frequency (IF) of a receiving system is usually a compromise, since there are reasons why it should be neither low, nor high, nor in a certain range between these two. The local oscillator frequency (f0) is made greater than signal frequency (Fs) in radio receiver: Local oscillator frequency range is 995 KHz to 105 KHz for MW band. Fmax/Fmin = 105/995 =. If local oscillator has been designed to be below signal frequency, the range would be 85 to 1195 KHz and frequency ratio is, Fmax/Fmin = 1195/85 =1.0 The normal tunable capacitance ratio is, Cmax/Cmin = 10 So this capacitance ratio easily gives the frequency ratio of.:1. Hence, the.:1 ratio required for the local oscillator operating above signal frequency is well within range whereas the other system has a frequency ratio of 1:1 whose capacitance are not practically available. 13 Explain the function of mixer in AM receiver with neat diagram. Explaination: The mixer receives signals from the Rf amplifies at frequency fs and from the local oscillator at frequency for such that fo > fs. The mixer will mix these signal to produce signals having frequencies fs,fo, (fo + fs) and (fo - fs). out of these the difference of frequency component i.e. (fo - fs) is selected and all other are rejected. 1 What is the need of AGC? Explain simple AGC with its characteristics Graph

5 The need of AGC circuit is to maintain the output voltage level (volume) of radio receiver constant over a wide range of RF input signal level. AGC also helps to smooth out the rapid fading which may occur with long distance short wave reception & prevents overloading of the last IF amplifier which might otherwise have occurred. Simple AGC: Simple AGC is a system by means of which overall gain of a radio receiver is varied, automatically with the changing strength of the receiver signal to keep the output substantially constant. Hence the receiver gain is automatically reduced as the input signal becomes more & more strong. 15 Draw practical AM diode detector circuit. Sketch its input and output waveforms. Diagram:- Explanation- The circuit operates in the following manner- The diode has been reversed so that now the negative envelope is demodulated. Due to this negative envelope AGC voltage will be developed.r1 and R ensures that there is a series DC path to ground for diode. waveform R1 and C1 is the low pass filter used to remove RF ripple that is present in the detector o/p. C is coupling capacitor that prevents the diode DC o/p from reaching the volume control R. R3 and C3 is a low pass filter which removes AF components and helps to produce AGC voltage. The DC AGC voltage is proportional to the amplitude of AM signal.

6 16 Draw & explain the balanced slope detector. Working Principle: The difficulties arising in simple slope detector circuit are overcome balanced slope detector. The circuit uses two slope detectors, connected back to back to the opposite ends of center tapped transformer and hence fed 180o out of phase. The circuit is divided in to three tuned circuits. Primary side tuned circuit is tuned to center frequency fc. Secondary side top of tuned circuit in tuned above If i.e. (fc + f) and bottom of tuned circuit is below IF i.e. (fc- f). Each tuned circuit is connected to diode detector and RC load. R1C1 and RC are filtered to remove RF ripple. Final output voltage v0 is v0 = v01- v0 Circuit Operation: The circuit depends on range of frequencies For fin = fc : Voltage at T1 = voltage at T Input voltage at D1 = Input voltage at D V01 = V0 V0 = 0 fc < fin <(fc + f): Voltage induced in T1 > voltage induced in T Input voltage at D1 > Input voltage at D Output voltage V01 is positive as frequency increases towards (fc = f) The positive output voltage increases as shown in figure. (fc - f) < fin < fc: Voltage induced in T> voltage induced in T1 Input voltage to D > Input voltage to D1 V0 is negative. V0> V01 The negative output voltage increases towards (fc - f) as shown in figure.

7 17 Define sensitivity and selectivity. Draw the graph of sensitivity and selectivity for radio receiver. Sensitivity-The ability to amplify weak signals is called sensitivity. The sensitivity is expressed in millivolt Selectivity: The ability of radio receiver to reject the unwanted signals. 18 Draw practical set-up and explain the procedure to measure selectivity of radio Receiver.

8 Procedure to measure selectivity of radio receiver: Throughout the measurement the receiver is kept tuned to desired frequency 950 KHz. Now the generator output frequency is deviated below and above the 950 KHz in suitable steps. Every time the generator output voltage is adjusted to get a standard 50 miliwatt receiver output power. The attenuation is calculated and plotted as shown in figure 19 Draw a neat circuit diagram of two stage IF amplifier & explain its working The IF amplifier is a fixed frequency amplifier. It is supposed to select desired signal and rejects adjacent unwanted frequencies. The above diagram is two stage amplifiers with single tuned IF transformers. The IF amplifier are class A amplifiers provide gain in the range 10 to 30 db. Ferrite core transformers are used for coupling between the stages 0 Draw the block diagram of FM receiver & explain the function of any three blocks.

9 RF amplifier: There are two important functions of RF amplifier: To increase the strength of weak RF signal. ) To reject image frequency signal. In FM broadcast the channel bandwidth is large as compared to AM broadcast. Hence the RF amplifier must be design to handle large bandwidth. Frequency Mixer: The function of frequency mixer is to heterodyne signal frequency fs and local oscillator frequency fo. At the output, it produces the difference frequency known as intermediate frequency fi. The intermediate frequency used in FM receiver is higher than that in AM receiver. Its value is 1MHz (practical value of IF is 10.7MHz). Local oscillator: Since FM broadcast operates in VHF and UHF band, a separate local oscillator is used in FM receiver The local oscillator frequency fo is kept smaller than the signal frequency fs by an amount equal to the intermediate frequency fi (fi = fs-fo). IF amplifier: Two or more stages of IF amplifier are used to provide large gain to the receiver. This increases the sensitivity of a receiver. If amplifier should be designed to handle large bandwidth. Amplitude limiter: The function of amplitude limiter is to remove all amplitude variation of FM carrier voltage that may occur due to atmospheric noise. Use of amplitude limiter makes the system less noisy. FM Discriminator or detector: It separates modulating signal from frequency modulated carrier signal. Thus it produces audio signal at its output. Audio frequency voltage and power amplifier: Audio amplifier increases voltage and power level of audio signal to a suitable level.in FM broadcast, the maximum modulating frequency is 15 khz. Hence the audio amplifier must have large bandwidth. 1 Draw the neat circuit diagram of FET amplitude limiter used in FM receiver.

10 In order to make full use of the advantages offered by FM, a demodulator must be preceded by an amplitude limiter, unwanted amplitude changes in the signal fed to the FM demodulator are spurious. They must therefore be removed if distortion is to be avoided. The point is significant, since most FM demodulator react to amplitude changes as well as frequency changes. The limiter is a form of clipping device. When input signal voltage rises, current flows in the Rg - Cg bias circuit & a negative voltage is developed across the capacitor. It is seen that the bias on the FET is increased in proportion to the size of the input vo As a result the gain of the amplifier is lowered, & the output voltage tends to remains constant Draw the circuit diagram & explain the working of phase discriminator. This discriminator is also known as the center tuned discriminator or the FosterSeeley discriminator after its inventors. It is possible to obtain the same S- Shape response curve from a circuit in which the primary & the secondary winding are both tuned to the center frequency of the incoming signal. This is desirable because it greatly simplifies alignment & also because the process yields far better linearity. Thus. Although the individual component voltage will be the same at the diode input at all frequencies, the vector sums will differ with the phase difference between primary & secondary windings. The result will be that the individual output voltage will be equal only at fc. At all other frequencies the output of one diode will be greater than that of the other. Which diode has the larger output will depend entirely on whether fm is above or below fc. As for the output arrangements, it will be positive or negative according to the input frequency. As required the magnitude of the output will depend on the deviation of the input frequency from fc. 3 Explain the working of FM demodulator using phase lock loop with the help of circuit diagram

11 Explanation:- FM signal which is to be demodulated is applied to input of PLL.VCO output must be identical to input signal if PLL is to remain locked. As PLL is locked, VCO starts tracking the instantaneous frequency in the FM input signal The error voltage produced at the output of the amplifier is proportional to the deviation of the input frequency from the centre frequency FM. Thus AC component of the error voltage represents the modulating signal. Thus at the error amplifier output we get demodulated FM output. Draw circuit of Ratio detector circuit. Why Limiter stage is not used before Ratio detector? The additional feature of the ratio detector is the amplitude limiting action which is incorporated due to the large capacitor C5,due to this the amplitude limiter is not required prior to the ratio detector. 5 Define Image Frequency. The RF, local oscillator frequency, IF frequency for AM Receiver is 800KHz, 155KHz & 55KHz respectively. Determine image frequency Given fs= 800kHz fo=155khz. IF=55KHz.

12 Image frequency(fsi)=fs+if Fsi=800+*55 Fsi=1710KHz. Image frequency(fsi) if unwanted station signal frequency(fsi)manges to produce desired IF at the output of mixer then it amplified by IF amplifier along with desired signal fs.this will create interference because carrier of both the station tuned at the same position.this unwanted signal at the frequency fsi is known as image frequency. Fsi=fs+IF 6 In broadcast super heterodyne receiver having loaded Q of antenna coupling of 100, if intermediate frequency of 55 khz, calculate image frequency and its rejection ratio at 1000 Given:-Q=100 Intermediate frequency = IF= 55 KHz Incoming signal Frequency Fs=100 KHz 1) fsi is given as- fsi= Fs+ IF = 1000 x 103+ (55 x 103) = 1910 KHz ) Rejection ratio is given by α = Where Q is the loaded Q of tuned circuit or antenna coupling ρ = - = - = Therefore, α = = = The desired signal frequency is 93 MHz and the intermediate frequency is 10.7 MHz calculate the local oscillator frequency and image frequency Given fs= 800kHz fo=155khz. IF=55KHz. Image frequency(fsi)=fs+if Fsi=800+*55 Fsi=1710KHz. 8 A super heterodyne AM receiver is tuned to a station operating at 100 KHz. Find local oscillator frequency and image frequency. fs= 100kHz receiver is super heterodyne so consider IF=55KHz. Image frequency(fsi)=fs+if Fsi=100+*55 Fsi=110KHz. Image frequency=110khz. Fo=fs+IF Fo= Fo=1655KHz.

13 Local oscillator frequency=1655khz.

Transmitters and receivers

Transmitters and receivers Chapter 3 Transmitters and receivers Transmitters and receivers are used extensively in aircraft communication and navigation systems. In conjunction with one ore more antennas, they are responsible for

More information

Technician License Course Chapter 3 Types of Radios and Radio Circuits. Module 7

Technician License Course Chapter 3 Types of Radios and Radio Circuits. Module 7 Technician License Course Chapter 3 Types of Radios and Radio Circuits Module 7 Radio Block Diagrams Radio Circuits can be shown as functional blocks connected together. Knowing the description of common

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

More information

The New England Radio Discussion Society electronics course (Phase 4, cont d) Introduction to receivers

The New England Radio Discussion Society electronics course (Phase 4, cont d) Introduction to receivers The New England Radio Discussion Society electronics course (Phase 4, cont d) Introduction to receivers AI2Q April 2017 REVIEW: a VFO, phase-locked loop (PLL), or direct digital synthesizer (DDS), can

More information

HF Receivers, Part 2

HF Receivers, Part 2 HF Receivers, Part 2 Superhet building blocks: AM, SSB/CW, FM receivers Adam Farson VA7OJ View an excellent tutorial on receivers NSARC HF Operators HF Receivers 2 1 The RF Amplifier (Preamp)! Typical

More information

Module 8 Theory. dbs AM Detector Ring Modulator Receiver Chain. Functional Blocks Parameters. IRTS Region 4

Module 8 Theory. dbs AM Detector Ring Modulator Receiver Chain. Functional Blocks Parameters. IRTS Region 4 Module 8 Theory dbs AM Detector Ring Modulator Receiver Chain Functional Blocks Parameters Decibel (db) The term db or decibel is a relative unit of measurement used frequently in electronic communications

More information

Topic Advanced Radio Receivers. Explain that an RF amplifier can be used to improve sensitivity;

Topic Advanced Radio Receivers. Explain that an RF amplifier can be used to improve sensitivity; Learning Objectives: At the end of this topic you will be able to; Explain that an RF amplifier can be used to improve sensitivity; Explain that a superheterodyne receiver offers improved selectivity and

More information

ANALOG COMMUNICATION

ANALOG COMMUNICATION ANALOG COMMUNICATION TRAINING LAB Analog Communication Training Lab consists of six kits, one each for Modulation (ACL-01), Demodulation (ACL-02), Modulation (ACL-03), Demodulation (ACL-04), Noise power

More information

AM in frequency domain ( 1 M)

AM in frequency domain ( 1 M) 1) The Answer should be examined by key words and not as word-to-word as given in the Model Answer scheme. 2) The model Answer and the Answer written by candidate may vary but the examiner may try to assess

More information

Television and video engineering

Television and video engineering Television and video engineering Unit-4 Television Receiver systems Objectives: To learn the requirements of TV receiver Study of monochrome and Colour TV receivers. To learn functions of Tuning circuits

More information

SUMMER 15 EXAMINATION

SUMMER 15 EXAMINATION SUMMER 15 EXAMINATION Subject Code: 17440 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS FUNCTIONS OF A RADIO RECEIVER The main functions of a radio receiver are: 1. To intercept the RF signal by using the receiver antenna 2. Select the

More information

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT IV PART-A

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT IV PART-A MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK SATELLITE COMMUNICATION DEPT./SEM.:ECE/VIII UNIT IV PART-A 1. What are the advantages of the super heterodyne receiver over TRF receiver? (AUC MAY 2004)

More information

Lecture 6. Angle Modulation and Demodulation

Lecture 6. Angle Modulation and Demodulation Lecture 6 and Demodulation Agenda Introduction to and Demodulation Frequency and Phase Modulation Angle Demodulation FM Applications Introduction The other two parameters (frequency and phase) of the carrier

More information

AC LAB ECE-D ecestudy.wordpress.com

AC LAB ECE-D ecestudy.wordpress.com PART B EXPERIMENT NO: 1 AIM: PULSE AMPLITUDE MODULATION (PAM) & DEMODULATION DATE: To study Pulse Amplitude modulation and demodulation process with relevant waveforms. APPARATUS: 1. Pulse amplitude modulation

More information

CHAPTER 13 TRANSMITTERS AND RECEIVERS

CHAPTER 13 TRANSMITTERS AND RECEIVERS CHAPTER 13 TRANSMITTERS AND RECEIVERS Frequency Modulation (FM) Receiver Frequency Modulation (FM) Receiver FREQUENCY MODULATION (FM) RECEIVER Superheterodyne Receiver Heterodyning The word heterodyne

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

Amplitude Modulated Systems

Amplitude Modulated Systems Amplitude Modulated Systems Communication is process of establishing connection between two points for information exchange. Channel refers to medium through which message travels e.g. wires, links, or

More information

Tuned Radio Frequency Receiver (TRF) The most elementary receiver design, consisting of RF amplifier stages, detector and audio amplifier stages.

Tuned Radio Frequency Receiver (TRF) The most elementary receiver design, consisting of RF amplifier stages, detector and audio amplifier stages. Figure 3-1 Simple radio receiver block diagram. Tuned Radio Frequency Receiver (TRF) The most elementary receiver design, consisting of RF amplifier stages, detector and audio amplifier stages. Jeffrey

More information

List of Figures. Sr. no.

List of Figures. Sr. no. List of Figures Sr. no. Topic No. Topic 1 1.3.1 Angle Modulation Graphs 11 2 2.1 Resistor 13 3 3.1 Block Diagram of The FM Transmitter 15 4 4.2 Basic Diagram of FM Transmitter 17 5 4.3 Circuit Diagram

More information

Description of the AM Superheterodyne Radio Receiver

Description of the AM Superheterodyne Radio Receiver Superheterodyne AM Radio Receiver Since the inception of the AM radio, it spread widely due to its ease of use and more importantly, it low cost. The low cost of most AM radios sold in the market is due

More information

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Code: 13A04404 R13 B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 70 PART A

More information

Glossary of VCO terms

Glossary of VCO terms Glossary of VCO terms VOLTAGE CONTROLLED OSCILLATOR (VCO): This is an oscillator designed so the output frequency can be changed by applying a voltage to its control port or tuning port. FREQUENCY TUNING

More information

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is a process of mixing a signal with a sinusoid to produce

More information

Operating Manual Ver 1.1

Operating Manual Ver 1.1 Frequency Modulation and Demodulation Trainer ST2203 Operating Manual Ver 1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100

More information

AM radio / FM IF stereo system IC

AM radio / FM IF stereo system IC AM radio / FM IF stereo system IC The is an AM radio and FM IF stereo system IC developed for radio cassette players. The FM circuit is comprised of a differential IF amplifier, a double-balance type quadrature

More information

AM, PM and FM mo m dula l ti t o i n

AM, PM and FM mo m dula l ti t o i n AM, PM and FM modulation What is amplitude modulation In order that a radio signal can carry audio or other information for broadcasting or for two way radio communication, it must be modulated or changed

More information

NEW YORK CITY COLLEGE of TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF ELECTRICAL ENGINEERING AND TELECOMMUNICATIONS TECHNOLOGIES

NEW YORK CITY COLLEGE of TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF ELECTRICAL ENGINEERING AND TELECOMMUNICATIONS TECHNOLOGIES NEW YORK CITY COLLEGE of TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF ELECTRICAL ENGINEERING AND TELECOMMUNICATIONS TECHNOLOGIES Course : EET 24 Communications Electronics Module : AM Tx and

More information

OBJECTIVES EQUIPMENT LIST

OBJECTIVES EQUIPMENT LIST 1 Reception of Amplitude Modulated Signals AM Demodulation OBJECTIVES The purpose of this experiment is to show how the amplitude-modulated signals are demodulated to obtain the original signal. Also,

More information

note application Measurement of Frequency Stability and Phase Noise by David Owen

note application Measurement of Frequency Stability and Phase Noise by David Owen application Measurement of Frequency Stability and Phase Noise note by David Owen The stability of an RF source is often a critical parameter for many applications. Performance varies considerably with

More information

TDA7000 for narrowband FM reception

TDA7000 for narrowband FM reception TDA7 for narrowband FM reception Author: Author: W.V. Dooremolen INTRODUCTION Today s cordless telephone sets make use of duplex communication with carrier frequencies of about.7mhz and 49MHz. In the base

More information

Radio Receivers. Al Penney VO1NO

Radio Receivers. Al Penney VO1NO Radio Receivers Role of the Receiver The Antenna must capture the radio wave. The desired frequency must be selected from all the EM waves captured by the antenna. The selected signal is usually very weak

More information

Data Conversion Circuits & Modulation Techniques. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Data Conversion Circuits & Modulation Techniques. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Data Conversion Circuits & Modulation Techniques Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Data Conversion Circuits 2 Digital systems are being used

More information

Analog & Digital Communication

Analog & Digital Communication Analog & Digital Communication UNIT I Tuned Radio Frequency Receiver Outline Basic Receiver TRF block diagram Advantages Disadvantages Basic receiver -1 Basic receiver -2 If there are many stations then

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 7 PHASE LOCKED LOOPS OBJECTIVES The purpose of this lab is to familiarize students with the operation

More information

Piezoelectric Discriminators

Piezoelectric Discriminators Introduction Piezoelectric Discriminators Ceramic discriminators are designed to be used in quadrature detection circuits to remove a FM carrier wave. These circuits receive a FM signal, like in a FM radio,

More information

A CRYSTAL LIMITER FOR USE IN AN FM RECEIVER IN THE PRESENCE OF IMPULSE INTERFERENCE

A CRYSTAL LIMITER FOR USE IN AN FM RECEIVER IN THE PRESENCE OF IMPULSE INTERFERENCE . A CRYSTAL LIMITER FOR USE IN AN FM RECEIVER IN THE PRESENCE OF IMPULSE INTERFERENCE T. P. CHEATHAM - TECHNICAL REPORT NO. 36 APRIL 24, 1947 RESEARCH LABORATORY OF ELECTRONICS MASSACHUSETTS INSTITUTE

More information

How It Works The PPM Radio Control System: Part 1

How It Works The PPM Radio Control System: Part 1 Technical M.E.C. Technical Note Note How It Works The PPM Radio Control System: Part 1 Foreword This Technical Note is divided into 3 parts to reduce the file size when downloading each section from the

More information

9-1 FM Superheterodyne Receivers

9-1 FM Superheterodyne Receivers Chapter 9: FM Receivers Chapter 9 Objectives At the conclusion of this Chapter, the reader will be able to: Draw a block diagram of an FM receiver, showing the frequency and type of signal at each major

More information

Superheterodyne Receiver Tutorial

Superheterodyne Receiver Tutorial 1 of 6 Superheterodyne Receiver Tutorial J P Silver E-mail: john@rfic.co.uk 1 ABSTRACT This paper discusses the basic design concepts of the Superheterodyne receiver in both single and double conversion

More information

UNIT-3. Electronic Measurements & Instrumentation

UNIT-3.   Electronic Measurements & Instrumentation UNIT-3 1. Draw the Block Schematic of AF Wave analyzer and explain its principle and Working? ANS: The wave analyzer consists of a very narrow pass-band filter section which can Be tuned to a particular

More information

Q.P. Code : [ TURN OVER]

Q.P. Code : [ TURN OVER] Q.P. Code : 587801 8ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC70 6308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT III TUNED AMPLIFIERS PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT III TUNED AMPLIFIERS PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT III TUNED AMPLIFIERS PART A (2 Marks) 1. What is meant by tuned amplifiers? Tuned amplifiers are amplifiers that are designed to reject a certain

More information

VHF LAND MOBILE SERVICE

VHF LAND MOBILE SERVICE RFS21 December 1991 (Issue 1) SPECIFICATION FOR RADIO APPARATUS: VHF LAND MOBILE SERVICE USING AMPLITUDE MODULATION WITH 12.5 khz CARRIER FREQUENCY SEPARATION Communications Division Ministry of Commerce

More information

Chapter 6. FM Circuits

Chapter 6. FM Circuits Chapter 6 FM Circuits Topics Covered 6-1: Frequency Modulators 6-2: Frequency Demodulators Objectives You should be able to: Explain the operation of an FM modulators and demodulators. Compare and contrast;

More information

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase.

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase. P a g e 2 Contents 1) Oscillators 3 Sinusoidal Oscillators Phase Shift Oscillators 4 Wien Bridge Oscillators 4 Square Wave Generator 5 Triangular Wave Generator Using Square Wave Generator 6 Using Comparator

More information

S.R.M Institute of Science and Technology (Deemed University) Department of Electronics & Communication Engineering

S.R.M Institute of Science and Technology (Deemed University) Department of Electronics & Communication Engineering S.R.M Institute of Science and Technology (Deemed University) Department of Electronics & Communication Engineering QUESTION BANK Subject Code : EC211 Subject Name : Communication Engineering Year & Sem

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

Exercise 1: RF Stage, Mixer, and IF Filter

Exercise 1: RF Stage, Mixer, and IF Filter SSB Reception Analog Communications Exercise 1: RF Stage, Mixer, and IF Filter EXERCISE OBJECTIVE DISCUSSION On the circuit board, you will set up the SSB transmitter to transmit a 1000 khz SSB signal

More information

Experiment Topic : FM Modulator

Experiment Topic : FM Modulator 7-1 Experiment Topic : FM Modulator 7.1: Curriculum Objectives 1. To understand the characteristics of varactor diodes. 2. To understand the operation theory of voltage controlled oscillator (VCO). 3.

More information

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-2012 SCHEME OF VALUATION

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-2012 SCHEME OF VALUATION GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-0 SCHEME OF VALUATION Subject Code: 40 Subject: PART - A 0. Which region of the transistor

More information

S.E. (Electronics/Electronics and Telecommunication Engg.) (Second Semester) EXAMINATION, 2014 COMMUNICATION THEORY (2008 PATTERN)

S.E. (Electronics/Electronics and Telecommunication Engg.) (Second Semester) EXAMINATION, 2014 COMMUNICATION THEORY (2008 PATTERN) Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4657]-49 S.E. (Electronics/Electronics and Telecommunication Engg.) (Second Semester) EXAMINATION, 2014 COMMUNICATION THEORY (2008 PATTERN)

More information

Amateur Radio Examination EXAMINATION PAPER No. 276 MARKER S COPY

Amateur Radio Examination EXAMINATION PAPER No. 276 MARKER S COPY 01-3-(a) The Amateur Service in New Zealand is administered through this prime document: a the New Zealand Radiocommunications Regulations b the Broadcasting Act c the Telecommunications Act d the Radio

More information

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the nature of the signal. For instance, in the case of audio

More information

EE470 Electronic Communication Theory Exam II

EE470 Electronic Communication Theory Exam II EE470 Electronic Communication Theory Exam II Open text, closed notes. For partial credit, you must show all formulas in symbolic form and you must work neatly!!! Date: November 6, 2013 Name: 1. [16%]

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

The G4EGQ RAE COURSE Lesson 9 Transmitters Lesson 8 looked at a simple transmitter exciter comprising of oscillator, buffer and multiplier stages.

The G4EGQ RAE COURSE Lesson 9 Transmitters Lesson 8 looked at a simple transmitter exciter comprising of oscillator, buffer and multiplier stages. Lesson 8 looked at a simple transmitter exciter comprising of oscillator, buffer and multiplier stages. The power amplifier The output from the exciter is usually very low and it is necessary to amplify

More information

LA1845NV. Monolithic Linear IC Single-Chip Home Stereo IC

LA1845NV. Monolithic Linear IC Single-Chip Home Stereo IC Ordering number : ENN*7931 LA1845NV Monolithic Linear IC Single-Chip Home Stereo IC The LA1845NV is designed for use in mini systems and is a single-chip tuner IC that provides electronic tuning functions

More information

4/29/2012. General Class Element 3 Course Presentation. Signals and Emissions. SignalSignals and Emissionsissions. Subelement G8

4/29/2012. General Class Element 3 Course Presentation. Signals and Emissions. SignalSignals and Emissionsissions. Subelement G8 General Class Element 3 Course Presentation ti ELEMENT 3 SUB ELEMENTS General Licensing Class Subelement G8 Signals and Emissions 2 Exam Questions, 2 Groups G1 Commission s Rules G2 Operating Procedures

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

Radio Receivers. Al Penney VO1NO

Radio Receivers. Al Penney VO1NO Radio Receivers Al Penney VO1NO Role of the Receiver The Antenna must capture the radio wave. The desired frequency must be selected from all the EM waves captured by the antenna. The selected signal is

More information

UNIT I FUNDAMENTALS OF ANALOG COMMUNICATION Introduction In the Microbroadcasting services, a reliable radio communication system is of vital importance. The swiftly moving operations of modern communities

More information

UNIT 1 QUESTIONS WITH ANSWERS

UNIT 1 QUESTIONS WITH ANSWERS UNIT 1 QUESTIONS WITH ANSWERS 1. Define modulation? Modulation is a process by which some characteristics of high frequency carrier signal is varied in accordance with the instantaneous value of the modulating

More information

UNIT-I AMPLITUDE MODULATION (2 Marks Questions and Answers)

UNIT-I AMPLITUDE MODULATION (2 Marks Questions and Answers) UNIT-I AMPLITUDE MODULATION (2 Marks Questions and Answers) 1. Define modulation? Modulation is a process by which some characteristics of high frequency carrier Signal is varied in accordance with the

More information

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti Lecture 6 SIGNAL PROCESSING Signal Reception Receiver Bandwidth Pulse Shape Power Relation Beam Width Pulse Repetition Frequency Antenna Gain Radar Cross Section of Target. Signal-to-noise ratio Receiver

More information

Charan Langton, Editor

Charan Langton, Editor Charan Langton, Editor SIGNAL PROCESSING & SIMULATION NEWSLETTER Baseband, Passband Signals and Amplitude Modulation The most salient feature of information signals is that they are generally low frequency.

More information

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System Content:- Fundamentals of Communication Engineering : Elements of a Communication System, Need of modulation, electromagnetic spectrum and typical applications, Unit V (Communication terminologies in communication

More information

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 Receiver Design Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 MW & RF Design / Prof. T. -L. Wu 1 The receiver mush be very sensitive to -110dBm

More information

Summer 2015 Examination

Summer 2015 Examination Summer 2015 Examination Subject Code: 17445 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Internal Examination I Answer Key DEPARTMENT OF CSE & IT. Semester: III Max.Marks: 100

Internal Examination I Answer Key DEPARTMENT OF CSE & IT. Semester: III Max.Marks: 100 NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District Internal Examination I Answer Key DEPARTMENT OF CSE & IT Branch & Section: II CSE & IT Date & Time: 06.08.15 & 3 Hours Semester: III Max.Marks:

More information

15.Calculate the local oscillator frequency if incoming frequency is F1 and translated carrier frequency

15.Calculate the local oscillator frequency if incoming frequency is F1 and translated carrier frequency DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT NAME:COMMUNICATION THEORY YEAR/SEM: II/IV SUBJECT CODE: EC 6402 UNIT I:l (AMPLITUDE MODULATION) PART A 1. Compute the bandwidth of the AMP

More information

S.R.M. Institute of Science & Technology School of Electronics & Communication Engineering

S.R.M. Institute of Science & Technology School of Electronics & Communication Engineering S.R.M. Institute of Science & Technology School of Electronics & Communication Engineering QUESTION BANK Subject Code : EC314 Subject Name : Communication Engineering Year & Sem : III Year, 6th Sem (EEE)

More information

AN174 Applications for compandors SA570/571 SA571

AN174 Applications for compandors SA570/571 SA571 RF COMMUNICATIONS PRODUCTS Applications for compandors SA570/571 SA571 1997 Aug 20 Philips Semiconductors APPLICATIONS The following circuits will illustrate some of the wide variety of applications for

More information

Chapter 5 AM Receivers

Chapter 5 AM Receivers Chapter 5 AM Receivers Prepared by Prof.V.K.Jain 1 Lecture outcome After studying this lecture, you should be able to: Describe the basic superheterodyne system Choose suitable intermediate frequencies

More information

COMM 704: Communication Systems

COMM 704: Communication Systems COMM 704: Communication Lecture 1: Introduction Dr. Mohamed Abd El Ghany, Mohamed.abdel-ghany@guc.edu.eg Course Objective Give an introduction to the basic concepts of electronic communication systems

More information

Block Diagrams Definitions & Safety Lesson 3 From: Emergency Management Ontario

Block Diagrams Definitions & Safety Lesson 3 From: Emergency Management Ontario Block Diagrams Definitions & Safety Regulated Power Supply Power supply A power supply (sometimes known as a power supply unit or PSU) is a device or system that supplies electrical or other types of energy

More information

LBI-30398N. MAINTENANCE MANUAL MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS. Page. DESCRIPTION...

LBI-30398N. MAINTENANCE MANUAL MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS. Page. DESCRIPTION... MAINTENANCE MANUAL 138-174 MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 LBI-30398N TABLE OF CONTENTS DESCRIPTION...Front Cover CIRCUIT ANALYSIS... 1 MODIFICATION INSTRUCTIONS... 4 PARTS LIST AND PRODUCTION

More information

Angle Modulated Systems

Angle Modulated Systems Angle Modulated Systems Angle of carrier signal is changed in accordance with instantaneous amplitude of modulating signal. Two types Frequency Modulation (FM) Phase Modulation (PM) Use Commercial radio

More information

# DEFINITIONS TERMS. 3) Digital signal with only two levels possible. Binary Signal. 4) Digital signal with four levels possible.

# DEFINITIONS TERMS. 3) Digital signal with only two levels possible. Binary Signal. 4) Digital signal with four levels possible. CHAPTER 2 SIGNAL ANALYSIS AND MIXING # DEFINITIONS TERMS 1) Electrical signals of which amplitude changes continuously with respect to time with no breaks or discontinuities. Analog Signals 2) Electrical

More information

RADIO AMATEUR EXAM GENERAL CLASS

RADIO AMATEUR EXAM GENERAL CLASS RAE-Lessons by 4S7VJ 1 CHAPTER-5 RADIO AMATEUR EXAM GENERAL CLASS By 4S7VJ 5.1 RECEIVER The main purpose of a radio receiver is receive RF signal and convert to AF signal or get the audio signal out from

More information

TE 0224 ANALOG COMMUNICATION LAB. Laboratory Manual

TE 0224 ANALOG COMMUNICATION LAB. Laboratory Manual TE 0224 ANALOG COMMUNICATION LAB Laboratory Manual DEPARTMENT OF TELECOMMUNICATION ENGINEERING SRM UNIVERSITY S.R.M. NAGAR, KATTANKULATHUR 603 203. FOR PRIVATE CIRCULATION ONLY ALL RIGHTS RESERVED DEPARTMENT

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

NEAR EAST UNIVERSITY PROJECT OF ELECTRONICS EE: 821 RADIO RECEIVER. s~ 4: 1/~ ~ &.~ ~ : "[)~ :~&ted,eic, & &~ s~ to:~ ~"4L&"D1

NEAR EAST UNIVERSITY PROJECT OF ELECTRONICS EE: 821 RADIO RECEIVER. s~ 4: 1/~ ~ &.~ ~ : [)~ :~&ted,eic, & &~ s~ to:~ ~4L&D1 NEAR EAST UNIVERSITY PROJECT OF ELECTRONICS EE: 821 RADIO RECEIVER s~ 4: 1/~ ~ &.~ ~ : 91412 "[)~ :~&ted,eic, & &~ &~ s~ to:~ ~"4L&"D1 CONTENTS ' = FREQUENCY MODULATION = RADIO * * Radiation of Electrical

More information

ERICSSONZ LBI-30398P. MAINTENANCE MANUAL MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS

ERICSSONZ LBI-30398P. MAINTENANCE MANUAL MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS MAINTENANCE MANUAL 138-174 MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 TABLE OF CONTENTS Page DESCRIPTION... Front Cover CIRCUIT ANALYSIS...1 MODIFICATION INSTRUCTIONS...4 PARTS LIST...5 PRODUCTION

More information

Wideband Receiver Design

Wideband Receiver Design Wideband Receiver Design Challenges and Trade-offs of a Wideband Tuning Range in Wireless Microphone Receivers in the UHF Television Band About this White Paper Professional wireless microphone systems

More information

HF Receivers, Part 3

HF Receivers, Part 3 HF Receivers, Part 3 Introduction to frequency synthesis; ancillary receiver functions Adam Farson VA7OJ View an excellent tutorial on receivers Another link to receiver principles NSARC HF Operators HF

More information

Block Diagrams Definitions & Safety

Block Diagrams Definitions & Safety Block Diagrams Definitions & Safety Regulated Power Supply Power supply A power supply (sometimes known as a power supply unit or PSU) is a device or system that supplies electrical or other types of energy

More information

Chapter 6: Power Amplifiers

Chapter 6: Power Amplifiers Chapter 6: Power Amplifiers Contents Class A Class B Class C Power Amplifiers Class A, B and C amplifiers are used in transmitters Tuned with a band width wide enough to pass all information sidebands

More information

Monolithic Linear IC For Home Stereo Single-chip Tuner IC

Monolithic Linear IC For Home Stereo Single-chip Tuner IC Ordering number : EN7930A LA1844 LA1844M Monolithic Linear IC For Home Stereo Single-chip Tuner IC Overview The LA1844, LA1844M is designed for use in mini systems and is a single-chip tuner IC that provides

More information

EE 318 Electronic Design Lab. Hi-fi Audio Transmitter from first principles

EE 318 Electronic Design Lab. Hi-fi Audio Transmitter from first principles EE 318 Electronic Design Lab Hi-fi Audio Transmitter from first principles Supervised by Prof. Jayanta Mukherjee Prof. Dipankar Prof. L. Subramaniam By Group-9 Vipul Chaudhary (08d07039) Vineet Raj (08d07040)

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

-SQA-SCOTTISH QUALIFICATIONS AUTHORITY HIGHER NATIONAL UNIT SPECIFICATION GENERAL INFORMATION

-SQA-SCOTTISH QUALIFICATIONS AUTHORITY HIGHER NATIONAL UNIT SPECIFICATION GENERAL INFORMATION -SQA-SCOTTISH QUALIFICATIONS AUTHORITY HIGHER NATIONAL UNIT SPECIFICATION GENERAL INFORMATION -Unit Number- 8540317 -Superclass- -Title- XM RADIO COMMUNICATION CIRCUITS -----------------------------------------

More information

Complete your carrier-current audio system with an AM or FA4 receiver:

Complete your carrier-current audio system with an AM or FA4 receiver: r LAST MONTH WE WENT OVER the operating theory of a carrier-current transmitter, and then showed you how to build one. Now we will describe two receivers that can be used with that transmitter. One receiver

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference Large dynamic range required Many receivers must be capable

More information

UNIT III ANALOG MULTIPLIER AND PLL

UNIT III ANALOG MULTIPLIER AND PLL UNIT III ANALOG MULTIPLIER AND PLL PART A (2 MARKS) 1. What are the advantages of variable transconductance technique? [AUC MAY 2012] Good Accuracy Economical Simple to integrate Reduced error Higher bandwidth

More information

COMMUNICATION SYSTEMS NCERT

COMMUNICATION SYSTEMS NCERT Exemplar Problems Physics Chapter Fifteen COMMUNCATON SYSTEMS MCQ 151 Three waves A, B and C of frequencies 1600 khz, 5 MHz and 60 MHz, respectively are to be transmitted from one place to another Which

More information

RFID Systems: Radio Architecture

RFID Systems: Radio Architecture RFID Systems: Radio Architecture 1 A discussion of radio architecture and RFID. What are the critical pieces? Familiarity with how radio and especially RFID radios are designed will allow you to make correct

More information

High Dynamic Range Receiver Parameters

High Dynamic Range Receiver Parameters High Dynamic Range Receiver Parameters The concept of a high-dynamic-range receiver implies more than an ability to detect, with low distortion, desired signals differing, in amplitude by as much as 90

More information

1. Explain how Doppler direction is identified with FMCW radar. Fig Block diagram of FM-CW radar. f b (up) = f r - f d. f b (down) = f r + f d

1. Explain how Doppler direction is identified with FMCW radar. Fig Block diagram of FM-CW radar. f b (up) = f r - f d. f b (down) = f r + f d 1. Explain how Doppler direction is identified with FMCW radar. A block diagram illustrating the principle of the FM-CW radar is shown in Fig. 4.1.1 A portion of the transmitter signal acts as the reference

More information

Vintage Radio Alignment: What It Is and How to Do It

Vintage Radio Alignment: What It Is and How to Do It Vintage Radio Alignment: What It Is and How to Do It Copyright 2009 Bret s Old Radios Bret Menassa Member: ARCI, VRPS, OKVRC Presented at Radiofest 2009, Willowbrook,, IL Vibrations A musical instrument

More information