Edge radiation control in stochastic magnetic field and with RMP application in LHD

Size: px
Start display at page:

Download "Edge radiation control in stochastic magnetic field and with RMP application in LHD"

Transcription

1 2nd Technical Meeting on Divertor Concepts 13 to 16 November 217, Suzhou, China Edge radiation control in stochastic magnetic field and with RMP application in LHD M. Kobayashi 1,2, S. Masuzaki 1,2, S. Morita 1,2, H. Tanaka 3, B.J. Peterson 1,2, Y. Narushima 1, K. Mukai 1,2, T. Kobayashi 2, and the LHD experimental group 1 National Institute for Fusion Science, Oroshi-cho, Toki city, Gifu-ken , Japan 2 Department of Fusion Science, Graduate University for Advanced Studies, Oroshi-cho, Toki-city, Japan 3 Nagoya University, Furo-cho, Chikusa-ku, Nagoya, , Japan 1

2 Introduction: Helical DEMO design & divertor power load FFHR-d1 (LHD based) R c =15.7 m B c =4.7 T V p =15 m 3 P fusion = 3 GW Helical divertor HELIAS 5-B (W7-X based) R c =22 m B c =6 T V p =14 m 3 P fusion = 3 GW Island divertor Heat flux in SOL for stellarator (LHD) cases At upstream, with q = q λ q st q l PSOL q =, l ~ 2πRq 2 // 4π ar q // = PSOL 2π R λ q st B B P sep ~4 MW, P sep /R~25 MW/m p // // ~ It may follow the similar scaling as tokamaks Needs detachment operation (Scaling of λ qst?) J. Miyazawa, IAEA DPW

3 Introduction : Control of enhanced radiation at divertor region Necessity of divertor heat load reduction for future devices: Divertor detachment, radiative divertor is prerequisite to meet the engineering limit of PFC heat load (< several MW/m 2 ). Control of enhanced radiation region in its location & intensity is one challenging issue. Involved issues in the physics: A/M processes with strong non-linearity in cold plasma Energy transport in parallel/perpendicular to field lines Impurity transport, plasma recycling with volume recombination, momentum loss process 3D magnetic field configuration: Seeking divertor optimization in helical devices, RMP application to tokamaks Effects of three dimensionality/symmetry breaking on radiating edge plasma are not yet fully understood. This contribution reports experimental results of detachment control with RMP application to the edge stochastic layer of LHD. 3

4 Contents of the talk 1. Edge magnetic field structure of LHD 2. Time traces of plasma parameters of the controlled detachment discharge 3. Radiation enhancement and modification of radiation distribution by RMP Density dependence of radiation EMC3-EIRENE prediction for radiation modification, AXUV measurements EUV measurements of CIII CVI emission profiles 4. Divertor flux distribution with RMP Toroidal asymmetry Reduction during detached phase Rotation of the asymmetry by RMP phase shift 5. Operation space and simple model analysis 6. Core confinement of the RMP assisted detachment 7. Summary 4

5 Magnetic field structure of LHD: RMP (m/n=1/1) application remnant island in stochastic region R = 3.9 m, a ~.7 m, 1 field periods (toroidal) Divertor : carbon, Fist wall : Stainless steel Connection length (m) RMP coils (m/n=1/1) Helical coils 1..5 Divertor legs Edge surface layers Plasma shape Z (m) Without RMP (m/n=1/1) Rotational transform ι 2 1 ~ br coil B Resonance value.1% Without RMP R(m) Stochastic region R (m) Magnetic island O-point 5

6 Stable sustainment of radiative divertor operation (RMP assisted RD) Without RMP Radiation collapse due to thermal instability Radiative divertor Divertor power load (MW/m 2 ) ne (1 m ) 2 Radiation (a.u.) 1.6 a 99 (m) W p (kj) -3 Without RMP time (s) M. Kobayashi et al., Nucl. Fusion 53 (213) Stable operation around density limit Radiation increase by a factor of ~ 3 Reduction of divertor power load by a factor of 3 ~ 1 Plasma shrinks at RD phase due to radiative energy loss and RMP penetration No significant degradation of main plasma confinement Intensity (a.u.) No noticeable high Z impurity (Fe) emission at high density range. Fe XXI Fe XIX Fe XXII Fe XXII Fe XXI Fe XXI Fe XXIII FeXX Detach (6.6x1 19 m -3 ) Fe VIII Fe IX Fe X Fe X Fe X Fe XII Fe XI Attach (n e = 2.x1 19 m -3 ) Pixel number 6

7 Increased volume of low T e region (~1 ev) at remnant island with RMP leads to enhanced carbon radiation n e dependence of radiation power (bolometer) 3 Radiation collapse T e, n e profiles at outboard midplane (Thomson scattering) Resonance layer Without RMP Radiation Power (a.u.) 2 1 Detach Radiation enhanced Without RMP T e flattening at island n (1 m ) e Carbon radiation (Estimated with n carbon =.1n e n e τ = 1 17 m -3 s) M. Kobayashi et al., Nucl. Fusion 53 (213) R (m) 7

8 Modification of 3D edge radiation structure by RMP : 3D numerical simulation Carbon radiation distribution by EMC3-EIRENE Inboard side MW/m 3 2.x1 2.x1-1 2.x1-2 2.x1-3 Z R Without RMP Outboard side Poloidal angle (deg.) Without RMP Radiation peak at inboard side Without RMP Radiation peak appears at inboard side. X-point of m/n=1/1 island is selectively cooled. 8 Poloidal angle (deg.) Toroidal angle (deg.) Outboard Inboard Outboard Outboard Inboard Outboard

9 Radiation profile : Comparison between experiments & simulation Carbon radiation distribution by EMC3-EIRENE Intensity (mw/m 2 ) Inboard side Ch16 LOS of measurements Experiments Channel The qualitative change of profiles due to RMP application roughly agrees between experiments & simulation. Without RMP Ch1 Simulation Results implies selective cooling at X-point of m/n=1/1 island in experiments. Imaging bolometer shows similar effect. Split to two peaks Channel The well-structured magnetic field catches the radiation and prevents it from penetrating inward?! Poloidal asymmetry of radiation is enhanced. Intensity (a.u.) 9

10 Vertical profiles of impurity emission with EUV spectrometers CIII (386.2 Å) CIV (384.2 Å) CV (4.3 Å) CVI (33.7 Å).6.5 O-point.4.2 Z (m) Z (m) Poloidal angle (deg.) EMC3-EIRENE Location of measurement X-point R (m) Toroidal angle (deg.) Outboard Inboard Outboard 1 CIII.5 4 CIV 2 W/O RMP.5 CV 5 CVI Intensity (1 15 phs./cm 2 /s) CIII, CIV, CV are enhanced by RMP application Profiles of CIII & CIV affected significantly by RMP Up-down asymmetric CVI is slightly reduced by RMP good indication of impurity screening (?!) H. Zhang et al., POP 24 (217)

11 CII emission and H LCFS γ/hβ : Comparison with connection length (LC) plot Connection length (LC) Stable detachment (with RMP) Divertor leg Div. plate Detach. fr15, 4.6 s LC (m) 1 Hγ/Hβ Island 1 LCFS Island LCFS fr18, 5.5 s fr25, 6.1 s Div. plate 1 Divertor leg Divertor leg CII (426.7 nm) 1 Island Island LCFS fr15,lcfs 4.6 s fr18, 5.5 s fr25, 6.1 s CII radiates at LC~1 m region & along divertor legs. Clear upstream shift of emission at detachment transition. : In detach. phase, CII is stabilized outside of island (LCFS). Hγ/Hβ (index for volume recombination) : increase after detachment transition along LCFS. : Formation of very cold plasma around (outside) of island Comparison with 3D modeling is underway.. 11 M. Kobayashi et al., NME 12 (217) 143.

12 Magnetic field configuration & divertor probe arrays in LHD Open field lines RMP coils (m/n=1/1) Helical coils One field period (Δφ=36 ) Plasma shape Helical coils Top view of torus Divertor probe arrays at inboard midplane Midplane 12

13 Toroidal asymmetry of divertor flux caused by RMP application.6 Higher flux is attributed to increased wetted area induced by RMP L div. 3D model 1.6 R div. 1.4 Exp Wetted area increases with RMP. RMP Toroidal section 4L No RMP s (mm) L No RMP Wetted area remains same. RMP s (mm) Toroidal section R RMP Wetted area increases with RMP. No RMP s (mm) Analysis of power load is underway (mostly same trend as the particle flux) 13

14 The toroidal asymmetry can be rotated by toroidal phase shift of RMP.6 L div. 3D model 1.6 3D model Exp. 5 Shift by Exp Toroidal section Toroidal section Shift by 36.6 L div. 1.6 L div Toroidal section Toroidal section 14

15 Toroidal asymmetry of divertor particle flux changes at detachment phase At certain sections, the flux even increases. The asymmetry during detachment phase can also be shifted by RMP phase shift..6 L div. Attach.6 Attach R div..4 Detach.4 Detach Toroidal section RMP toroidal phase shift by Toroidal section.6 L div..6 R div Toroidal section Toroidal section 15

16 Significant plasma response to external RMP Attach Detach Reattach ΔΦ r in plasma (1-4 Wb) Island poloidal phase Shift (degree) #11585 Shielded Relative to vacuum RMP Time (s) Amplified Attached phase: RMP is shielded, island poloidal phase shift ~ 3 deg. Detached phase: RMP is amplified, island poloidal phase shift ~ 15 deg. Hysteresis in plasma response at detach reattach transition ΔΦ ex Effect on divertor particle/power deposition 16

17 Quantitative comparison of temporal evolution of radiated power with EMC3-EIRENE EMC3-EIRENE Experiments Indication of the study: 1. Larger D imp is closer to experiments. Needs drifts (electric field)?, or turbulence? 2. Impurity source should be reduced after detachment. 3. The modeling still overestimates radiated power as compared to experiments. Sputtering coefficient or atomic data base? 17 S. Pandya et al., NF 56 (216) 462.

18 Comparison of radiation profiles with EMC3-EIRENE Radiation distribution by bolometer from top view port Experimental results are much broader than the simulations D imp should be greater than the bulk plasma at least by a factor of 4 18 S. Pandya et al., NF 56 (216) 462.

19 Lower threshold of perturbation strength for sustained detachment n e (1 19 m -3 ) ~ b / B (%) Upper bounds for density 5 Radiative collapse Detachment transition Sustained detach I RMP (ka) Density limit of radiative collapse seems independent of perturbation field strength. Upper bounds for density operation range Detachment transition density decreases with increasing I RMP. Easy access to detachment & enough margin for operation (but at the expense of Wp.) No sustained detachment has been realized so ~ far at I coil < 1.9 ka ( b / B <.6 %) 19

20 Operation domain of stable detachment in LHD ~ Key geometric parameters: Δ x, /, LCFS island b r B Stable detach (m).1.5 Stable detach. Radiation collapse. 2.x1-4 coil ( b ~ 1.x1-3 2.x1-3 /B ΔxLCFS island Healing r ) vac Remnant island of m/n=1/ ~ coil ( br /B w ).1% w ~ coil ( br /B ).5% R(m) Separation between radiation region (island) & confinement region is important factor for stable detachment vac Radiation collapse No T e flattening due to plasma healing vac LCFS Confineme nt region M. Kobayashi et al., Nucl. Fusion 53 (213) Threshold for RMP amplitude to overcome plasma screening. 2

21 Main plasma confinement : Recovery of energy confinement after detachment transition due to pressure profile peaking Confinement enhancement factor vs n e exp ISS4 τ E / (fren τ E ) Without RMP (attach) Sudo n / e n c (detach) RD transition p e profiles with & without RMP (detach) (attach) R(m) Without RMP Increase of n e leads to confinement degradation without RMP. Significant degradation in RMP attached phase due to large magnetic island in the edge. Energy confinement recovers after RD transition with RMP due to pressure peaking. The cause of the pressure peaking is under investigation. 21

22 Fluctuation of magnetic probe & Isat Fluctuation of magnetic probe Frequency (khz) 1 Magnetic probe High frequency components (several tens khz) disappears after detach transition Low frequency (~5kHz) component Detach Time (s) 6 Div probe Peaked at 6~9Hz after detach transition. Strong correlation with radiation oscillation. 7 Fluctuation of Isat -4 6I 1.5U Radiation Isat Attach Detach 1 Frequency(Hz) Frequency(Hz) 1 Isat Time(s)

23 Summary Effects of RMP application on the detachment is being investigated in LHD. 1. The RMP (m/n=1/1) application leads to stable sustainment of detached plasma. 2. Radiation is enhancement by RMP application EMC3-EIRENE prediction: Poloidal asymmetric radiation due to island AXUV line integrated profiles consistent with the modeling EUV measurements of CIII CVI : Enhancement at X and O-points Visible CII and H γ /H β : Enhancement outside/around of LCFS (signature of volume recomb.) 4. Divertor flux distribution with RMP Toroidal asymmetry according to toroidal mode number Reduction during detached phase: asymmetric pattern changes from the attached phase The asymmetry can be rotated by RMP phase shift 5. Operation space Key geometric parameters : RMP amplitude and separation between edge island and confinement region 6. Geometrical effect on energy transport and radiation distribution Poloidally asymmetric radiation Energy flow from O to X-point can help to sustain the localized radiation 7. Confinement of the RMP assisted detachment Confinement is recovered after detachment transition due to pressure peaking Issues to be investigated further Effects of different impurity species: Ne, N, Ar etc in relation to the island Te Mode number of RMP Decoupling effect between SOL & confinement plasma in terms of neutral penetration (RMP thicker SOL decoupling) 23

Conceptual Design of Magnetic Island Divertor in the J-TEXT tokamak

Conceptual Design of Magnetic Island Divertor in the J-TEXT tokamak The 2 nd IAEA Technical Meeting on Divertor Concepts, 13 to 16 November, 2017, Suzhou China Conceptual Design of Magnetic Island Divertor in the J-TEXT tokamak Bo Rao 1, Yonghua Ding 1, Song Zhou 1, Nengchao

More information

Co-current toroidal rotation driven and turbulent stresses with. resonant magnetic perturbations in the edge plasmas of the J-TEXT.

Co-current toroidal rotation driven and turbulent stresses with. resonant magnetic perturbations in the edge plasmas of the J-TEXT. Co-current toroidal rotation driven and turbulent stresses with resonant magnetic perturbations in the edge plasmas of the J-TEXT tokamak K. J. Zhao, 1 Y. J. Shi, H. Liu, P. H. Diamond, 3 F. M. Li, J.

More information

Magnetic Reconnection and Ion Flows During Point Source Helicity Injection on the Pegasus Toroidal Experiment

Magnetic Reconnection and Ion Flows During Point Source Helicity Injection on the Pegasus Toroidal Experiment Magnetic Reconnection and Ion Flows During Point Source Helicity Injection on the Pegasus Toroidal Experiment M.G. Burke, R.J. Fonck, J.L. Barr, K.E. Thome, E.T. Hinson, M.W. Bongard, A.J. Redd, D.J. Schlossberg

More information

Poloidal Transport Asymmetries, Edge Plasma Flows and Toroidal Rotation in Alcator C-Mod

Poloidal Transport Asymmetries, Edge Plasma Flows and Toroidal Rotation in Alcator C-Mod Poloidal Transport Asymmetries, Edge Plasma Flows and Toroidal Rotation in B. LaBombard, J.E. Rice, A.E. Hubbard, J.W. Hughes, M. Greenwald, J. Irby, Y. Lin, B. Lipschultz, E.S. Marmar, K. Marr, C.S. Pitcher,

More information

3D modeling of toroidal asymmetry due to localized divertor nitrogen puffing on Alcator C-Mod

3D modeling of toroidal asymmetry due to localized divertor nitrogen puffing on Alcator C-Mod 3D modeling of toroidal asymmetry due to localized divertor nitrogen puffing on Alcator C-Mod J.D. Lore 1, M.L. Reinke 2, B. LaBombard 2, B. Lipschultz 3, R. Pitts 4 1 Oak Ridge National Laboratory, Oak

More information

System Upgrades to the DIII-D Facility

System Upgrades to the DIII-D Facility System Upgrades to the DIII-D Facility A.G. Kellman for the DIII-D Team 24th Symposium on Fusion Technology Warsaw, Poland September 11-15, 2006 Upgrades Performed During the Long Torus Opening (LTOA)

More information

Recent Results on RFX-mod control experiments in RFP and tokamak configuration

Recent Results on RFX-mod control experiments in RFP and tokamak configuration Recent Results on RFX-mod control experiments in RFP and tokamak configuration L.Marrelli Summarizing contributions by M.Baruzzo, T.Bolzonella, R.Cavazzana, Y. In, G.Marchiori, P.Martin, E.Martines, M.Okabayashi,

More information

Observation of Toroidal Flow on LHD

Observation of Toroidal Flow on LHD 17 th International Toki conference / 16 th International Stellarator/Heliotron Workshop 27 Observation of Toroidal Flow on LHD M. Yoshinuma, K. Ida, M. Yokoyama, K. Nagaoka, M. Osakabe and the LHD Experimental

More information

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas Z. Yan1, G.R. McKee1, R.J. Groebner2, P.B. Snyder2, T.H. Osborne2, M.N.A. Beurskens3, K.H. Burrell2, T.E. Evans2, R.A. Moyer4, H. Reimerdes5

More information

Electromagnetic Field Simulation for ICRF Antenna and Comparison with Experimental Results in LHD

Electromagnetic Field Simulation for ICRF Antenna and Comparison with Experimental Results in LHD Electromagnetic Field Simulation for ICRF Antenna and Comparison with Experimental Results in LHD Takashi MUTOH, Hiroshi KASAHARA, Tetsuo SEKI, Kenji SAITO, Ryuhei KUMAZAWA, Fujio SHIMPO and Goro NOMURA

More information

Investigating High Frequency Magnetic Activity During Local Helicity Injection on the PEGASUS Toroidal Experiment

Investigating High Frequency Magnetic Activity During Local Helicity Injection on the PEGASUS Toroidal Experiment Investigating High Frequency Magnetic Activity During Local Helicity Injection on the PEGASUS Toroidal Experiment Nathan J. Richner M.W. Bongard, R.J. Fonck, J.L. Pachicano, J.M. Perry, J.A. Reusch 59

More information

CCD Camera Array System for Electron Density and Temperature Measurement in the LHD Plasma Periphery

CCD Camera Array System for Electron Density and Temperature Measurement in the LHD Plasma Periphery J. Plasma Fusion Res. SERIES, Vol.5 (2002) 437-441 CCD Camera Array System for Electron Density and Temperature Measurement in the LHD Plasma Periphery SHOJI Mamoru, YAMAZAKI Kozo, ICHIMOTO Shinji and

More information

The Compact Toroidal Hybrid A university scale fusion experiment. Greg Hartwell

The Compact Toroidal Hybrid A university scale fusion experiment. Greg Hartwell The Compact Toroidal Hybrid A university scale fusion experiment Greg Hartwell Plasma Physics Workshop, SMF-PPD, Universidad National Autónoma México, October 12-14, 2016 CTH Team and Collaborators CTH

More information

GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING

GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING by G.L. JACKSON, M.E. AUSTIN, J.S. degrassie, J. LOHR, C.P. MOELLER, and R. PRATER JULY

More information

Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas

Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas Holger Reimerdes With A.M. Garofalo, 1 E.J. Strait, 1 R.J. Buttery, 2 M.S. Chu, 1 Y. In, 3 G.L. Jackson,

More information

Investigation of compact toroid penetration for fuelling spherical tokamak plasmas on CPD

Investigation of compact toroid penetration for fuelling spherical tokamak plasmas on CPD 1 EX/P5-7 Investigation of compact toroid penetration for fuelling spherical tokamak plasmas on CPD N. Fukumoto 1), K. Hanada 2), S. Kawakami 2), S. Honma 2), M. Nagata 1), N. Nishino 3), H. Zushi 2),

More information

Observation of Electron Bernstein Wave Heating in the RFP

Observation of Electron Bernstein Wave Heating in the RFP Observation of Electron Bernstein Wave Heating in the RFP Andrew Seltzman, Jay Anderson, John Goetz, Cary Forest Madison Symmetric Torus - University of Wisconsin Madison Department of Physics Aug 1, 2017

More information

Non-inductive Production of Extremely Overdense Spherical Tokamak Plasma by Electron Bernstein Wave Excited via O-X-B Method in LATE

Non-inductive Production of Extremely Overdense Spherical Tokamak Plasma by Electron Bernstein Wave Excited via O-X-B Method in LATE 1 EXW/P4-4 Non-inductive Production of Extremely Overdense Spherical Tokamak Plasma by Electron Bernstein Wave Excited via O-X-B Method in LATE H. Tanaka, M. Uchida, T. Maekawa, K. Kuroda, Y. Nozawa, A.

More information

Field Aligned ICRF Antenna Design for EAST *

Field Aligned ICRF Antenna Design for EAST * Field Aligned ICRF Antenna Design for EAST * S.J. Wukitch 1, Y. Lin 1, C. Qin 2, X. Zhang 2, W. Beck 1, P. Koert 1, and L. Zhou 1 1) MIT Plasma Science and Fusion Center, Cambridge, MA USA. 2) Institute

More information

Trigger mechanism for the abrupt loss of energetic ions in magnetically confined plasmas

Trigger mechanism for the abrupt loss of energetic ions in magnetically confined plasmas www.nature.com/scientificreports Received: 11 August 2017 Accepted: 30 January 2018 Published: xx xx xxxx OPEN Trigger mechanism for the abrupt loss of energetic ions in magnetically confined plasmas K.

More information

Importance of edge physics in optimizing ICRF performance

Importance of edge physics in optimizing ICRF performance Importance of edge physics in optimizing ICRF performance D. A. D'Ippolito and J. R. Myra Research Corp., Boulder, CO Acknowledgements D. A. Russell, M. D. Carter, RF SciDAC Team Presented at the ECC Workshop

More information

ICRF-Edge and Surface Interactions

ICRF-Edge and Surface Interactions ICRF-Edge and Surface Interactions D. A. D Ippolito and J. R. Myra Lodestar Research Corporation Presented at the 19 th PSI Meeting, San Diego, CA, May 24-28, 2009 Introduction Heating and current drive

More information

Overview of ICRF Experiments on Alcator C-Mod*

Overview of ICRF Experiments on Alcator C-Mod* 49 th annual APS-DPP meeting, Orlando, FL, Nov. 2007 Overview of ICRF Experiments on Alcator C-Mod* Y. Lin, S. J. Wukitch, W. Beck, A. Binus, P. Koert, A. Parisot, M. Reinke and the Alcator C-Mod team

More information

3D-MAPTOR Code for Computation of Magnetic Fields in Tokamaks

3D-MAPTOR Code for Computation of Magnetic Fields in Tokamaks 3D-MAPTOR Code for Computation of Magnetic Fields in Tokamaks J. Julio E. Herrera-Velázquez 1), Esteban Chávez-Alaercón 2) 1) Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México

More information

Plasma Confinement by Pressure of Rotating Magnetic Field in Toroidal Device

Plasma Confinement by Pressure of Rotating Magnetic Field in Toroidal Device 1 ICC/P5-41 Plasma Confinement by Pressure of Rotating Magnetic Field in Toroidal Device V. Svidzinski 1 1 FAR-TECH, Inc., San Diego, USA Corresponding Author: svidzinski@far-tech.com Abstract: Plasma

More information

Design of the COMPASS Upgrade Tokamak

Design of the COMPASS Upgrade Tokamak Design of the COMPASS Upgrade Tokamak R. Panek, P. Cahyna, R. Dejarnac, J. Havlicek, J. Horacek, M. Hron, M. Imrisek, P. Junek, M. Komm, T. Markovic, J. Urban, J. Varju, V. Weinzettl, J. Adamek, P. Bilkova,

More information

Workshop on Active control of MHD Stability, Princeton, NJ, 6-8 Nov., RWM control in T2R. Per Brunsell

Workshop on Active control of MHD Stability, Princeton, NJ, 6-8 Nov., RWM control in T2R. Per Brunsell Workshop on Active control of MHD Stability, Princeton, NJ, 6-8 Nov., 2006 RWM control in T2R Per Brunsell P. R. Brunsell 1, J. R. Drake 1, D. Yadikin 1, D. Gregoratto 2, R. Paccagnella 2, Y. Q. Liu 3,

More information

Improved core transport triggered by off-axis ECRH switch-off on the HL-2A tokamak

Improved core transport triggered by off-axis ECRH switch-off on the HL-2A tokamak Improved core transport triggered by off-axis switch-off on the HL-2A tokamak Z. B. Shi, Y. Liu, H. J. Sun, Y. B. Dong, X. T. Ding, A. P. Sun, Y. G. Li, Z. W. Xia, W. Li, W.W. Xiao, Y. Zhou, J. Zhou, J.

More information

Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak

Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak 1 Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak C. Xiao 1), J. Morelli 1), A.K. Singh 1, 2), O. Mitarai 3), T. Asai 1), A. Hirose 1) 1) Department of Physics and

More information

Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod

Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod S. G. Baek, T. Shinya*, G. M. Wallace, S. Shiraiwa, R. R. Parker, Y. Takase*, D. Brunner MIT Plasma Science

More information

Preliminary ARIES-AT-DCLL Radial Build for ASC

Preliminary ARIES-AT-DCLL Radial Build for ASC Preliminary ARIES-AT-DCLL Radial Build for ASC L. El-Guebaly and C. Kessel UW - Madison PPPL ARIES-Pathways Project Meeting March 3-4, 2008 UCSD Objectives Define preliminary radial builds for ARIES-AT-DCLL

More information

Self-regulated oscillation of transport and topology of magnetic islands in toroidal plasmas

Self-regulated oscillation of transport and topology of magnetic islands in toroidal plasmas www.nature.com/scientificreports OPEN r a P Self-regulated oscillation of transport and topology of magnetic islands in toroidal plasmas K. Ida 1, T. Kobayashi 1, T. E. Evans 2, S. Inagaki 3, M. E. Austin

More information

Evaluation of a Field Aligned ICRF Antenna in Alcator C-Mod

Evaluation of a Field Aligned ICRF Antenna in Alcator C-Mod Evaluation of a Field Aligned ICRF Antenna in Alcator C-Mod 24th IAEA Fusion Energy Conference San Diego, USA October 8-13 2012 S.J. Wukitch, D. Brunner, M.L. Garrett, B. Labombard, C. Lau, Y. Lin, B.

More information

Sustainment and Additional Heating of High-Beta Field-Reversed Configuration Plasmas

Sustainment and Additional Heating of High-Beta Field-Reversed Configuration Plasmas 1 Sustainment and Additional Heating of High-Beta Field-Reversed Configuration Plasmas S. Okada, T. Fukuda, K. Kitano, H. Sumikura, T. Higashikozono, M. Inomoto, S. Yoshimura, M. Ohta and S. Goto Science

More information

Presented by Rob La Haye. on behalf of Francesco Volpe. at the 4 th IAEA-TM on ECRH for ITER

Presented by Rob La Haye. on behalf of Francesco Volpe. at the 4 th IAEA-TM on ECRH for ITER Locked Neoclassical Tearing Mode Control on DIII-D by ECCD and Magnetic Perturbations Presented by Rob La Haye General Atomics, San Diego (USA) on behalf of Francesco Volpe Max-Planck Gesellschaft (Germany)

More information

Comparison of toroidal viscosity with neoclassical theory

Comparison of toroidal viscosity with neoclassical theory Comparison of toroidal viscosity with neoclassical theory National Institute for Fusion Science, Nagoya 464-01, Japan Received 26 March 1996; accepted 1 October 1996 Toroidal rotation profiles are measured

More information

EXW/10-2Ra. Avoidance of Disruptions at High β N in ASDEX Upgrade with Off-Axis ECRH

EXW/10-2Ra. Avoidance of Disruptions at High β N in ASDEX Upgrade with Off-Axis ECRH 1 EXW/1-2Ra Avoidance of Disruptions at High β N in ASDEX Upgrade with Off-Axis ECRH B. Esposito 1), G. Granucci 2), M. Maraschek 3), S. Nowak 2), A. Gude 3), V. Igochine 3), R. McDermott 3), E. oli 3),

More information

Toroidal Rotation and Ion Temperature Validations in KSTAR Plasmas

Toroidal Rotation and Ion Temperature Validations in KSTAR Plasmas Toroidal Rotation and Ion Temperature Validations in KSTAR Plasmas S. G. Lee 1, H. H. Lee 1, W. H. Ko 1, J. W. Yoo 2, on behalf of the KSTAR team and collaborators 1 NFRI, Daejeon, Korea 2 UST, Daejeon,

More information

Dust Measurements With The DIII-D Thomson system

Dust Measurements With The DIII-D Thomson system Dust Measurements With The DIII-D Thomson system The DIII-D Thomson scattering system, consisting of eight ND:YAG lasers and 44 polychromator detection boxes, has recently been used to observe the existence

More information

Local Helicity Injection Startup and Edge Stability Studies in the Pegasus Toroidal Experiment

Local Helicity Injection Startup and Edge Stability Studies in the Pegasus Toroidal Experiment 1 EX/P4-36 Local Helicity Injection Startup and Edge Stability Studies in the Pegasus Toroidal Experiment A.J. Redd, J.L. Barr, M.W. Bongard, M.G. Burke, R.J. Fonck, E.T. Hinson, D.J. Schlossberg, and

More information

Detection and application of Doppler and motional Stark features in the DNB emission spectrum in the high magnetic field of the Alcator C-Mod tokamak

Detection and application of Doppler and motional Stark features in the DNB emission spectrum in the high magnetic field of the Alcator C-Mod tokamak Detection and application of Doppler and motional Stark features in the DNB emission spectrum in the high magnetic field of the Alcator C-Mod tokamak I. O. Bespamyatnov a, W. L. Rowan a, K. T. Liao a,

More information

Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team Plasma Physics Laboratory University of Saskatchewan

Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team Plasma Physics Laboratory University of Saskatchewan Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team (chijin.xiao@usask.ca) Plasma Physics Laboratory University of Saskatchewan 1 \ STOR-M Experiments Improved confinement induced by

More information

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas 1 Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas Z. Yan 1), G.R. McKee 1), R.J. Groebner 2), P.B. Snyder 2), T.H. Osborne 2), M.N.A. Beurskens 3), K.H. Burrell 2), T.E. Evans 2), R.A.

More information

Task on the evaluation of the plasma response to the ITER ELM stabilization coils in ITER H- mode operational scenarios. Technical Specifications

Task on the evaluation of the plasma response to the ITER ELM stabilization coils in ITER H- mode operational scenarios. Technical Specifications Task on the evaluation of the plasma response to the ITER ELM stabilization coils in ITER H- mode operational scenarios Technical Specifications Version 1 Date: 28/07/2011 Name Affiliation Author G. Huijsmans

More information

Upper limit on turbulent electron temperature fluctuations on Alcator C-Mod APS DPP Meeting Albuquerque 2003

Upper limit on turbulent electron temperature fluctuations on Alcator C-Mod APS DPP Meeting Albuquerque 2003 Upper limit on turbulent electron temperature fluctuations on Alcator C-Mod APS DPP Meeting Albuquerque 2003 Christopher Watts, Y. In (U. Idaho), A.E. Hubbard (MIT PSFC) R. Gandy (U. Southern Mississippi),

More information

Toroidal Geometry Effects in the Low Aspect Ratio RFP

Toroidal Geometry Effects in the Low Aspect Ratio RFP Toroidal Geometry Effects in the Low Aspect Ratio RFP Carl Sovinec Los Alamos National Laboratory Chris Hegna University of Wisconsin-Madison 2001 International Sherwood Fusion Theory Conference April

More information

GA A27238 MEASUREMENT OF DEUTERIUM ION TOROIDAL ROTATION AND COMPARISON TO NEOCLASSICAL THEORY IN THE DIII-D TOKAMAK

GA A27238 MEASUREMENT OF DEUTERIUM ION TOROIDAL ROTATION AND COMPARISON TO NEOCLASSICAL THEORY IN THE DIII-D TOKAMAK GA A27238 MEASUREMENT OF DEUTERIUM ION TOROIDAL ROTATION AND COMPARISON TO NEOCLASSICAL THEORY IN THE DIII-D TOKAMAK by B.A. GRIERSON, K.H. BURRELL, W.W. HEIDBRINK, N.A. PABLANT and W.M. SOLOMON APRIL

More information

Physics, Technologies and Status of the Wendelstein 7-X Device

Physics, Technologies and Status of the Wendelstein 7-X Device Physics, Technologies and Status of the Wendelstein 7-X Device F. Wagner on behalf of the W7-X team IPP, BI-Greifswald, EURATOM association Stellarators: toroidal devices with external confinement External

More information

Wall Conditioning Strategy for Wendelstein7-X. H.P. Laqua, D. Hartmann, M. Otte, D. Aßmus

Wall Conditioning Strategy for Wendelstein7-X. H.P. Laqua, D. Hartmann, M. Otte, D. Aßmus Wall Conditioning Strategy for Wendelstein7-X H.P. Laqua, D. Hartmann, M. Otte, D. Aßmus 1 Outline 1. Physics background 2. Experience from different experiments (LHD, Wega. Tore Supra) 3. Strategy for

More information

Investigation of ion toroidal rotation induced by Lower Hybrid waves in Alcator C-Mod * using integrated numerical codes

Investigation of ion toroidal rotation induced by Lower Hybrid waves in Alcator C-Mod * using integrated numerical codes Investigation of ion toroidal rotation induced by Lower Hybrid waves in Alcator C-Mod * using integrated numerical codes J.P. Lee 1, J.C. Wright 1, P.T. Bonoli 1, R.R. Parker 1, P.J. Catto 1, Y. Podpaly

More information

Helicon Wave Current Drive in KSTAR Plasmas

Helicon Wave Current Drive in KSTAR Plasmas Daejeon Helicon Wave Current Drive in KSTAR Plasmas S. J. Wanga, H. J. Kima, Jeehyun Kima, V. Vdovinb, B. H. Parka, H. H. Wic, S. H. Kimd, and J. G. Kwaka anational Fusion Research Institute, Daejeon,

More information

Interdependence of Magnetic Islands, Halo Current and Runaway Electrons in T-10 Tokamak

Interdependence of Magnetic Islands, Halo Current and Runaway Electrons in T-10 Tokamak IAEA-CN-77/EXP2/02 Interdependence of Magnetic Islands, Halo Current and Runaway Electrons in T-10 Tokamak N.V. Ivanov, A.M. Kakurin, V.A. Kochin, P.E. Kovrov, I.I. Orlovski, Yu.D.Pavlov, V.V. Volkov Nuclear

More information

Increased Stable Beta in DIII D by Suppression of a Neoclassical Tearing Mode Using Electron Cyclotron Current Drive and Active Feedback

Increased Stable Beta in DIII D by Suppression of a Neoclassical Tearing Mode Using Electron Cyclotron Current Drive and Active Feedback 1 EX/S1-3 Increased Stable Beta in DIII D by Suppression of a Neoclassical Tearing Mode Using Electron Cyclotron Current Drive and Active Feedback R.J. La Haye, 1 D.A. Humphreys, 1 J. Lohr, 1 T.C. Luce,

More information

GA A26865 PEDESTAL TURBULENCE DYNAMICS IN ELMING AND ELM-FREE H-MODE PLASMAS

GA A26865 PEDESTAL TURBULENCE DYNAMICS IN ELMING AND ELM-FREE H-MODE PLASMAS GA A26865 PEDESTAL TURBULENCE DYNAMICS IN ELMING AND ELM-FREE H-MODE PLASMAS by Z. YAN, G.R. McKEE, R.J. GROEBNER, P.B. SNYDER, T.H. OSBORNE, M.N.A. BEURSKENS, K.H. BURRELL, T.E. EVANS, R.A. MOYER, H.

More information

Microwave Imaging in the Large Helical Device

Microwave Imaging in the Large Helical Device Microwave Imaging in the Large Helical Device T. Yoshinaga 1), D. Kuwahara 2), K. Akaki 3), Z.B. Shi 4), H. Tsuchiya 1), S. Yamaguchi 5), Y. Kogi 6), S. Tsuji-Iio 2), Y. Nagayama 1), A. Mase 3), H. Hojo

More information

Effect of electrode biasing on m/n=2/1 tearing modes in J-TEXT experiments

Effect of electrode biasing on m/n=2/1 tearing modes in J-TEXT experiments Effect of electrode biasing on m/n=2/1 tearing modes in J-TEXT experiments Hai Liu 1, Qiming Hu 1, a, Zhipeng Chen 1, a, Q. Yu 2, Lizhi Zhu 1, Zhifeng Cheng 1, Ge Zhuang 1 and Zhongyong Chen 1 1 State

More information

Technical Readiness Level For Plasma Control

Technical Readiness Level For Plasma Control Technical Readiness Level For Plasma Control PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION A.D. Turnbull, General Atomics ARIES Team Meeting University of Wisconsin, Madison,

More information

TOROIDAL ALFVÉN EIGENMODES

TOROIDAL ALFVÉN EIGENMODES TOROIDAL ALFVÉN EIGENMODES S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK OUTLINE OF LECTURE 4 Toroidicity induced frequency gaps and Toroidal

More information

Study of Ion Cyclotron Emissions due to DD Fusion Product Ions on JT-60U

Study of Ion Cyclotron Emissions due to DD Fusion Product Ions on JT-60U 1 Study of Ion Cyclotron Emissions due to DD Fusion Product Ions on JT-6U M. Ichimura 1), M. Katano 1), Y. Yamaguchi 1), S. Sato 1), Y. Motegi 1), H. Muro 1), T. Ouchi 1), S. Moriyama 2), M. Ishikawa 2),

More information

RWM control on EXTRAP T2R using various controller configurations.

RWM control on EXTRAP T2R using various controller configurations. RWM control on EXTRAP T2R using various controller configurations. See reference [1] for details of material in this presentation P R Brunsell, K E J Olofsson, L Frassinetti, J R Drake Div. of Fusion Plasma

More information

Development of Collective Thomson Scattering System Using the Gyrotrons of Sub-Tera Hz Region

Development of Collective Thomson Scattering System Using the Gyrotrons of Sub-Tera Hz Region 1 FTP/P6-31 Development of Collective Thomson Scattering System Using the Gyrotrons of Sub-Tera Hz Region Y. Tatematsu 1), S. Kubo 2), M. Nishiura 2), K. Tanaka 2), N. Tamura 3), T. Shimozuma 2), T. Saito

More information

Contributions of Advanced Design Activities to Fusion Research

Contributions of Advanced Design Activities to Fusion Research Contributions of Advanced Design Activities to Fusion Research Farrokh Najmabadi University of California San Diego Presentation to: VLT PAC Meeting February 24, 2003 General Atomics Electronic copy: http://aries.ucsd.edu/najmabadi/talks/

More information

Comparisons of Edge/SOL Turbulence in L- and H-mode Plasmas of Alcator C-Mod

Comparisons of Edge/SOL Turbulence in L- and H-mode Plasmas of Alcator C-Mod Comparisons of Edge/SOL Turbulence in L- and H-mode Plasmas of Alcator C-Mod J.L. Terry a, S.J. Zweben b, O. Grulke c, B. LaBombard a, M.J. Greenwald a, T. Munsat b, B. Veto a a Plasma Science and Fusion

More information

Variation of N and its Effect on Fast Wave Electron Heating on LHD

Variation of N and its Effect on Fast Wave Electron Heating on LHD J. Plasma Fusion Res. SERIES, Vol. 6 (004) 6 (004) 64 646 000 000 Variation of N and its Effect on Fast Wave Electron Heating on LHD TAKEUCHI Norio, SEKI Tetsuo 1, TORII Yuki, SAITO Kenji 1, WATARI Tetsuo

More information

ICRF-Edge and Surface Interactions

ICRF-Edge and Surface Interactions ICRF-Edge and Surface Interactions D. A. D Ippolito and J. R. Myra Lodestar Research Corporation Presented at the ReNeW Taming the Plasma Material Interface Workshop, UCLA, March 4-5, 2009 Introduction

More information

Disruption mitigation experiments with one and two gas jets on Alcator C-Mod

Disruption mitigation experiments with one and two gas jets on Alcator C-Mod Disruption mitigation experiments with one and two gas jets on Alcator C-Mod G.M. Olynyk, R.S. Granetz, M.L. Reinke, D.G. Whyte, J.W. Hughes, J.R. Walk MIT Plasma Science and Fusion Center V.A. Izzo UCSD

More information

PLASMA BUILD-UP and CONFINEMENT IN URAGAN-2M DEVICE

PLASMA BUILD-UP and CONFINEMENT IN URAGAN-2M DEVICE PLASMA BUILD-UP and CONFINEMENT IN URAGAN-2M DEVICE V.E. Moiseenko, A.V. Lozin, M.M. Kozulya, Yu.K. Mironov, V.S. Romanov, A.N. Shapoval, V.G. Konovalov, V.V. Filippov, V.B. Korovin, A. Yu. Krasyuk, V.V.

More information

Magnetics and Power System Upgrades for the Pegasus-U Experiment

Magnetics and Power System Upgrades for the Pegasus-U Experiment Magnetics and Power System Upgrades for the Pegasus-U Experiment R.C. Preston, M.W. Bongard, R.J. Fonck, and B.T. Lewicki 56 th Annual Meeting of the APS Division of Plasma Physics University of Wisconsin-Madison

More information

Abstract. G.D. Garstka 47 th APS-DPP Denver October 27, Pegasus Toroidal Experiment University of Wisconsin-Madison

Abstract. G.D. Garstka 47 th APS-DPP Denver October 27, Pegasus Toroidal Experiment University of Wisconsin-Madison Abstract The PEGASUS Toroidal Experiment provides an attractive opportunity for investigating the physics and implementation of electron Bernstein wave (EBW) heating and current drive in an overdense ST

More information

Field-Aligned ICRF Antenna Characterization and Performance in Alcator C-Mod*

Field-Aligned ICRF Antenna Characterization and Performance in Alcator C-Mod* Field-Aligned ICRF Antenna Characterization and Performance in Alcator C-Mod* 54th APS DPP Annual Meeting Providence, RI USA October 9-Nov, 0 S.J. Wukitch, D. Brunner, P. Ennever, M.L. Garrett, A. Hubbard,

More information

Sensitivity study for the optimization of the viewing chord arrangement of the ITER poloidal polarimeter

Sensitivity study for the optimization of the viewing chord arrangement of the ITER poloidal polarimeter P8-29 6th International Toki Conference, December 5-8, 26 Sensitivity study for the optimization of the viewing chord arrangement of the ITER poloidal polarimeter T. Yamaguchi, Y. Kawano and Y. Kusama

More information

EX/P9-5. Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas

EX/P9-5. Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas M. Okabayashi 1), I.N. Bogatu 2), T. Bolzonella 3) M.S. Chance 1), M.S. Chu 4), A.M. Garofalo 4), R. Hatcher 1), Y. In 2),

More information

Simulation Studies of Field-Reversed Configurations with Rotating Magnetic Field Current Drive

Simulation Studies of Field-Reversed Configurations with Rotating Magnetic Field Current Drive Simulation Studies of Field-Reversed Configurations with Rotating Magnetic Field Current Drive E. V. Belova 1), R. C. Davidson 1), 1) Princeton University Plasma Physics Laboratory, Princeton NJ, USA E-mail:ebelova@pppl.gov

More information

Overview and Initial Results of the ETE Spherical Tokamak

Overview and Initial Results of the ETE Spherical Tokamak Overview and Initial Results of the ETE Spherical Tokamak L.A. Berni, E. Del Bosco, J.G. Ferreira, G.O. Ludwig, R.M. Oliveira, C.S. Shibata, L.F.F.P.W. Barbosa, W.A. Vilela Instituto Nacional de Pesquisas

More information

GA A D VACUUM MAGNETIC FIELD MODELING OF THE ITER ELM CONTROL COILS DURING STANDARD OPERATING SCENARIOS

GA A D VACUUM MAGNETIC FIELD MODELING OF THE ITER ELM CONTROL COILS DURING STANDARD OPERATING SCENARIOS GA A27389 3D VACUUM MAGNETIC FIELD MODELING OF THE ITER ELM CONTROL COILS DURING STANDARD OPERATING SCENARIOS by T.E. EVANS, D.M. ORLOV, A. WINGEN, W. WU, A. LOARTE, T.A. CASPER, O. SCHMITZ, G. SAIBENE,

More information

Full-wave feasibility study of magnetic diagnostic based on O-X mode conversion and oblique reflectometry imaging

Full-wave feasibility study of magnetic diagnostic based on O-X mode conversion and oblique reflectometry imaging Full-wave feasibility study of magnetic diagnostic based on O-X mode conversion and oblique reflectometry imaging 20 th topical conference on radio frequency power in plasmas Orso Meneghini, M. Choi #,

More information

Study of the radio-frequency driven sheath in the ion cyclotron slow wave antennas

Study of the radio-frequency driven sheath in the ion cyclotron slow wave antennas Journal of Nuclear Materials 266±269 (1999) 969±974 Study of the radio-frequency driven sheath in the ion cyclotron slow wave antennas T. Imai *, H. Sawada, Y. Uesugi 1, S. Takamura Graduate School of

More information

Active Control for Stabilization of Neoclassical Tearing Modes

Active Control for Stabilization of Neoclassical Tearing Modes Active Control for Stabilization of Neoclassical Tearing Modes Presented by D.A. Humphreys General Atomics 47th APS-DPP Meeting Denver, Colorado October 24 28, 2005 Control of NTM s is an Important Objective

More information

Profile Scan Studies on the Levitated Dipole Experiment

Profile Scan Studies on the Levitated Dipole Experiment Profile Scan Studies on the Levitated Dipole Experiment Columbia University A.K. Hansen, D.T. Garnier, M.E. Mauel, E.E. Ortiz Columbia University J. Kesner, A.C. Boxer, J.E. Ellsworth, I. Karim, S. Mahar,

More information

Active beam-based diagnostics in KSTAR

Active beam-based diagnostics in KSTAR Active beam-based diagnostics in KSTAR Jinseok Ko on behalf of W-H Ko a, H H Lee a, K Ida b (Charge Exchange Spectroscopy) Y-U Nam a, S Zoletnik c, M Lampert c, D Dunai c (Beam Emission Spectroscopy) J

More information

Collective Thomson Scattering Study using Gyrotron in LHD

Collective Thomson Scattering Study using Gyrotron in LHD Collective Thomson Scattering Study using Gyrotron in LHD Shin KUBO, Masaki NISHIURA, Kenji TANAKA, Takashi SHIMOZUMA, Yasuo YOSHIMURA, Hiroe IGAMI, Hiromi TAKAHASHI, Takashi MUTOH National Institute for

More information

Progress in controlling tearing modes in RFX-mod

Progress in controlling tearing modes in RFX-mod Progress in controlling tearing modes in RFX-mod L. Marrelli A.Alfier,T.Bolzonella, F.Bonomo, L.Frassinetti, M.Gobbin, S.C.Guo, P.Franz, A.Luchetta, G.Manduchi, G.Marchiori, P.Martin, S.Martini, P.Piovesan,

More information

H. Y. Lee, J. W. Lee, J. G. Jo, J. Y. Park, S. C. Kim, J. I. Wang, J. Y. Jang, S. H. Kim, Y. S. Na, Y. S. Hwang

H. Y. Lee, J. W. Lee, J. G. Jo, J. Y. Park, S. C. Kim, J. I. Wang, J. Y. Jang, S. H. Kim, Y. S. Na, Y. S. Hwang Study on EBW assisted start-up and heating experiments via direct XB mode conversion from low field side injection in VEST H. Y. Lee, J. W. Lee, J. G. Jo, J. Y. Park, S. C. Kim, J. I. Wang, J. Y. Jang,

More information

Feedback control on EXTRAP-T2R with coils covering full surface area of torus

Feedback control on EXTRAP-T2R with coils covering full surface area of torus Active control of MHD Stability, Univ. Wisconsin, Madison, Oct 31 - Nov 2, 2005 Feedback control on EXTRAP-T2R with coils covering full surface area of torus presented by Per Brunsell P. R. Brunsell 1,

More information

Assessing the Merits of Resonant Magnetic Perturbations with Different toroidal Mode Numbers for Controlling Edge Localised Modes

Assessing the Merits of Resonant Magnetic Perturbations with Different toroidal Mode Numbers for Controlling Edge Localised Modes CCFE-PR(14)29 I.T. Chapman, A. Kirk, R.J. Akers, C.J. Ham, J.R. Harrison, J. Hawke, Y.Q. Liu, K.G. McClements, S. Pamela, S. Saarelma, R. Scannell, A.J. Thornton and the MAST Team Assessing the Merits

More information

Detecting and Preventing Instabilities in Plasma Processes

Detecting and Preventing Instabilities in Plasma Processes Detecting and Preventing Instabilities in Plasma Processes D.C. Carter and V.L. Brouk, Advanced Energy Industries, Inc., Fort Collins, CO ABSTRACT RF driven plasmas commonly used in enhanced CVD deposition

More information

Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography

Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography Panel discussion Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography Akira Endo * Extreme Ultraviolet Lithography System Development Association Gigaphoton Inc * 2008 EUVL Workshop 11

More information

Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod

Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod N. Tsujii, M. Porkolab, E.M. Edlund, L. Lin, Y. Lin, J.C. Wright, S.J. Wukitch MIT Plasma Science and Fusion Center

More information

Non-Solenoidal Startup via Local Helicity Injection and Edge Stability Studies in the Pegasus Toroidal Experiment

Non-Solenoidal Startup via Local Helicity Injection and Edge Stability Studies in the Pegasus Toroidal Experiment Non-Solenoidal Startup via Local Helicity Injection and Edge Stability Studies in the Pegasus Toroidal Experiment Raymond J. Fonck on behalf of the Pegasus Team 17 th International Spherical Torus Workshop

More information

3.10 Lower Hybrid Current Drive (LHCD) System

3.10 Lower Hybrid Current Drive (LHCD) System 3.10 Lower Hybrid Current Drive (LHCD) System KUANG Guangli SHAN Jiafang 3.10.1 Purpose of LHCD program 3.10.1.1 Introduction Lower hybrid waves are quasi-static electric waves propagated in magnetically

More information

GENERATION OF RF DRIVEN CUR RENTS BY LOWER-IIYBRID WAVE INJECTION IN THE VERSATOR II TOKAMAK

GENERATION OF RF DRIVEN CUR RENTS BY LOWER-IIYBRID WAVE INJECTION IN THE VERSATOR II TOKAMAK I GENERATION OF RF DRIVEN CUR RENTS BY LOWER-IIYBRID WAVE INJECTION IN THE VERSATOR II TOKAMAK S.C. Luckhardt, M. Porkolab, S.F. Knowlton, K-I. Chen, A.S. Fisher, F.S. McDermott, and M. Mayberry Massachusetts

More information

Improvements in the fast vertical control systems in KSTAR, EAST, NSTX and NSTX-U

Improvements in the fast vertical control systems in KSTAR, EAST, NSTX and NSTX-U 1 PPC/P8-17 Improvements in the fast vertical control systems in KSTAR, EAST, NSTX and NSTX-U D. Mueller 1, N.W. Eidietis 2, D. A. Gates 1, S. Gerhardt 1, S.H. Hahn 3, E. Kolemen 1, L. Liu 5, J. Menard

More information

Helicon mode formation and rf power deposition in a helicon source

Helicon mode formation and rf power deposition in a helicon source Helicon mode formation and rf power deposition in a helicon source Michael Krämer & Kari Niemi Institut für Experimentalphysik II, Ruhr-Universität D-4478 Bochum, Germany Helicon Mini-Conference APS-DPP,

More information

ICRF Physics in KSTAR Steady State

ICRF Physics in KSTAR Steady State ICRF Physics in KSTAR Steady State Operation (focused on the base line operation) Oct. 24, 2005 Jong-gu Kwak on the behalf of KSTAR ICRF TEAM Korea Atomic Energy Research Institute Contents Roles of ICRF

More information

High Temporal Resolution Polarimetry on the MST Reversed Field Pinch

High Temporal Resolution Polarimetry on the MST Reversed Field Pinch High Temporal Resolution Polarimetry on the MST Reversed Field Pinch W.X. Ding, S.D. Terry, D.L. Brower Electrical Engineering Department University of California, Los Angeles J.K. Anderson, C.B. Forest,

More information

Construction of 0.5-MW prototype PAM for KSTAR LHCD system

Construction of 0.5-MW prototype PAM for KSTAR LHCD system Korea-Japan Workshop on Physics and Technology of Heating and Current Drive 2016 PAL, Pohang, Korea / Dec. 14-16, 2016, Construction of 0.5-MW prototype PAM for KSTAR LHCD system Jeehyun Kim a, Sonjong

More information

Varying Electron Cyclotron Resonance Heating to Modify Confinement on the Levitated Dipole Experiment

Varying Electron Cyclotron Resonance Heating to Modify Confinement on the Levitated Dipole Experiment Varying Electron Cyclotron Resonance Heating to Modify Confinement on the Levitated Dipole Experiment Columbia University A.K. Hansen, D.T. Garnier, M.E. Mauel, E.E. Ortiz Columbia University J. Kesner,

More information

Launcher Study for KSTAR 5 GHz LHCD System*

Launcher Study for KSTAR 5 GHz LHCD System* Launcher Study for KSTAR 5 GHz LHCD System* Joint Workshop on RF Heating and Current Drive in Fusion Plasmas October 24, 2005 Pohang Accelerator Laboratory, Pohang Y. S. Bae, M. H. Cho, W. Namkung Department

More information

Non-Axisymmetric Ideal Equilibrium and Stability of ITER Plasmas with Rotating RMPs

Non-Axisymmetric Ideal Equilibrium and Stability of ITER Plasmas with Rotating RMPs EUROFUSION WP14ER PR(16)14672 C.J. Ham et al. Non-Axisymmetric Ideal Equilibrium and Stability of ITER Plasmas with Rotating RMPs Preprint of Paper to be submitted for publication in Nuclear Fusion This

More information

Error Fields Expected in ITER and their Correction

Error Fields Expected in ITER and their Correction 1 ITR/P5-9 Error Fields Expected in ITER and their Correction Y. Gribov 1, V. Amoskov, E. Lamzin, N. Maximenkova, J. E. Menard 3, J.-K. Park 3, V. Belyakov, J. Knaster 1, S. Sytchevsky 1 ITER Organization,

More information