Spectral Albedo Integration Algorithm for POLDER-2

Size: px
Start display at page:

Download "Spectral Albedo Integration Algorithm for POLDER-2"

Transcription

1 Spectral Albedo Integration Algorithm for POLDER-2 1/5 Spectral Albedo Integration Algorithm for POLDER-2 Aim of the algorithm : Derivation of the shortwave albedo/reflectance as a function of the spectral albedos/reflectances at 443 nm, 670 nm and 865 nm. Date of the document : October 1996 ; revised October 2002 Author : J. C. Buriez Laboratoire d'optique Atmosphérique UMR CNRS, Université des Sciences et Technologies de Lille, Villeneuve d'ascq Cedex (France) buriez@univ-lille1.fr Content : 1. INTRODUCTION 2. ALGORITHM DESCRIPTION 3. DETERMINATION OF COEFFICIENTS 4. OUTPUT PARAMETERS 5. REFERENCES Development of the POLDER Earth radiation budget, water vapor, and clouds algorithms results from a joint effort of Laboratoire d Optique Atmosphérique (LOA), Laboratoire des Sciences du Climat et de l Environnement (LSCE) and Laboratoire de Météorologie dynamique (LMD). It has been supported by CNES (Centre National d Etudes Spatiales), CNRS (Centre National de la Recherche Scientifique) and Région Nord-Pas de Calais.

2 Spectral Albedo Integration Algorithm for POLDER-2 2/5 1. INTRODUCTION This algorithm has been shortly described in Buriez et al. (1997). The shortwave albedo A SW is derived as a function of the spectral albedos A 443, A 670 and A 865. In the same way, the shortwave bidirectional reflectances are derived from the spectral bidirectional reflectances R 443, R 670 and R 865. The values of albedo/reflectance at 443 nm, 670 nm and 865 nm are considered as representative of the spectral intervals µm, µm and µm respectively. Concerning the gaseous absorption, the first two intervals are affected by ozone, while the last interval is affected by water vapor. The solar ozone absorption is estimated from the ozone content measured by the Total Ozone Mapping Spectrometer (TOMS). The solar water vapor absorption is estimated from the ratio of the POLDER reflectances at 910 nm and 865 nm. In this document, we start with the description of the algorithm, followed by a discussion about some coefficients used in this algorithm. We conclude with the list of the output parameters. 2. ALGORITHM DESCRIPTION Consider a given superpixel (generally composed of 3 x 3 pixels) observed by POLDER in a viewing geometry represented by (µ s,µ v,φ), where µ s is the cosine of solar zenith angle, µ v the cosine of viewing zenith angle and φ the relative azimuth angle Shortwave reflectances The corrected spectral reflectances issued from the Gaseous Absorption Correction Algorithm for POLDER-2 are averaged over the superpixel. Let be R 443 (µ s,µ v,φ), R 670 (µ s,µ v,φ), R 865 (µ s,µ v,φ) and R 910 (µ s,µ v,φ) these mean reflectances at 443, 670, 865 and 910 nm respectively. Except for the gaseous absorption, the first three reflectances are assumed to be representative of the spectral intervals µm, µm and µm respectively. The shortwave reflectance is thus expressed as Rsw(µ s,µ v,φ) = C 1 T 1 (mu 03 ) R 443 (µ s,µ v,φ) + C 2 T 2 (mu 03 ) R 670 (µ s,µ v,φ) + C 3 T 3 (R 910 (µ s,µ v,φ)/r 865 (µ s,µ v,φ)) R 865 (µ s,µ v,φ) + C 4 + C 5 /µ s (1) where C 1,, C 5 are constants, the two last terms in Equ.(1) are only adjustment terms, and the transmission functions T 1, T 2 and T 3 are defined as follows : T 1 and T 2 represent the ozone transmission weighted by the solar incident irradiance in the interval µm and µm respectively. They depend on the product m U 03, where m is the air mass factor (m = 1/µ s +1/µ v ) and U 03 the vertical column of ozone derived from TOMS observations. Practically, T 1 (mu 03 ) and T 2 (mu 03 ) are approximated by means of Padé approximants (Baker, 1965).

3 Spectral Albedo Integration Algorithm for POLDER-2 3/5 The function T 3 represents the water vapor transmission weighted by the solar incident irradiance in the interval µm ; it is assumed to be directly related to the observed R 910 /R 865 ratio by T 3 (R 910 (µ s,µ v,φ)/r 865 (µ s,µ v,φ)) = A + B R 910 (µ s,µ v,φ)/r 865 (µ s,µ v,φ) (2) where A and B are constants fitted from radiative transfer simulations Shortwave albedos Let be A 443 (µ s, µ v, φ), A 670 (µ s, µ v, φ) and A 865 (µ s, µ v, φ) the bidirectional values of albedo, that is the albedo values derived in a given viewing direction at 443, 670 and 865 nm respectively. These values are issued from the Spectral Albedo and Cloud Optical Thickness Algorithm for POLDER-2. The shortwave bidirectional albedo is expressed as A SW (µ s,µ v,φ) = C 1 T 1 (MU 03 ) A 443 (µ s,µ v,φ)) + C 2 T 2 (MU 03 ) A 670 (µ s,µ v,φ) + C 3 T 4 (R 910 (µ s,µ v,φ)/r 865 (µ s,µ v,φ)) A 865 (µ s,µ v,φ) + C 4 + C 5 /µ s (3) where M is the equivalent air-mass factor given by M = 1/µ s + η (4) where η is a diffusivity factor to take into account the effect of integration over viewing angles. We choice η = 1.66 as usually used in infrared transmission calculations (e.g., Goody and Yung, 1989). The transmission function T 4 that replaces T 3 is now defined by T 4 (R 910 (µ s,µ v,φ)/r 865 (µ s,µ v,φ)) = A + B [R 910 (µ s,µ v,φ)/r 865 (µ s,µ v,φ)] ζ(µs,µv) (5) with ζ(µs,µv) = β M, (6) m where β is a constant derived from transmission calculations. The shortwave albedo A SW (µ s ) is then deduced by a weighted averaging of the different values of A SW (µ s, µ v, φ). The weighting function is a function of the scattering angle and depends on the observed cloudiness. It is the same as in the Spectral Albedo and Cloud Optical Thickness Algorithm for POLDER-2. In the same way, we calculate the clear-sky estimate of the shortwave albedo from the modeled clear-sky albedos used in the calculation of cloud optical thickness (see Spectral Albedo and Cloud Optical Thickness Algorithm for POLDER-2) [A model (τ c =0)] SW = C 1 T 1 (MU 03 ) [A model (τ c =0)] C 2 T 2 (MU 03 ) [A model (τ c =0)] C 3 T 5 (MU ECMWF ) [A model (τ c =0)] C 4 + C 5 /µ s (7)

4 Spectral Albedo Integration Algorithm for POLDER-2 4/5 where T 5, that replaces T 4, is a function of the product M U ECMWF, where U ECMWF is the total vertical column of water vapor derived from ECMWF (European Centre for Medium-Range Weather Forecasts) analysis. Practically this water vapor transmission function T 5 (MU ECMWF ) is a Padé approximant. 3. DETERMINATION OF COEFFICIENTS The coefficients C 1,, C 5 used in Equ. (1), (3) and (7) can be determined either theoretically or empirically. The second approach (empirical) is certainly highly preferable. The constants may be determined by using a least squares method to minimize the r.m.s. difference between the POLDER shortwave reflectances given by Equ. (1) and the true shortwave reflectances simultaneously measured by an ERB (Earth Radiation Budget) scanner. Before the launch of ADEOS 1 in 1996, a comparison between POLDER and ScaRaB (Scanner for Radiation Budget) was scheduled. Unfortunately, during the period ADEOS 1-POLDER was working (November June 1997), there was neither ScaRaB nor any ERB scanner in flight. Consequently, the constants C 1,, C 5 used for ADEOS 1-POLDER were determined from simulations. To do that, we used the radiative transfer code GAME (Global Atmospheric ModEl). This allows accurate treatment of scattering by aerosols, clouds and molecules. Multiple scattering effects are treated using the Discrete Ordinates Method (Stamnes et al., 1988). Absorption is calculated from a line by line code (Dubuisson et al., 1996). The simulations were performed for various values of µ s (from 0.2 to 1) and for two very different standard atmospheres : the tropical atmosphere and the subartic winter atmosphere (McClatchey, 1972). In addition to the sea-surface with a reflectivity of 6 %, two land surface models were considered : vegetation and sand. The calculations were performed for clear-sky situations with standard aerosol models (WMO, 1986) and for overcast situations corresponding to two cloud altitudes and various cloud optical thicknesses. However, at this time, only liquid water cloud droplets with an effective radius of 10 µm were considered. This is consistent with the cloud optical thickness retrieval method previously used for ADEOS 1- POLDER (Buriez et al., 1997). From these simulations, the values of C 1,, C 5 were derived by a least squares method. We found a r.m.s. difference between the approximate and the exact shortwave reflected fluxes of 10 Wm -2, but no significant bias for any atmosphere model. In the future, we wish to take advantage of spatiotemporal coincidences between the satellites ADEOS 2 and TERRA. From the comparison between the POLDER reflectances and the CERES (Clouds and Earth s Energy System) shortwave reflectances, we hope to derive new coefficients C 1,, C 5 and thus to improve the determination of the shortwave albedo. 4. OUTPUT PARAMETERS Two nondirectional parameters issued from this algorithm are delivered in the ERB, WV & clouds products : the shortwave albedo, A SW, derived from the 443, 670 and 865 nm albedos, the clear-sky estimate of the shortwave albedo derived from the modeled clear-sky albedos, [A model (τ c =0)] SW, that is independent of POLDER measurements.

5 Spectral Albedo Integration Algorithm for POLDER-2 5/5 In addition, two parameters are delivered for each viewing direction (i = 1, 14) : the bidirectional shortwave reflectance, R SW (i), the bidirectional shortwave albedo, A SW (i). 5. REFERENCES Baker, G. A., 1965 : The theory and application of the Padé approximant method. Advances in Theoretical Physics, Vol. 1 (Ed. K. A. Brueckner). Academic Press, New York, Buriez, J. C., C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Fouquart, P. Couvert and G. Seze, 1997: Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote Sensing, 18, Dubuisson, P., J. C. Buriez and Y. Fouquart, 1996: High spectral resolution solar radiative transfer in absorbing and scattering media: Application to the satellite simulation. J. Quant. Spectrosc. Radiat. Transfer, 55, Goody, R. M. and Y. L. Yung, 1989: Atmospheric Radiation: Theoretical Basis, Oxford University Press, NY, 519 pp. McClatchey, R. A., R., W., Fenn, J. E. A. Selby, F. E. Voltz and J. S. Garing, 1972: Optical properties of the atmosphere. AFCRL , 108 pp. Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, WMO, 1986: A preliminary cloudness standard atmosphere for radiation computation, World Meteorological Organization, Report no 24, WCP-112, 53 pp.

The Radiation Balance

The Radiation Balance The Radiation Balance Readings A&B: Ch. 3 (p. 60-69) www: 4. Radiation Lab: 5 Topics 1. Radiation Balance Equation a. Net Radiation b.shortwave Radiation c. Longwave Radiation 2. Global Average 3. Spatial

More information

Instrumental and Methodological Developments in UV Research

Instrumental and Methodological Developments in UV Research Instrumental and Methodological Developments in UV Research Germar Bernhard Biospherical Instruments Inc, San Diego, CA Instrumental Developments Intercomparisons Correction Methods Methods for Interpreting

More information

TOOLS FOR ATMOSPHERIC RADIATIVE TRANSFER: STREAMER AND FLUXNET

TOOLS FOR ATMOSPHERIC RADIATIVE TRANSFER: STREAMER AND FLUXNET Computers & Geosciences Vol. 24, No. 5, pp. 443±451, 1998 # 1998 Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0098-3004(97)00130-1 0098-3004/98 $19.00 + 0.00 TOOLS FOR ATMOSPHERIC

More information

Transfer Calibration from ERBS WFOV Nonscanner to NOAA-9 WFOV Nonscanner and to NOAA-9 Scanner

Transfer Calibration from ERBS WFOV Nonscanner to NOAA-9 WFOV Nonscanner and to NOAA-9 Scanner Transfer Calibration from ERBS WFOV Nonscanner to NOAA-9 WFOV Nonscanner and to NOAA-9 Scanner Alok K. Shrestha, Seiji Kato, Takmeng Wong, Walter F. Miller, Kristopher M. Bedka, David A. Rutan, Fred G.

More information

AN INTRODUCTION TO MICROCARB, FIRST EUROPEAN PROGRAM FOR CO2 MONITORING.

AN INTRODUCTION TO MICROCARB, FIRST EUROPEAN PROGRAM FOR CO2 MONITORING. AN INTRODUCTION TO MICROCARB, FIRST EUROPEAN PROGRAM FOR CO2 MONITORING. International Working Group on Green house Gazes Monitoring from Space IWGGMS-12 Francois BUISSON CNES With Didier PRADINES, Veronique

More information

Sea surface temperature observation through clouds by the Advanced Microwave Scanning Radiometer 2

Sea surface temperature observation through clouds by the Advanced Microwave Scanning Radiometer 2 Sea surface temperature observation through clouds by the Advanced Microwave Scanning Radiometer 2 Akira Shibata Remote Sensing Technology Center of Japan (RESTEC) Tsukuba-Mitsui blds. 18F, 1-6-1 Takezono,

More information

746A27 Remote Sensing and GIS

746A27 Remote Sensing and GIS 746A27 Remote Sensing and GIS Lecture 1 Concepts of remote sensing and Basic principle of Photogrammetry Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University What

More information

BV NNET User manual. V0.2 (Draft) Rémi Lecerf, Marie Weiss

BV NNET User manual. V0.2 (Draft) Rémi Lecerf, Marie Weiss BV NNET User manual V0.2 (Draft) Rémi Lecerf, Marie Weiss 1. Introduction... 2 2. Installation... 2 3. Prerequisites... 2 3.1. Image file format... 2 3.2. Retrieving atmospheric data... 3 3.2.1. Using

More information

Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models

Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008jd009944, 2008 Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models Michael J. Iacono, 1 Jennifer

More information

John P. Stevens HS: Remote Sensing Test

John P. Stevens HS: Remote Sensing Test Name(s): Date: Team name: John P. Stevens HS: Remote Sensing Test 1 Scoring: Part I - /18 Part II - /40 Part III - /16 Part IV - /14 Part V - /93 Total: /181 2 I. History (3 pts. each) 1. What is the name

More information

3/31/03. ESM 266: Introduction 1. Observations from space. Remote Sensing: The Major Source for Large-Scale Environmental Information

3/31/03. ESM 266: Introduction 1. Observations from space. Remote Sensing: The Major Source for Large-Scale Environmental Information Remote Sensing: The Major Source for Large-Scale Environmental Information Jeff Dozier Observations from space Sun-synchronous polar orbits Global coverage, fixed crossing, repeat sampling Typical altitude

More information

Chapter 5 Nadir looking UV measurement.

Chapter 5 Nadir looking UV measurement. Chapter 5 Nadir looking UV measurement. Part-II: UV polychromator instrumentation and measurements -A high SNR and robust polychromator using a 1D array detector- UV spectrometers onboard satellites have

More information

Microwave Sounding. Ben Kravitz October 29, 2009

Microwave Sounding. Ben Kravitz October 29, 2009 Microwave Sounding Ben Kravitz October 29, 2009 What is Microwave Sounding? Passive sensor in the microwave to measure temperature and water vapor Technique was pioneered by Ed Westwater (c. 1978) Microwave

More information

MERLIN Mission Status

MERLIN Mission Status MERLIN Mission Status CNES/illustration David DUCROS, 2016 G. Ehret 1, P. Bousquet 2, B. Millet 3, M. Alpers 1, C. Deniel 3, A. Friker 1, C. Pierangelo 3 1 Deutsches Zentrum für Luft- und Raumfahrt (DLR)

More information

GEO-SolarSIM-D2 and SunTracker-2000/3000

GEO-SolarSIM-D2 and SunTracker-2000/3000 GEO-SolarSIM-D2 and SunTracker-2000/3000 THE PERFECT MARRIAGE BETWEEN A SOLAR SPECTRAL IRRADIANCE METER AND A SOLAR TRACKER CONTROLLED BY A REMOTE VERY LOW POWER CONSUMPTION DATALOGGER The GEO-SolarSIM-D2

More information

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing Introduction to Remote Sensing Definition of Remote Sensing Remote sensing refers to the activities of recording/observing/perceiving(sensing)objects or events at far away (remote) places. In remote sensing,

More information

The Global Imager (GLI)

The Global Imager (GLI) The Global Imager (GLI) Launch : Dec.14, 2002 Initial check out : to Apr.14, 2003 (~L+4) First image: Jan.25, 2003 Second image: Feb.6 and 7, 2003 Calibration and validation : to Dec.14, 2003(~L+4) for

More information

FOR 353: Air Photo Interpretation and Photogrammetry. Lecture 2. Electromagnetic Energy/Camera and Film characteristics

FOR 353: Air Photo Interpretation and Photogrammetry. Lecture 2. Electromagnetic Energy/Camera and Film characteristics FOR 353: Air Photo Interpretation and Photogrammetry Lecture 2 Electromagnetic Energy/Camera and Film characteristics Lecture Outline Electromagnetic Radiation Theory Digital vs. Analog (i.e. film ) Systems

More information

NEW ATMOSPHERIC CORRECTION METHOD BASED ON BAND RATIOING

NEW ATMOSPHERIC CORRECTION METHOD BASED ON BAND RATIOING NEW ATMOSPHERIC CORRECTION METHOD BASED ON BAND RATIOING DEPARTMENT OF PHYSICS/COLLEGE OF EDUCATION FOR GIRLS, UNIVERSITY OF KUFA, AL-NAJAF,IRAQ hussienalmusawi@yahoo.com ABSTRACT The Atmosphere plays

More information

JP Stevens High School: Remote Sensing

JP Stevens High School: Remote Sensing 1 Name(s): ANSWER KEY Date: Team name: JP Stevens High School: Remote Sensing Scoring: Part I - /18 Part II - /40 Part III - /16 Part IV - /14 Part V - /93 Total: /181 2 I. History (3 pts each) 1. What

More information

Development of normalized vegetation, soil and water indices derived from satellite remote sensing data

Development of normalized vegetation, soil and water indices derived from satellite remote sensing data Development of normalized vegetation, soil and water indices derived from satellite remote sensing data Takeuchi, W. & Yasuoka, Y. IIS/UT, Japan E-mail: wataru@iis.u-tokyo.ac.jp Nov. 25th, 2004 ACRS2004

More information

Earth Exploration-Satellite Service (EESS) - Passive Spaceborne Remote Sensing

Earth Exploration-Satellite Service (EESS) - Passive Spaceborne Remote Sensing Earth Exploration-Satellite Service (EESS) - Passive Spaceborne Remote Sensing John Zuzek Vice-Chairman ITU-R Study Group 7 ITU/WMO Seminar on Spectrum & Meteorology Geneva, Switzerland 16-17 September

More information

Status of the CNES / MicroCarb small

Status of the CNES / MicroCarb small Status of the CNES / MicroCarb small satellite for CO 2 measurements D. Jouglet on behalf of the MicroCarb team (F. Buisson, D. Pradines, V. Pascal, C. Pierangelo, C. Buil, S. Gaugain, C. Deniel, F.M.

More information

SCIENTIFIC AND TECHNICAL INSIGHT INTO MICROCARB

SCIENTIFIC AND TECHNICAL INSIGHT INTO MICROCARB SCIENTIFIC AND TECHNICAL INSIGHT INTO MICROCARB International Working Group on Green House Gazes Monitoring from Space IWGGMS-12 Denis Jouglet, D. Pradines, F. Buisson, V. Pascal, P. Lafrique (CNES) LSCE,

More information

AVHRR/3 Operational Calibration

AVHRR/3 Operational Calibration AVHRR/3 Operational Calibration Jörg Ackermann, Remote Sensing and Products Division 1 Workshop`Radiometric Calibration for European Missions, 30/31 Aug. 2017`,Frascati (EUM/RSP/VWG/17/936014) AVHRR/3

More information

Earth Emitted Longwave Energy. 240 W/m 2. Top of the Atmosphere (TOA)

Earth Emitted Longwave Energy. 240 W/m 2. Top of the Atmosphere (TOA) Kory J. Priestley Figures 103 Incident Solar Shortwave Energy 340 W/m 2 Reflected Shortwave Energy 100 W/m 2 Earth Emitted Longwave Energy 240 W/m 2 Top of the Atmosphere (TOA) Figure 1.1 Components of

More information

I nnovative I maging & R esearch I 2. Assessing and Removing AWiFS Systematic Geometric and Atmospheric Effects to Improve Land Cover Change Detection

I nnovative I maging & R esearch I 2. Assessing and Removing AWiFS Systematic Geometric and Atmospheric Effects to Improve Land Cover Change Detection I nnovative I maging & esearch Assessing and emoving AWiFS Systematic Geometric and Atmospheric Effects to Improve Land Cover Change Detection Mary Pagnutti obert E. yan Spring LCLUC Science Team Meeting

More information

A broad survey of remote sensing applications for many environmental disciplines

A broad survey of remote sensing applications for many environmental disciplines 1 2 3 4 A broad survey of remote sensing applications for many environmental disciplines 5 6 7 8 9 10 1. First definition is very general and applies to many types of remote sensing. You use your eyes

More information

NOTES AND CORRESPONDENCE. Remote Sensing of Atmospheric Water Vapor Using the Moderate Resolution Imaging Spectroradiometer

NOTES AND CORRESPONDENCE. Remote Sensing of Atmospheric Water Vapor Using the Moderate Resolution Imaging Spectroradiometer MARCH 2005 N O T E S A N D C O R R E S P O N D E N C E 309 NOTES AND CORRESPONDENCE Remote Sensing of Atmospheric Water Vapor Using the Moderate Resolution Imaging Spectroradiometer P. ALBERT* Institut

More information

PLANET SURFACE REFLECTANCE PRODUCT

PLANET SURFACE REFLECTANCE PRODUCT PLANET SURFACE REFLECTANCE PRODUCT FEBRUARY 2018 SUPPORT@PLANET.COM PLANET.COM VERSION 1.0 TABLE OF CONTENTS 3 Product Description 3 Atmospheric Correction Methodology 5 Product Limitations 6 Product Assessment

More information

Radia%on at the Top of the Atmosphere

Radia%on at the Top of the Atmosphere Radia%on at the Top of the Atmosphere Seiji Kato, Norman G. Loeb, Takmeng Wong, and Wenying Su NASA Langley Research Center Outline of this talk Scien%fic ques%on How are TOA net radia%on and ocean hea%ng

More information

IKONOS High Resolution Multispectral Scanner Sensor Characteristics

IKONOS High Resolution Multispectral Scanner Sensor Characteristics High Spatial Resolution and Hyperspectral Scanners IKONOS High Resolution Multispectral Scanner Sensor Characteristics Launch Date View Angle Orbit 24 September 1999 Vandenberg Air Force Base, California,

More information

Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections Xiaoli Sun and James B. Abshire NASA Goddard Space Flight Center Solar System Division,

More information

Recent developments in Deep Blue satellite aerosol data products from NASA GSFC

Recent developments in Deep Blue satellite aerosol data products from NASA GSFC Recent developments in Deep Blue satellite aerosol data products from NASA GSFC Andrew M. Sayer, N. Christina Hsu (PI), Corey Bettenhausen, Myeong-Jae Jeong Climate & Radiation Laboratory, NASA Goddard

More information

Characterization of the atmospheric aerosols and the surface radiometric properties in the AGRISAR Campaign

Characterization of the atmospheric aerosols and the surface radiometric properties in the AGRISAR Campaign Characterization of the atmospheric aerosols and the surface radiometric properties in the AGRISAR Campaign V. Estellés Solar Radiation Unit Universitat de València T. Ruhtz, P. Zieger, S. Stapelberg Institute

More information

VENµS: A Joint French Israeli Earth Observation Scientific Mission with High Spatial and Temporal Resolution Capabilities

VENµS: A Joint French Israeli Earth Observation Scientific Mission with High Spatial and Temporal Resolution Capabilities VENµS: A Joint French Israeli Earth Observation Scientific Mission with High Spatial and Temporal Resolution Capabilities G. Dedieu 1, A. Karnieli 2, O. Hagolle 3, H. Jeanjean 3, F. Cabot 3, P. Ferrier

More information

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing Mads Olander Rasmussen (mora@dhi-gras.com) 01. Introduction to Remote Sensing DHI What is remote sensing? the art, science, and technology

More information

CNES programmes for Meteorology, Climate and Atmospheric composition

CNES programmes for Meteorology, Climate and Atmospheric composition CNES programmes for Meteorology, Climate and Atmospheric composition Thierry PHULPIN, D. RENAUT, A.LIFERMANN and C. LARIGAUDERIE 21 mars 2012 ITSC-18 Meteo France 1 IASI IASI on Metop-A IASI is still working

More information

Application of GIS to Fast Track Planning and Monitoring of Development Agenda

Application of GIS to Fast Track Planning and Monitoring of Development Agenda Application of GIS to Fast Track Planning and Monitoring of Development Agenda Radiometric, Atmospheric & Geometric Preprocessing of Optical Remote Sensing 13 17 June 2018 Outline 1. Why pre-process remotely

More information

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning Lecture 6: Multispectral Earth Resource Satellites The University at Albany Fall 2018 Geography and Planning Outline SPOT program and other moderate resolution systems High resolution satellite systems

More information

Microwave-Radiometer

Microwave-Radiometer Microwave-Radiometer Figure 1: History of cosmic background radiation measurements. Left: microwave instruments, right: background radiation as seen by the corresponding instrument. Picture: NASA/WMAP

More information

Research Objectives Definition of Global Horizontal Irradiance (GHI) Solar Monitoring History in KIER

Research Objectives Definition of Global Horizontal Irradiance (GHI) Solar Monitoring History in KIER Research Objectives Definition of Global Horizontal Irradiance (GHI) Solar Monitoring History in KIER Research Objective: Reliability verification for the ground- measured data in KIER compared with the

More information

Chapter 5. Preprocessing in remote sensing

Chapter 5. Preprocessing in remote sensing Chapter 5. Preprocessing in remote sensing 5.1 Introduction Remote sensing images from spaceborne sensors with resolutions from 1 km to < 1 m become more and more available at reasonable costs. For some

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Making methane visible SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE2877 Magnus Gålfalk, Göran Olofsson, Patrick Crill, David Bastviken Table of Contents 1. Supplementary Methods... 2 2. Supplementary

More information

The RAVAN CubeSat mission: On-orbit results

The RAVAN CubeSat mission: On-orbit results The RAVAN CubeSat mission: On-orbit results William H. Swartz, 1 Steven R. Lorentz, 2 Philip M. Huang, 1 Donald E. Anderson 1 Collaborators: Allan W. Smith, 2 Yinan Yu, 2 John Carvo, 3 and Dong Wu 4 1

More information

MicroCarb Mission: A new space instrumental concept based on dispersive components for the measurement of CO2 concentration in the atmosphere

MicroCarb Mission: A new space instrumental concept based on dispersive components for the measurement of CO2 concentration in the atmosphere International Conference on Space Optics 2012 MicroCarb Mission: A new space instrumental concept based on dispersive components for the measurement of CO2 concentration in the atmosphere Véronique PASCAL

More information

35017 Las Palmas de Gran Canaria, Spain Santa Cruz de Tenerife, Spain ABSTRACT

35017 Las Palmas de Gran Canaria, Spain Santa Cruz de Tenerife, Spain ABSTRACT Atmospheric correction models for high resolution WorldView-2 multispectral imagery: A case study in Canary Islands, Spain. J. Martin* a F. Eugenio a, J. Marcello a, A. Medina a, Juan A. Bermejo b a Institute

More information

Compact High Resolution Imaging Spectrometer (CHRIS) siraelectro-optics

Compact High Resolution Imaging Spectrometer (CHRIS) siraelectro-optics Compact High Resolution Imaging Spectrometer (CHRIS) Mike Cutter (Mike_Cutter@siraeo.co.uk) Summary CHRIS Instrument Design Instrument Specification & Performance Operating Modes Calibration Plan Data

More information

IRRADIATION MEASUREMENTS ON GROUND

IRRADIATION MEASUREMENTS ON GROUND IRRADIATION MEASUREMENTS ON GROUND EEP Workshop, Windhoek, Namibia Dr. Norbert Geuder CSP Services 25 July 2012 GETTING RENEWABLE ENERGY TO WORK Resource mapping Available Resources Solar irradiation is

More information

Evaluation of FLAASH atmospheric correction. Note. Note no SAMBA/10/12. Authors. Øystein Rudjord and Øivind Due Trier

Evaluation of FLAASH atmospheric correction. Note. Note no SAMBA/10/12. Authors. Øystein Rudjord and Øivind Due Trier Evaluation of FLAASH atmospheric correction Note Note no Authors SAMBA/10/12 Øystein Rudjord and Øivind Due Trier Date 16 February 2012 Norsk Regnesentral Norsk Regnesentral (Norwegian Computing Center,

More information

746A27 Remote Sensing and GIS. Multi spectral, thermal and hyper spectral sensing and usage

746A27 Remote Sensing and GIS. Multi spectral, thermal and hyper spectral sensing and usage 746A27 Remote Sensing and GIS Lecture 3 Multi spectral, thermal and hyper spectral sensing and usage Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Multi

More information

Using Ground Targets for Sensor On orbit Calibration Support

Using Ground Targets for Sensor On orbit Calibration Support EOS Using Ground Targets for Sensor On orbit Calibration Support X. Xiong, A. Angal, A. Wu, and T. Choi MODIS Characterization Support Team (MCST), NASA/GSFC G. Chander SGT/USGS EROS CEOS Libya 4 Workshop,

More information

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems. Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960 s as a potential technique for obtaining information important for the effective use and conservation of natural resources.

More information

Window component characteristics

Window component characteristics Window component characteristics Content Panes and Screens Shading Devices Frames and Spacers Module 2: Window components characteristics / July 2004 / Slide 1 Panes and Screens Most important properties

More information

Application of radiative transfer to slanted line-of-sight geometry and comparisons with NASA EOS Aqua data

Application of radiative transfer to slanted line-of-sight geometry and comparisons with NASA EOS Aqua data Application of radiative transfer to slanted line-of-sight geometry and comparisons with NASA EOS Aqua data Paul Poli (1), Joanna Joiner (2), and D. Lacroix (3) 1 Centre National de Recherches Météorologiques

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

INF-GEO Introduction to remote sensing. Anne Solberg

INF-GEO Introduction to remote sensing. Anne Solberg INF-GEO 4310 Introduction to remote sensing Anne Solberg (anne@ifi.uio.no) Satellites, orbits and repeat cycles Optical remote sensing Useful links: Glossary for remote sensing terms: http://www.ccrs.nracn.gc.ca/glossary/index_e.php

More information

Atmospheric Correction (including ATCOR)

Atmospheric Correction (including ATCOR) Technical Specifications Atmospheric Correction (including ATCOR) The data obtained by optical satellite sensors with high spatial resolution has become an invaluable tool for many groups interested in

More information

CAL/VAL ACTIVITIES IN ROSHYDROMET. GSICS Executive Panel 14, Tokyo, 15 July. 2013

CAL/VAL ACTIVITIES IN ROSHYDROMET. GSICS Executive Panel 14, Tokyo, 15 July. 2013 CAL/VAL ACTIVITIES IN ROSHYDROMET GSICS Executive Panel 14, Tokyo, 15 July. 2013 Future CAL/VAL system deployment in Roshydromet Roshydromet has started the deployment of ground-based calibration/validation

More information

Radiometric performance of Second Generation Global Imager (SGLI) using integrating sphere

Radiometric performance of Second Generation Global Imager (SGLI) using integrating sphere Radiometric performance of Second Generation Global Imager (SGLI) using integrating sphere Taichiro Hashiguchi, Yoshihiko Okamura, Kazuhiro Tanaka, Yukinori Nakajima Japan Aerospace Exploration Agency

More information

Modification of Earth-Space Rain Attenuation Model for Earth- Space Link

Modification of Earth-Space Rain Attenuation Model for Earth- Space Link IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. VI (Mar - Apr. 2014), PP 63-67 Modification of Earth-Space Rain Attenuation

More information

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur.

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur. Basics of Remote Sensing Some literature references Franklin, SE 2001 Remote Sensing for Sustainable Forest Management Lewis Publishers 407p Lillesand, Kiefer 2000 Remote Sensing and Image Interpretation

More information

MODULE 9 LECTURE NOTES 1 PASSIVE MICROWAVE REMOTE SENSING

MODULE 9 LECTURE NOTES 1 PASSIVE MICROWAVE REMOTE SENSING MODULE 9 LECTURE NOTES 1 PASSIVE MICROWAVE REMOTE SENSING 1. Introduction The microwave portion of the electromagnetic spectrum involves wavelengths within a range of 1 mm to 1 m. Microwaves possess all

More information

The Moderate Resolution Imaging Spectroradiometer (MODIS): Potential Applications for Climate Change and Modeling Studies

The Moderate Resolution Imaging Spectroradiometer (MODIS): Potential Applications for Climate Change and Modeling Studies The Moderate Resolution Imaging Spectroradiometer (MODIS): Potential Applications for Climate Change and Modeling Studies Menas Kafatos, CEOSR, George Mason University Jim McManus, CEOSR, GMU and GES DISC

More information

LSST All-Sky IR Camera Cloud Monitoring Test Results

LSST All-Sky IR Camera Cloud Monitoring Test Results LSST All-Sky IR Camera Cloud Monitoring Test Results Jacques Sebag a, John Andrew a, Dimitri Klebe b, Ronald D. Blatherwick c a National Optical Astronomical Observatory, 950 N Cherry, Tucson AZ 85719

More information

1. INTRODUCTION. GOCI : Geostationary Ocean Color Imager

1. INTRODUCTION. GOCI : Geostationary Ocean Color Imager 1. INTRODUCTION The Korea Ocean Research and Development Institute (KORDI) releases an announcement of opportunity (AO) to carry out scientific research for the utilization of GOCI data. GOCI is the world

More information

Kazuhiro TANAKA GCOM project team/jaxa April, 2016

Kazuhiro TANAKA GCOM project team/jaxa April, 2016 Kazuhiro TANAKA GCOM project team/jaxa April, 216 @ SPIE Asia-Pacific 216 at New Dehli, India 1 http://suzaku.eorc.jaxa.jp/gcom_c/index_j.html GCOM mission and satellites SGLI specification and IRS overview

More information

NATIONAL OPEN UNIVERSITY OF NIGERIA COURSE CODE: ESM238 COURSE TITLE: ELEMENTS OF REMOTE SENSING AND AERIAL PHOTO INTERPRETATION

NATIONAL OPEN UNIVERSITY OF NIGERIA COURSE CODE: ESM238 COURSE TITLE: ELEMENTS OF REMOTE SENSING AND AERIAL PHOTO INTERPRETATION NATIONAL OPEN UNIVERSITY OF NIGERIA COURSE CODE: ESM238 COURSE TITLE: ELEMENTS OF REMOTE SENSING AND AERIAL PHOTO INTERPRETATION 2 ELEMENTS OF REMOTE SENSING AND AERIAL PHOTO INTERPRETATION By Dr. Oyekanmi

More information

Chapter 8. Remote sensing

Chapter 8. Remote sensing 1. Remote sensing 8.1 Introduction 8.2 Remote sensing 8.3 Resolution 8.4 Landsat 8.5 Geostationary satellites GOES 8.1 Introduction What is remote sensing? One can describe remote sensing in different

More information

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry Satellite Imagery and Remote Sensing DeeDee Whitaker SW Guilford High EES & Chemistry whitakd@gcsnc.com Outline What is remote sensing? How does remote sensing work? What role does the electromagnetic

More information

AIRS Version 4 Data. International TOVS Study Conference XIV Beijing, China May California Institute of Technology Jet Propulsion Laboratory

AIRS Version 4 Data. International TOVS Study Conference XIV Beijing, China May California Institute of Technology Jet Propulsion Laboratory AIRS Version 4 Data International TOVS Study Conference XIV Beijing, China May 2005 Sung-Yung Lee, H. H. Aumann,, Bjorn Lambrigtsen, Evan Manning, Edward Olsen, Tom Pagano Summary AIRS Version 4 software

More information

USING THE LUNAR AUREOLE DERIVED FROM ALL-SKY CAMERAS FOR THE RETRIEVAL OF AEROSOL MICROPHYSICAL PROPERTIES

USING THE LUNAR AUREOLE DERIVED FROM ALL-SKY CAMERAS FOR THE RETRIEVAL OF AEROSOL MICROPHYSICAL PROPERTIES USING THE LUNAR AUREOLE DERIVED FROM ALL-SKY CAMERAS FOR THE RETRIEVAL OF AEROSOL MICROPHYSICAL PROPERTIES R. Román, B. Torres, D. Fuertes, V.E. Cachorro, O. Dubovik, C. Toledano, A. Cazorla A. Barreto,

More information

Lecture Notes Prepared by Prof. J. Francis Spring Remote Sensing Instruments

Lecture Notes Prepared by Prof. J. Francis Spring Remote Sensing Instruments Lecture Notes Prepared by Prof. J. Francis Spring 2005 Remote Sensing Instruments Material from Remote Sensing Instrumentation in Weather Satellites: Systems, Data, and Environmental Applications by Rao,

More information

ENMAP RADIOMETRIC INFLIGHT CALIBRATION, POST-LAUNCH PRODUCT VALIDATION, AND INSTRUMENT CHARACTERIZATION ACTIVITIES

ENMAP RADIOMETRIC INFLIGHT CALIBRATION, POST-LAUNCH PRODUCT VALIDATION, AND INSTRUMENT CHARACTERIZATION ACTIVITIES ENMAP RADIOMETRIC INFLIGHT CALIBRATION, POST-LAUNCH PRODUCT VALIDATION, AND INSTRUMENT CHARACTERIZATION ACTIVITIES A. Hollstein1, C. Rogass1, K. Segl1, L. Guanter1, M. Bachmann2, T. Storch2, R. Müller2,

More information

ESA UNCLASSIFIED - For Official Use

ESA UNCLASSIFIED - For Official Use ESA UNCLASSIFIED - For Official Use A Hyperspectral Mission for Sentinel-2 Data Product Validation of a Northern Ombrotrophic Bog Soffer R. J., Arroyo-Mora J.P., Kalacska M., White, H.P., Ifimov G., Leblanc

More information

Ground Truth for Calibrating Optical Imagery to Reflectance

Ground Truth for Calibrating Optical Imagery to Reflectance Visual Information Solutions Ground Truth for Calibrating Optical Imagery to Reflectance The by: Thomas Harris Whitepaper Introduction: Atmospheric Effects on Optical Imagery Remote sensing of the Earth

More information

The SAPHIR humidity sounder

The SAPHIR humidity sounder The SAPHIR humidity sounder L. Eymard 1, M. Gheudin 2, P. Laborie 1, F. Sirou 3, C. Le Gac 1, J.P. Vinson 1, S. Franquet 3, M. Desbois 3, R. Roca 3, N. Scott 3, P. Waldteufel 1 1 CETP, CNRS-UVSQ 10-12

More information

Spectral albedo of the snow surface: Elson Lagoon, Barrow, AK April 2008

Spectral albedo of the snow surface: Elson Lagoon, Barrow, AK April 2008 Surface albedo measurements Barrow, AK April 2008 Page 1 of 8 Spectral albedo of the snow surface: Elson Lagoon, Barrow, AK 15-19 April 2008 Richard Brandt, University of Washington, Seattle, USA Sebastian

More information

Outline. Introduction. Introduction: Film Emulsions. Sensor Systems. Types of Remote Sensing. A/Prof Linlin Ge. Photographic systems (cf(

Outline. Introduction. Introduction: Film Emulsions. Sensor Systems. Types of Remote Sensing. A/Prof Linlin Ge. Photographic systems (cf( GMAT x600 Remote Sensing / Earth Observation Types of Sensor Systems (1) Outline Image Sensor Systems (i) Line Scanning Sensor Systems (passive) (ii) Array Sensor Systems (passive) (iii) Antenna Radar

More information

Advanced satellite image fusion techniques for estimating high resolution Land Surface Temperature time series

Advanced satellite image fusion techniques for estimating high resolution Land Surface Temperature time series COMECAP 2014 e-book of proceedings vol. 2 Page 267 Advanced satellite image fusion techniques for estimating high resolution Land Surface Temperature time series Mitraka Z., Chrysoulakis N. Land Surface

More information

Automatic processing to restore data of MODIS band 6

Automatic processing to restore data of MODIS band 6 Automatic processing to restore data of MODIS band 6 --Final Project for ECE 533 Abstract An automatic processing to restore data of MODIS band 6 is introduced. For each granule of MODIS data, 6% of the

More information

RECOMMENDATION ITU-R S.733-1* (Question ITU-R 42/4 (1990))**

RECOMMENDATION ITU-R S.733-1* (Question ITU-R 42/4 (1990))** Rec. ITU-R S.733-1 1 RECOMMENDATION ITU-R S.733-1* DETERMINATION OF THE G/T RATIO FOR EARTH STATIONS OPERATING IN THE FIXED-SATELLITE SERVICE (Question ITU-R 42/4 (1990))** Rec. ITU-R S.733-1 (1992-1993)

More information

CLIMATE DATA RECORDS (CDRS) HISTORY, STATUS, & FUTURE

CLIMATE DATA RECORDS (CDRS) HISTORY, STATUS, & FUTURE CLIMATE DATA RECORDS (CDRS) HISTORY, STATUS, & FUTURE JOHN BATES JOHN BATES CONSULTING, ARDEN, NC ORCID.ORG/0000-0002-8124-0406 JOHN.BATES28704@GMAIL.COM THE BASIS FOR THE NOAA CLIMATE DATA RECORD (CDR)

More information

RADIOMETRIC CALIBRATION

RADIOMETRIC CALIBRATION 1 RADIOMETRIC CALIBRATION Lecture 10 Digital Image Data 2 Digital data are matrices of digital numbers (DNs) There is one layer (or matrix) for each satellite band Each DN corresponds to one pixel 3 Digital

More information

Inter-Calibration of the RapidEye Sensors with Landsat 8, Sentinel and SPOT

Inter-Calibration of the RapidEye Sensors with Landsat 8, Sentinel and SPOT Inter-Calibration of the RapidEye Sensors with Landsat 8, Sentinel and SPOT Dr. Andreas Brunn, Dr. Horst Weichelt, Dr. Rene Griesbach, Dr. Pablo Rosso Content About Planet Project Context (Purpose and

More information

Atmospheric Effects. Attenuation by Atmospheric Gases. Atmospheric Effects Page 1

Atmospheric Effects. Attenuation by Atmospheric Gases. Atmospheric Effects Page 1 Atmospheric Effects Page 1 Atmospheric Effects Attenuation by Atmospheric Gases Uncondensed water vapour and oxygen can be strongly absorptive of radio signals, especially at millimetre-wave frequencies

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

Top of atmosphere flux from the Megha-Tropiques ScaRaB

Top of atmosphere flux from the Megha-Tropiques ScaRaB Top o atmosphere lux rom the Megha-Tropiques ScaRaB V. Sathiyamoorthy, Bipasha Paul Shukla, Rajesh Sikhakolli, Sasmita Chaurasia, Baby Simon, B. S. Gohil* and P. K. Pal Atmospheric and Oceanic Sciences

More information

Inter comparison of Terra and Aqua MODIS Reflective Solar Bands Using Suomi NPP VIIRS

Inter comparison of Terra and Aqua MODIS Reflective Solar Bands Using Suomi NPP VIIRS Inter comparison of Terra and Aqua Reflective Solar Bands Using Suomi NPP VIIRS Slawomir Blonski, * Changyong Cao, Sirish Uprety, ** and Xi Shao * NOAA NESDIS Center for Satellite Applications and Research

More information

PRECISE MEASUREMENTS OF SOLAR BEAM IRRADIANCE THROUGH IMPROVED SENSOR CALIBRATION

PRECISE MEASUREMENTS OF SOLAR BEAM IRRADIANCE THROUGH IMPROVED SENSOR CALIBRATION PRECISE MEASUREMENTS OF SOLAR BEAM IRRADIANCE THROUGH IMPROVED SENSOR CALIBRATION Norbert Geuder 1, Nicole Janotte 2, and Stefan Wilbert 3 1 Dr., CSP Services GmbH, Paseo de Almería 73-2ª, E-04001 Almería,

More information

MEthane Remote sensing LIdar mission COPUOS, Vienna June 2013

MEthane Remote sensing LIdar mission COPUOS, Vienna June 2013 CNES CNES/Photon/ill.Michel Regy, 2013 MEthane Remote sensing LIdar mission COPUOS, Vienna 12.-21. June 2013 1 MERLIN COPUOS, Vienna 12.-21. June 2013 CNES Climate Change Temperature Increase over the

More information

IRST ANALYSIS REPORT

IRST ANALYSIS REPORT IRST ANALYSIS REPORT Report Prepared by: Everett George Dahlgren Division Naval Surface Warfare Center Electro-Optical Systems Branch (F44) Dahlgren, VA 22448 Technical Revision: 1992-12-17 Format Revision:

More information

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003 Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry 28 April 2003 Outline Passive Microwave Radiometry Rayleigh-Jeans approximation Brightness temperature Emissivity and dielectric constant

More information

Limb Correction of Infrared Imagery in Cloudy Regions for the Improved Interpretation of RGB Composites

Limb Correction of Infrared Imagery in Cloudy Regions for the Improved Interpretation of RGB Composites Limb Correction of Infrared Imagery in Cloudy Regions for the Improved Interpretation of RGB Composites Nicholas Elmer 1,4, Emily Berndt 2,4, Gary Jedlovec 3,4 1 Department of Atmospheric Science, University

More information

SEN3APP Stakeholder Workshop, Helsinki Yrjö Rauste/VTT Kaj Andersson/VTT Eija Parmes/VTT

SEN3APP Stakeholder Workshop, Helsinki Yrjö Rauste/VTT Kaj Andersson/VTT Eija Parmes/VTT Optical Products from Sentinel-2 and Suomi- NPP/VIIRS SEN3APP Stakeholder Workshop, Helsinki 19.11.2015 Yrjö Rauste/VTT Kaj Andersson/VTT Eija Parmes/VTT Structure of Presentation High-resolution data

More information

Japan's Greenhouse Gases Observation from Space

Japan's Greenhouse Gases Observation from Space 1 Workshop on EC CEOS Priority on GHG Monitoring Japan's Greenhouse Gases Observation from Space 18 June, 2018@Ispra, Italy Masakatsu NAKAJIMA Japan Aerospace Exploration Agency Development and Operation

More information

RADIATION BUDGET INSTRUMENT (RBI): FINAL DESIGN AND INITIAL EDU TEST RESULTS

RADIATION BUDGET INSTRUMENT (RBI): FINAL DESIGN AND INITIAL EDU TEST RESULTS Place image here (10 x 3.5 ) RADIATION BUDGET INSTRUMENT (RBI): FINAL DESIGN AND INITIAL EDU TEST RESULTS RONALD GLUMB, JAY OVERBECK, CHRISTOPHER LIETZKE, JOHN FORSYTHE, ALAN BELL, AND JASON MILLER NON-EXPORT

More information

Frequency grid setups for microwave radiometers AMSU-A and AMSU-B

Frequency grid setups for microwave radiometers AMSU-A and AMSU-B Frequency grid setups for microwave radiometers AMSU-A and AMSU-B Alex Bobryshev 15/09/15 The purpose of this text is to introduce the new variable "met_mm_accuracy" in the Atmospheric Radiative Transfer

More information

Two-linear-polarization measurement of O 2 A band with TANSO-FTS onboard GOSAT

Two-linear-polarization measurement of O 2 A band with TANSO-FTS onboard GOSAT Remote sensing in the O 2 A band Two-linear-polarization measurement of O 2 A band with TANSO-FTS onboard GOSAT July 7, 2016, De Bilt Akihiko Kuze, Hiroshi Suto, Kei Shiomi, Nobuhiro Kikuchi, Makiko Hashimoto

More information

Terrestrial Ionospheres

Terrestrial Ionospheres Terrestrial Ionospheres I" Stan Solomon" High Altitude Observatory National Center for Atmospheric Research Boulder, Colorado stans@ucar.edu Heliophysics Summer School National Center for Atmospheric Research

More information