Mitigation of Harmonics Produced by Nonlinear Loads in Industrial Power System

Size: px
Start display at page:

Download "Mitigation of Harmonics Produced by Nonlinear Loads in Industrial Power System"

Transcription

1 Mitigation of Harmonics Produced by Nonlinear Loads in Industrial Power System Muhammad Abid 1, Tehzeeb-ul-Hassan 2, Tehseen Ilahi 3 1 National University of Computer and Emerging Sciences, Lahore, Pakistan; muhammad.abid@nu.edu.pk 2 University of Lahore, Lahore, Pakistan; tehzibulhassan@gmail.com 3 University of Engineering & Technology, Lahore, Pakistan; engineer_tehseen@yahoo.com Abstract----Harmonics are present in power systems due to the rapid switching of nonlinear loads. These harmonics have several adverse effects on a power system infrastructure, such as saturation of transformers, overheating of neutral cables, reduction of torque in rotating machines, malfunctioning of switchgears and protective relays, etc. Thus, it is important to analyze and mitigate these harmonics. Several harmonic mitigation techniques (HMTs) have been proposed in the research literature. This paper presents the simulation and analysis of a phase shifting technique for harmonic mitigation. Results from MATLAB simulations of the proposed technique have been included as part of this paper. Keywords---total harmonic distortion; harmonic mitigation techniques; phase shifting techniques; triplens. I. INTRODUCTION Harmonics in power systems are sinusoidal components of periodic waveforms that have frequencies equal to an integral multiple of the fundamental frequency. The frequency of the harmonic component, f h, is related to the fundamental frequency by the following formula: f h = (h) (fundamental frequency) (1) where h is an integer. Due to the use of power electronic devices such as MOSFETs, IGBTs, GTOs, etc., the nonlinear load on a power system is increased. Nonlinear loads are those in which the current waveform does not resemble the applied voltage waveform [1]. Single-phase nonlinear loads produce harmonics of odd multiples of the fundamental frequency in which the most severe are the "triplen". Odd multiples of the 3 rd harmonic of the fundamental frequency are defined as triplen harmonics. Examples are the 3 rd, 9 th, 15 th, 21 st, etc., harmonics. Triplen harmonics are zero sequence harmonics, unlike the fundamental, which is a positive sequence. As a result, the magnitude of these currents on the 3 phases are additive in the neutral. Unless the neutral is sufficiently oversized, theses large currents can present a fire hazard because of overheating [2]. Three phase nonlinear loads primarily produce 5 th and 7 th harmonics. These harmonics are the main cause of distortion, overheating of the neutral conductor and malfunctioning of control devices [3]-[4]. Three phase harmonics also cause serious problems in the power system equipment, for example, increased losses in motors and transformers, poor power factor, skin effect in conductors and unexpected tripping of protection equipment, etc. II. RELATED WORK There are different harmonic mitigation methods available, each with technical advantages and disadvantages. Examples are harmonics filters (passive, active and hybrid), line reactors, and K-factor transformers. Passive filters are the cheapest form of filters applicable for fixed frequency [5]. Active filters are difficult to design and more expensive than passive filters, but have several advantages over passive filters [6]. Hybrid power filters are a combination of active and passive filters. They provide a suitable solution to mitigate harmonics and are suitable for heavy loads [7]. Line reactors and K-factor transformers may be used to overcome the problem of harmonics [8]. The connection type of a feeding transformer also helps in reducing the harmonics in a power system. The harmonics injected by nonlinear 123

2 loads may be canceled at the point of common coupling (PCC). The concept is to connect nonlinear loads through phase shifting transformer such as Dy 1, Dy 5, Dy 11 that are used with harmonic loads [9]-[10]. An excellent review of existing mitigation techniques can be found at [11]. Another interesting and relevant discussion is available at [12]. III. PHASE SHIFT CONCEPT FOR MITIGATION OF HARMONICS Fig. 2: Phasor diagram of a PST with load Mitigation of harmonics by employing phase shifting transformers (PSTs) has also been proposed in the literature [13]. One way is to connect the primary winding in delta and the secondary winding in star with a -30 phase shift (called a Dy11 transformer) [14]. Similarly a Dy1 transformer having primary winding connected as delta and the secondary as star connected with 30 phase shift, and a Dz0 transformer with primary winding delta and secondary winding in zigzag connected with 0 phase shift can be used as PSTs [13]. In Figure 2 above, the parameters are as follows: I Load current V s (a) Source voltage (advance) V s (r) Source voltage (retard) V L Load voltage when loaded * V L Load voltage (no-load condition) β Transformer load angle -α Phase angle shift (retard) +α phase angle shift (advance) The load phase angle β can be calculated using the following equation: U U - (3) 30 0 The load phase angles of the transformers α* ( a ) and α* ( r ) can be obtained as phase angle advance, defined as: V V W Fig. 1: Phase shift between source and load Figure 1 shows the vector representation of a phase shifting transformer with a 30 phase shift to eliminate harmonics. In this figure, U, V and W are the voltage vectors of a three phase balanced system and U, V and W are the vectors after a 30 phase shift. W α * ( a) = α- β (4) The load angle, as phase angle retard, is defined as: α * (r ) = -(α β ) (5) To achieve an advanced phase angle α * ( a) under load, the no load phase angle α has to be chosen properly taking into consideration the phase angle of the phase shifting transformer. A. Mitigation of +ve & -ve sequence harmonics Harmonics such as the 7 th, which rotate with the same sequence as the fundamental, are called positive sequence. Harmonics such as the 5th, which rotate in the opposite sequence as the fundamental, are called negative sequence. Triplen harmonics which do not rotate at all 124

3 because they are in phase with each other, are called zero sequence [15]. Positive sequence harmonics 7 th, 13 th and 19 th act against negative sequence harmonics 5 th, 11 th and 17 th to mitigate lower order harmonics. These positive sequence harmonics require a phase shift of 180 /7= 26, or approximately 30 to mitigate the 7 th order harmonics. In case of the 13 th order harmonics, 180 /13=14, or approximately a 15 phase shift is required. In the same way, a 30 phase shift is required for 5 th order harmonics of the negative sequence and a 15 phase shift is required for the 11 th order harmonics of the negative sequence.. B. Mitigation of zero sequence harmonics All triplens (3rd and multiple of third harmonics) are zero sequence harmonics. These harmonics act against each other in a three phase system to achieve mitigation. A 60 phase shift (180 /3=60 ) is required to mitigate lower order zero sequence harmonics in three phase power system. TABLE I. HARMONICS AND THEIR PHASE SEQUENCES IN A THREE PHASE SYSTEM Harmonics Order Fundamental (50Hz) Phase-I (R) 3 rd R th R th R th R th R th R 13 0 Phase-II (Y) Phase-III (B) R Y B Y (360 = 0 ) Y ( = -120 ) Y ( = 120 ) Y (1080= 0 ) Y ( = Y ( = 120 B (720 = 0 ) B = 1200 ( = -240 B = 1200 ( = 240 B = 0 B ( = 240 B ( = 240 Phase Sequence R-Y-B No Phase Rotation B-Y-R (-Ve) R-Y-B (+ Ve) No Phase Rotation B-Y-R (-Ve) R-Y-B (+ Ve) Table I illustrates that the three phases R-Y-B are apart from each other in balanced three phase power system network. In a balanced three phase system, zero sequence harmonics have no phase rotation, 5 th & 11 th harmonics have negative phase sequence and 7 th & 13 th harmonics have positive phase sequence. So negative and positive sequences act against each other and cancel the unnecessary harmonics. Table I also shows that each phase R-Y-B acts against the similar phase with opposite angle to mitigate unnecessary harmonics. For example, phase Red of the 5 th harmonic acts against phase Red of the 7 th harmonic to cancel the undesired effects. The same applies to the Yellow and Blue phases. Figure 3 shows the schematic arrangement of the technique under study. Four motors are fed through variable frequency drives (nonlinear loads) and these VFDs are fed from the utility supply through phase shifting transformers or PSTs. Winding connections of phase shifting transformer are arranged as follows: PST-1 primary winding is delta connected and secondary winding is ig ag with phase shift. PST-2 primary winding is star connected and secondary winding is zigzag with a zero phase shift. Similar connections are required for PST-3 and PST-4. The phase shift between these transformers is 15 degrees. Fig. 3: Schematic diagram of proposed technique 125

4 IV. SIMULATION AND RESULTS Fig. 4: Simulation schematic of the proposed technique Figure 4 shows the MATLAB simulation model of the phase shifting technique under discussion. Four nonlinear loads are fed through four phase shifting transformers each having an appropriate phase angle. The desired phase shift is achieved by changing the vector group of the associated PST in the MATLAB model. Different configurations of phase shifting transformers for harmonic mitigation have been simulated such as Y-Δ, Y-Y/ Y-Δ, Zig-Zag/4Y & Zig-Zag/2Y- 2Δ. From this simulation model, it is clear that the implementation of a single phase shifting transformer with a particular load does not reduce harmonics. Harmonics are reduced when two or more phase shifting transformers are employed with similar nonlinear loads. The phase shifting is achieved by taking harmonics from different sources, shifting one source of harmonics from other and then combining them; if the amplitude of harmonics is equal then the harmonics are cancelled. As shown in Figure 5 and Figure 6, the total harmonic distortion, or THD, is reduced up to 3.79%. All triplen harmonics are cancelled. 126 Fig. 5: Results of proposed simulation model Fig. 6: Graphical representation of harmonic spectrum

5 When two transformers with a -30 and 0 phase shift are used, the 3 rd harmonic currents are cancelled and the voltage distortion is reduced. TABLE II. COMPARISON OF RESULTS AT DIFFERENT PHASE ANGLES Harmonic THD-I THD-III Order (No Phase (Appropriate (Odd) Shift) Phase Shift) THD-II (180 0 Phase Shift) % 0.01% 0.00% % 12.69% 0.01% % 8.69% 0.01% % 0.01% 0.0.1% % 6.91% 0.01% % 5.16% 0.01% % 1.94% 0.01% % 1.42% 0.01% According to the analysis of the simulated results, it is clear that the most dominant harmonics, the 5 th and the 7 th, are cancelled at the point of common coupling (PCC) and not transferred to the power system network. Besides, since there are no 5 th & 7 th harmonics, the occurrence of the system resonance at these frequencies is avoided. Moreover, the results are the same for 17 th and 19 th harmonics, etc. The remaining harmonic components are below the recommended standard of IEEE 519 limits and IEC V. CONCLUSIONS In this research paper, the phase shifting technique for mitigation of harmonics is explored. The simulation results illustrate that mitigation of the lower order odd harmonics (5 th, 7 th, 11 th & 13 th ) is achieved in the system of Figure 4. The results also show that harmonics produced by nonlinear loads can be cancelled at the PCC by combining the waveforms after phase shift. The simulation results concur with the IEEE standards for harmonic limitation, i.e., THD V 3% for special application, 5% for general systems and 10 % for dedicated systems. REFERENCES [1] WAI-KAI CHEN EDITOR The Electrical Engineering Handbook [2] harmonics.html 127 [3] Hussein A. Attia, M. El-Metwally and Osama M. Fahmy Harmonic Distortion Effects and Mitigation in Distribution Systems Journal of American Science, vol 6, pp 10, [4] Uma P Bala Raju, Bala Krishna Kethineni, Rahul H Shewale & Shiva Gourishetti, Harmonic Effects and its Mitigation Techniques for a Non-Linear Load International Journal of Advanced Technology & Engineering Research (IJATER), Volume 2, Issue 2, May [5] Sindhujah L. J. Parthasarathy and V. Rajasekaran, Harmonic mitigation in a rectifier system using hybrid power filter, International Conference on Computing, Electronics and Electrical Technologies (ICCEET), Kumaracoil,pp , March,2012. [6] Sekar, T. C. and Rabi, B.J. A review and study of harmonic mitigation techniques International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM), Chennai, pp 93-97, December, 2012 [7] Akagi H, (2005) "Active harmonic filters", Proceedings of the IEEE, vol. 93, No.12. [8] Xiaodong Liang Influence of Reactors on Input Harmonics of Variable Frequency Drives Industrial and Commercial Power Systems Technical Conference (I & CPS) IEEE, Baltimore, MD, vol. 47, No. 5, November, [9] G. M. Carvajal, G O Plata, W. G. Picon, J. C. C. Velasco, Investigation of Phase shifting transformers in distribution systems for harmonics mitigation, IEEE Power System Conference (PSC), pp 1-5, March [10] viewthread.cfm?qid= [11] Hussein A. Kazem, Harmonic Mitigation Techniques Applied to Power Distribution Networks, Advances in Power Electronics,

6 vol. 2013, Article ID , 10 pages, doi: /2013/ [12] Skjong, E.; Molinas, M.; Johansen, T.A., "Optimized current reference generation for system-level harmonic mitigation in a diesel-electric ship using non-linear model predictive control," in Industrial Technology (ICIT), 2015 IEEE International Conference on, vol., no., pp , March [13] Malagon Carvajal, G, Ordonez Plata, G.; Picon, W.G and Chacon Velasco, J.C. Investigation of Phase shifting transformers in distribution systems for harmonics mitigation IEEE, Power System Conference (PSC), Clemson, SC, [14] understanding-vector-group-transformer-1. [15] textbook/alternating-current/chpt- 10/harmonic-phase-sequences/ 128

Effective Harmonic Mitigation with Active Filters

Effective Harmonic Mitigation with Active Filters Advancing Power Quality White Paper Effective Harmonic Mitigation with Active Filters Written by: Ian Wallace Variable Speed Drive with no Harmonic Mitigation Industry standard variable speed drives, with

More information

Harmonic Power. A VFDs.com Whitepaper Written by Ernesto Jimenez

Harmonic Power. A VFDs.com Whitepaper Written by Ernesto Jimenez Harmonic Power A VFDs.com Whitepaper Written by Ernesto Jimenez Table of Contents 1. Need for Clean Electricity 2. What Are Harmonics? 3. Lower Order Harmonics 4. Causes of Harmonics 5. Effects of Harmonics

More information

Multi-Pulse Rectifier Solutions for Input Harmonics Mitigation Applicable Product: F7, G7, P7 and E7

Multi-Pulse Rectifier Solutions for Input Harmonics Mitigation Applicable Product: F7, G7, P7 and E7 White Paper Multi-Pulse Rectifier Solutions for Input Harmonics Mitigation Applicable Product: F7, G7, P7 and E7 Dr. Jun-koo Kang, Yaskawa Electric America Doc#: WP.AFD.02 Copyright Yaskawa Electric America,

More information

POWER SYSTEMS QUALITY Topic 5: Principles for Controlling Harmonics

POWER SYSTEMS QUALITY Topic 5: Principles for Controlling Harmonics POWER SYSTEMS QUALITY Topic 5: Principles for Controlling Harmonics EE589-Power System Quality & Harmonics Electrical Engineering Department School of Engineering University of Jordan 1 Control of Harmonics

More information

Three-Phase Multi-Pulse Converter with Phase-Shifting Transformer

Three-Phase Multi-Pulse Converter with Phase-Shifting Transformer 89 International Journal of Electronics, Electrical and Computational System Three-Phase Multi-Pulse Converter with Phase-Shifting Transformer Department of Electrical Engienring MITS Gwalior Abstract-In

More information

HARMONIC MITIGATIONCASE STUDY

HARMONIC MITIGATIONCASE STUDY HARMONIC MITIGATIONCASE STUDY CNCE AND NCE INSTALLATION AT BROADCASTING STUDIO Concerned about video noise detected on some of its studio equipment, E! Entertainment Television (ETV), commissioned a study

More information

Understanding Harmonics

Understanding Harmonics Understanding Harmonics Terry Gaiser Sensus What Are Harmonics? 1 » What is Power Quality?» Power quality is the degree to which both the utilization and delivery of electric power affects the performance

More information

Literature Review for Shunt Active Power Filters

Literature Review for Shunt Active Power Filters Chapter 2 Literature Review for Shunt Active Power Filters In this chapter, the in depth and extensive literature review of all the aspects related to current error space phasor based hysteresis controller

More information

Harmonic Solutions in Electrical Systems. Raed Odeh Application Specialist - Power Quality & Electrical Distribution

Harmonic Solutions in Electrical Systems. Raed Odeh Application Specialist - Power Quality & Electrical Distribution Harmonic Solutions in Electrical Systems Raed Odeh Application Specialist - Power Quality & Electrical Distribution Agenda I. Harmonic Basics II.Harmonic Mitigation Solutions III.Case Study 2 Harmonic

More information

ARE HARMONICS STILL A PROBLEM IN DATA CENTERS? by Mohammad Al Rawashdeh, Lead Consultant, Data Center Engineering Services

ARE HARMONICS STILL A PROBLEM IN DATA CENTERS? by Mohammad Al Rawashdeh, Lead Consultant, Data Center Engineering Services ARE HARMONICS STILL A PROBLEM IN DATA CENTERS? by Mohammad Al Rawashdeh, Lead Consultant, Data Center Engineering Services edarat group INTRODUCTION Harmonics are a mathematical way of describing distortion

More information

Electromagnetic Harmonic Filters Technical Guide

Electromagnetic Harmonic Filters Technical Guide Eliminator Series Electromagnetic Harmonic Filters Technical Guide Neutral Eliminator TM (NCE TM ) Parallel connected, 3-phase, 4-wire passive electromagnetic device that diverts 3rd and other triplen

More information

Harmonic Filters for Power Conversion Equipment (Drives, rectifiers, etc) Effects of Harmonics IEEE Solutions

Harmonic Filters for Power Conversion Equipment (Drives, rectifiers, etc) Effects of Harmonics IEEE Solutions Harmonic Filters for Power Conversion Equipment (Drives, rectifiers, etc) Effects of Harmonics IEEE - 519 Solutions Harmonics Tutorial 1 Power Conversion Equipment can save energy and control motors, heaters,

More information

Harmonic Distortion Evaluations

Harmonic Distortion Evaluations Harmonic Distortion Evaluations Harmonic currents produced by nonlinear loads can interact adversely with the utility supply system. The interaction often gives rise to voltage and current harmonic distortion

More information

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Riya Philip 1, Reshmi V 2 Department of Electrical and Electronics, Amal Jyothi College of Engineering, Koovapally, India 1,

More information

HARMONICS THE BASICS H A R M O N I C M I T I G A T I O N A N D D I S P L A C E M E N T P O W E R F A C T O R C O R R E C T I O N

HARMONICS THE BASICS H A R M O N I C M I T I G A T I O N A N D D I S P L A C E M E N T P O W E R F A C T O R C O R R E C T I O N HARMONICS THE BASICS H A R M O N I C M I T I G A T I O N A N D D I S P L A C E M E N T P O W E R F A C T O R C O R R E C T I O N Harmonic Basics 3 rd Harmonic Fundamental 5 t1h Harmonic 7 th Harmonic Harmonic

More information

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System 1 G.Balasundaram, 2 Dr.S.Arumugam, 3 C.Dinakaran 1 Research Scholar - Department of EEE, St.

More information

Technical Paper. Harmonic Distortion in Data Centers

Technical Paper. Harmonic Distortion in Data Centers Technical Paper Harmonic in Data Centers Written By: Ian Wallace Summary Power quality and power reliability are critical to data center operation. As strides have been made to improve energy efficiency

More information

Application of Tuned Passive Filter for Industrial Six-Pulse Rectifier with R-L Load Viralkumar A. Rana 1 Keyur Rana 2 Atul Talati 3

Application of Tuned Passive Filter for Industrial Six-Pulse Rectifier with R-L Load Viralkumar A. Rana 1 Keyur Rana 2 Atul Talati 3 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 02, 2014 ISSN (online): 2321-0613 Application of Tuned Passive Filter for Industrial Six-Pulse Rectifier with R-L Load

More information

22.0 Harmonics in Industrial Power Systems

22.0 Harmonics in Industrial Power Systems 1.0 Harmonics in Industrial Power Systems Harmonic frequencies are multiples of the line (fundamental) frequency, which in North America is usually 60 Hz, while it is 50 Hz elsewhere. Figure 1 shows a

More information

NJWA - Harmonics and Drives Proper System Design

NJWA - Harmonics and Drives Proper System Design Session Goals Larry Stanley, Sr. Regional Business Development Engineer, Water Segment Matthew LaRue, ABB Drives Product Manager Philadelphia District, Baldor of Philadelphia NJWA - Harmonics and Drives

More information

Harmonic Mitigation for Variable Frequency Drives. HWEA Conference February 15, Kelvin J. Hurdle Rockwell Bus. Dev. Mgr.

Harmonic Mitigation for Variable Frequency Drives. HWEA Conference February 15, Kelvin J. Hurdle Rockwell Bus. Dev. Mgr. Harmonic Mitigation for Variable Frequency Drives HWEA Conference February 15, 2011 Kelvin J. Hurdle Rockwell Bus. Dev. Mgr. 1 OVERVIEW Linear vs. Non- Linear Load Definitions AC Drive Input Current Harmonics

More information

IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): X

IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): X IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): 2349-784X A Synchronous Reference Frame Theory-Space Vector Modulation (SRF SPVM) based Active

More information

Dry Type Distribution Transformers NON-LINEAR TRANSFORMER PRESENTATION

Dry Type Distribution Transformers NON-LINEAR TRANSFORMER PRESENTATION NON-LINEAR TRANSFORMER PRESENTATION 1 PROBLEM: HARMONICS CAUSE EXCESSIVE TRANSFORMER HEATING Increased Losses Proximity Skin Effect Stray Losses Circulating Effect Triplen Harmonics Add in Neutral Increased

More information

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter B.S.Nalina 1 Ms.V.J.Vijayalakshmi 2 Department Of EEE Department Of EEE 1 PG student,skcet, Coimbatore, India

More information

OPTIMAL DESIGN OF A SINGLE TUNED PASSIVE FILTER TO MITIGATE HARMONICS IN POWER FREQUENCY

OPTIMAL DESIGN OF A SINGLE TUNED PASSIVE FILTER TO MITIGATE HARMONICS IN POWER FREQUENCY OPTIMAL DESIGN OF A SINGLE TUNED PASSIVE FILTER TO MITIGATE HARMONICS IN POWER FREQUENCY D. M. Soomro and M. M. Almelian Department of Electrical Power Engineering, Faculty of Electrical and Electronic

More information

Alternators Reactance for Nonlinear Loads

Alternators Reactance for Nonlinear Loads Alternators Reactance for Nonlinear Loads Allen Windhorn. P.E. 26 July, 2013 Introduction Widespread invocation of IEEE Std 519 on systems powered by generators, together with increased use of equipment

More information

Key-Words: - NARX Neural Network; Nonlinear Loads; Shunt Active Power Filter; Instantaneous Reactive Power Algorithm

Key-Words: - NARX Neural Network; Nonlinear Loads; Shunt Active Power Filter; Instantaneous Reactive Power Algorithm Parameter control scheme for active power filter based on NARX neural network A. Y. HATATA, M. ELADAWY, K. SHEBL Department of Electric Engineering Mansoura University Mansoura, EGYPT a_hatata@yahoo.com

More information

Harmonic Distortion Effects and Mitigation in Distribution Systems

Harmonic Distortion Effects and Mitigation in Distribution Systems Journal of American Science 00;6(0) Harmonic Distortion Effects and Mitigation in Distribution Systems Hussein A. Attia, M. El-Metwally and Osama M. Fahmy Cairo University, Faculty of Engineering, Electrical

More information

Study of Harmonics and THD of Nine Phase PWM Inverter Drive with CLC Filter for motor drive applications

Study of Harmonics and THD of Nine Phase PWM Inverter Drive with CLC Filter for motor drive applications International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 3 (2017) pp. 369-376 Research India Publications http://www.ripublication.com Study of Harmonics and THD of Nine

More information

Unit 29 Three-Phase Transformers

Unit 29 Three-Phase Transformers Unit 29 Three-Phase Transformers Objectives: Discuss the construction of three-phase transformers. Discuss the formation of a three-phase transformer bank. Discuss primary and secondary connections. Objectives:

More information

Voltage and Current Waveforms Enhancement using Harmonic Filters

Voltage and Current Waveforms Enhancement using Harmonic Filters Voltage and Current Waveforms Enhancement using Harmonic Filters Rajeb Ibsaim rabsaim@yahoo.com, Azzawia University, Libya Amer Daeri ibnjubair1@yahoo.co.uk Azzawia University, Libya Abstract The demand

More information

COMPARISON OF POWER QUALITY SOLUTIONS USING ACTIVE AND PASSIVE RECTIFICATION FOR MORE ELECTRIC AIRCRAFT

COMPARISON OF POWER QUALITY SOLUTIONS USING ACTIVE AND PASSIVE RECTIFICATION FOR MORE ELECTRIC AIRCRAFT 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES COMPARISON OF POWER QUALITY SOLUTIONS USING ACTIVE AND PASSIVE RECTIFICATION FOR MORE ELECTRIC AIRCRAFT Bulent Sarlioglu, Ph.D. Honeywell Aerospace,

More information

Power Quality improvement of a three phase four wire system using UPQC

Power Quality improvement of a three phase four wire system using UPQC International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 4 July-215 www.irjet.net p-issn: 2395-72 Power Quality improvement of a three phase four wire system

More information

Peteris Spels, ABB Inc., WMEA, November 18, 2011 HARMONICS. ABB Group December 14, 2011 Slide 1

Peteris Spels, ABB Inc., WMEA, November 18, 2011 HARMONICS. ABB Group December 14, 2011 Slide 1 Peteris Spels, ABB Inc., WMEA, November 18, 2011 HARMONICS December 14, 2011 Slide 1 Agenda Harmonics: What they are? Where do they come from? Why bother? Regulations How to detect? How to avoid? Summary

More information

Design and Simulation of Three Phase Shunt Active Power Filter Using SRF Theory

Design and Simulation of Three Phase Shunt Active Power Filter Using SRF Theory Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 6 (2013), pp. 651-660 Research India Publications http://www.ripublication.com/aeee.htm Design and Simulation of Three Phase

More information

Harmonics Reduction using 4-Leg Shunt Active Power Filters

Harmonics Reduction using 4-Leg Shunt Active Power Filters Harmonics Reduction using 4-Leg Shunt Active Power Filters K Srinivas Assistant Professor & Department of EEE & JNTUH CEJ Telangana, India. Abstract Harmonics in power system are caused by highly non-linear

More information

Analysis of Harmonic Distortion in Non-linear Loads

Analysis of Harmonic Distortion in Non-linear Loads Analysis of Harmonic Distortion in Non-linear Loads Anne Ko Department of Electrical Power Engineering Mandalay Technological University, Mandalay, Myanmar.Phone:+95-09-2225761 anneko101082@gmail.com Wunna

More information

Understanding Input Harmonics and Techniques to Mitigate Them

Understanding Input Harmonics and Techniques to Mitigate Them Understanding Input Harmonics and Techniques to Mitigate Them Mahesh M. Swamy Yaskawa Electric America YASKAWA Page. 1 Organization Introduction Why FDs Generate Harmonics? Harmonic Limit Calculations

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

Harmonic Mitigation in AC DC Converters for Induction Motor Drives by Vector Controlled

Harmonic Mitigation in AC DC Converters for Induction Motor Drives by Vector Controlled Harmonic Mitigation in AC DC Converters for Induction Motor Drives by Vector Controlled 1, BANOTH LAXMAN NAIK, 2, CH HARI KRISHNA 1.Student of Electrical and Electronics Engineering at Mother Teresa Institute

More information

Harmonic Reduction and Power Factor improvement in three phase three wire system by using Passive Filters

Harmonic Reduction and Power Factor improvement in three phase three wire system by using Passive Filters Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 1, January -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 Harmonic

More information

Electrical Energy Saving and Economic Benefits from Power System Harmonics Mitigation in the Petrochemical Plants

Electrical Energy Saving and Economic Benefits from Power System Harmonics Mitigation in the Petrochemical Plants Electrical Energy Saving and Economic Benefits from Power System Harmonics Mitigation in the Petrochemical Plants Sherif M. Ismael Electrical Engineering Division, Engineering for the Petroleum and Process

More information

16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, VARIATION OF HARMONICS AND RIPPLE WITH PULSE NUMBER Pulse Number

16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, VARIATION OF HARMONICS AND RIPPLE WITH PULSE NUMBER Pulse Number 16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 693 Novel 24-Pulse Rectifier Topology based on Single 3-Phase to Four 3-Phase Transformation using Conventional Transformers for Phase Shifting

More information

IMPACT OF VARIABLE FREQUENCY DRIVES ON ELECTRICAL SYSTEM

IMPACT OF VARIABLE FREQUENCY DRIVES ON ELECTRICAL SYSTEM IMPACT OF VARIABLE FREQUENCY DRIVES ON ELECTRICAL SYSTEM 1 Vishal S Sheth, 2 Dabhoiwala Aliasgar 1 Department of Electrical Engineering A. D Patel Institute of Technology, Anand, India. 2 Department of

More information

ENERGY SAVING WITH OPTIMIZATION OF VOLTAGE AND CURRENT QUALITY

ENERGY SAVING WITH OPTIMIZATION OF VOLTAGE AND CURRENT QUALITY ENERGY SAVING WITH OPTIMIZATION OF VOLTAGE AND CURRENT QUALITY Approximation based on the know-how of SEMAN S.A. The non-linear nature of modern electric loads makes the reception of measures for the confrontation

More information

Power Quality Analysis in Power System with Non Linear Load

Power Quality Analysis in Power System with Non Linear Load International Journal of Electrical Engineering. ISSN 0974-2158 Volume 10, Number 1 (2017), pp. 33-45 International Research Publication House http://www.irphouse.com Power Quality Analysis in Power System

More information

Harmonic Mitigating Transformer - Technical Guide

Harmonic Mitigating Transformer - Technical Guide Harmonic Mitigating - Technical Guide HARMONY Series s HARMONY-1 www.mirusinternational.com Benefits: Prevent voltage flat-topping while reducing energy costs. Reduce voltage distortion caused by harmonic

More information

New power tools provide quality and efficiency By

New power tools provide quality and efficiency By Typical Delta-wye transformer New power tools provide quality and efficiency By Steve Terry For quite some time, it has been well understood that phase-control SCR dimming systems used in the entertainment

More information

A MATLAB-SIMULINK APPROACH TO SHUNT ACTIVE POWER FILTERS

A MATLAB-SIMULINK APPROACH TO SHUNT ACTIVE POWER FILTERS A MATLAB-SIMULINK APPROACH TO SHUNT ACTIVE POWER FILTERS George Adam, Alina G. Stan (Baciu) and Gheorghe Livinţ Department of Electrical Engineering Technical University of Iaşi 700050, Iaşi, Romania E-mail:

More information

AN EQUIVALENT CIRCUIT MODEL FOR A THREE PHASE HARMONIC MITIGATING TRANSFORMER

AN EQUIVALENT CIRCUIT MODEL FOR A THREE PHASE HARMONIC MITIGATING TRANSFORMER AN EQUIVALENT CIRCUIT MODEL FOR A THREE PHASE HARMONIC MITIGATING TRANSFORMER Riccardo Eric Maggioli A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the

More information

International Journal of Advance Engineering and Research Development ANALYSIS AND MITIGATION OF HARMONICS IN MEDICAL FIELD

International Journal of Advance Engineering and Research Development ANALYSIS AND MITIGATION OF HARMONICS IN MEDICAL FIELD Scientific Journal of Impact (SJIF): 5.71 International Journal of Advance Engineering and Research Development Volume 5, Issue 04, April -2018 e-issn (O): 2348-4470 p-issn (P): 2348-6406 ANALYSIS AND

More information

DESIGN AND DEVELOPMENT OF ACTIVE POWER FILTER FOR HARMONIC MINIMIZATION USING SYNCHRONOUS REFERENCE FRAME (SRF)

DESIGN AND DEVELOPMENT OF ACTIVE POWER FILTER FOR HARMONIC MINIMIZATION USING SYNCHRONOUS REFERENCE FRAME (SRF) DESIGN AND DEVELOPMENT OF ACTIVE POWER FILTER FOR HARMONIC MINIMIZATION USING SYNCHRONOUS REFERENCE FRAME (SRF) Rosli Omar, Mohammed Rasheed, Zheng Kai Low and Marizan Sulaiman Universiti Teknikal Malaysia

More information

International Journal of Advance Engineering and Research Development. 18 Pulse Uncontrolled Rectifier

International Journal of Advance Engineering and Research Development. 18 Pulse Uncontrolled Rectifier Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 5, May -2015 18 Pulse Uncontrolled Rectifier Jay Patel e-issn(o): 2348-4470

More information

Harmonics Elimination Using Shunt Active Filter

Harmonics Elimination Using Shunt Active Filter Harmonics Elimination Using Shunt Active Filter Satyendra Gupta Assistant Professor, Department of Electrical Engineering, Shri Ramswaroop Memorial College of Engineering and Management, Lucknow, India.

More information

DESIGN AND IMPLEMENTATION OF THREE PHASE SHUNT APF CURRENT CONTROLLER WITH ANN TECHNIQUE

DESIGN AND IMPLEMENTATION OF THREE PHASE SHUNT APF CURRENT CONTROLLER WITH ANN TECHNIQUE DESIGN AND IMPLEMENTATION OF THREE PHASE SHUNT APF CURRENT CONTROLLER WITH ANN TECHNIQUE S. Dhayanandh 1 and S. Manoharan 2 1 Department of Electronics and Communication Engineering, Kathir college of

More information

Guide to Harmonics. Reactive Power and Harmonic Compensation POWER QUALITY. The Basics of Harmonics

Guide to Harmonics. Reactive Power and Harmonic Compensation POWER QUALITY. The Basics of Harmonics Reactive Power and Harmonic Compensation Guide to Harmonics POWER QUALITY The Basics of Harmonics All business types, commercial, industrial, government and energy/utility have a concern with power quality.

More information

Selective Harmonic Elimination (SHE) for 3-Phase Voltage Source Inverter (VSI)

Selective Harmonic Elimination (SHE) for 3-Phase Voltage Source Inverter (VSI) Selective Elimination (SHE) for 3-Phase Voltage Source Inverter (VSI) V.Karthikeyan, SVS College of Engineering, Coimbatore, India karthick77keyan@gmail.com V.J.Vijayalakshmi, Sri Krishna College of Engg

More information

Thyristorised Automatic Power Factor

Thyristorised Automatic Power Factor Thyristorised Automatic Power Factor Correction with 7% D Tune Harmonics Suppression (Reactor/Filtering) System Power quality? In the present Low voltage (LV) industrial distribution system the power factor

More information

5DESIGN PARAMETERS OF SHUNT ACTIVE FILTER FOR HARMONICS CURRENT MITIGATION

5DESIGN PARAMETERS OF SHUNT ACTIVE FILTER FOR HARMONICS CURRENT MITIGATION 5DESIGN PARAMETERS OF SHUNT ACTIE FILTER FOR HARMONICS CURRENT MITIGATION Page 59 A.H. Budhrani 1*, K.J. Bhayani 2, A.R. Pathak 3 1*, 2, 3 Department of Electrical Engineering,..P. Engineering College

More information

Harmonic Filters for Single Phase Equipment

Harmonic Filters for Single Phase Equipment POWER QUALITY Harmonic Filters for Single Phase Equipment Agriculture Call Centers Casino Slot Machines Computer Centers Distributed Generation Electronic Power Converter Oil & Gas On-Line UPS Power Electronics

More information

Study of Power Factor Correction in Single Phase AC-DC Converter

Study of Power Factor Correction in Single Phase AC-DC Converter Avneet Kaur, Prof. S.K Tripathi, Prof. P. Tiwari 89 Study of Power Factor Correction in Single Phase AC-DC Converter Avneet Kaur, Prof. S.K Tripathi, Prof. P. Tiwari Abstract: This paper is regarding power

More information

Differential Protection Optimal differential protection for phase shifter transformers and special transformers

Differential Protection Optimal differential protection for phase shifter transformers and special transformers Differential Protection Optimal differential protection for phase shifter transformers and special transformers Due to the energy transition, a demand for renewable energy sources integration into power

More information

THE ANALYSIS OF MAGNIFICATION OF NEUTRAL CURRENT IN THE PRESENCE OF POWER QUALITY PROBLEMS

THE ANALYSIS OF MAGNIFICATION OF NEUTRAL CURRENT IN THE PRESENCE OF POWER QUALITY PROBLEMS THE ANALYSIS OF MAGNIFICATION OF NEUTRAL CURRENT IN THE PRESENCE OF POWER QUALITY PROBLEMS Alla Eldin ABD ELAZIZ Ahmed FATEHY Khalaf RUSHDY MEEDC Egypt MEEDC Egypt MEEDC-Egypt Meedco78@yahoo.com Meedco78@yahoo.com

More information

Handling System Harmonic Propagation in a Diesel-Electric Ship with an Active Filter

Handling System Harmonic Propagation in a Diesel-Electric Ship with an Active Filter Handling System Harmonic Propagation in a Diesel-Electric Ship with an Active Filter Atle Rygg Årdal Department of Engineering Cybernetics, Norwegian University of Science and Technology Email: atle.rygg.ardal@itk.ntnu.no

More information

Harmonic control devices. ECE 528 Understanding Power Quality

Harmonic control devices. ECE 528 Understanding Power Quality ECE 528 Understanding Power Quality http://www.ece.uidaho.edu/ee/power/ece528/ Paul Ortmann portmann@uidaho.edu 208-733-7972 (voice) Lecture 12 1 Today Harmonic control devices In-line reactors (chokes)

More information

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 98 CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 6.1 INTRODUCTION Process industries use wide range of variable speed motor drives, air conditioning plants, uninterrupted power supply systems

More information

CHAPTER 4 HARMONICS AND POWER FACTOR

CHAPTER 4 HARMONICS AND POWER FACTOR 4.1 Harmonics CHAPTER 4 HARMONICS AND POWER FACTOR In this research a comparative study of practical aspects of mixed use of diode and Thyristor converter technologies in Aluminium Smelters has been carried

More information

Synchronous Reference Frame Theory For Nonlinear Loads using Mat-lab Simulink

Synchronous Reference Frame Theory For Nonlinear Loads using Mat-lab Simulink Synchronous Reference Frame Theory For Nonlinear Loads using Mat-lab Simulink Parag Datar 1, Vani Datar 2, S. B. Halbhavi 3, S G Kulkarni 4 1 Assistant Professor, Electrical and Electronics Department,

More information

DRIVE FRONT END HARMONIC COMPENSATOR BASED ON ACTIVE RECTIFIER WITH LCL FILTER

DRIVE FRONT END HARMONIC COMPENSATOR BASED ON ACTIVE RECTIFIER WITH LCL FILTER DRIVE FRONT END HARMONIC COMPENSATOR BASED ON ACTIVE RECTIFIER WITH LCL FILTER P. SWEETY JOSE JOVITHA JEROME Dept. of Electrical and Electronics Engineering PSG College of Technology, Coimbatore, India.

More information

Alternator winding pitch and power system design

Alternator winding pitch and power system design Our energy working for you. TM Power topic #5981 Technical information from Cummins Power Generation Alternator winding pitch and power system design White Paper Rich Scoggins Applications Engineering

More information

Thermal Imaging, Power Quality and Harmonics

Thermal Imaging, Power Quality and Harmonics Thermal Imaging, Power Quality and Harmonics Authors: Matthew A. Taylor and Paul C. Bessey of AVO Training Institute Executive Summary Infrared (IR) thermal imaging (thermography) is an effective troubleshooting

More information

Performance Analysis of Passive Filter for Harmonics Due to Non-Linear Load in Power System

Performance Analysis of Passive Filter for Harmonics Due to Non-Linear Load in Power System Performance Analysis of Passive Filter for Harmonics Due to Non-Linear Load in Power System Engr.Kavitha Vasantha 1 Lecturer, BSIE, College of Engineering, Salmabad, Kingdom of Bahrain 1 Abstract: As end

More information

Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation

Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation RESEARCH ARTICLE OPEN ACCESS Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation * G.Ravinder Reddy Assistant Professor,**M.Thirupathaiah * Assistant Professor. (Deparment of Electrical

More information

Harmonics, its Mitigation & Result of Case study of Spinning Mill

Harmonics, its Mitigation & Result of Case study of Spinning Mill International Journal of Innovative Research in Engineering & Management (IJIREM) ISSN: 2350-0557, Volume-2, Issue-4, July 2015, its Mitigation & of Case of Spinning Mill Yogesh Subhash Shimpi M. Tech

More information

HARMONIC ELIMINATION IN THREE PHASE SYSTEM BY MEANS OF A SHUNT ACTIVE FILTER

HARMONIC ELIMINATION IN THREE PHASE SYSTEM BY MEANS OF A SHUNT ACTIVE FILTER HARMONIC ELIMINATION IN THREE PHASE SYSTEM BY MEANS OF A SHUNT ACTIVE FILTER Bhargav R. Gamit 1, Sanjay R. Vyas 2 1PG Scholar, EE Dept., LDRP-ITR, Gandhinagar, Gujarat, India. 2Head of Department, EE Dept.,

More information

7/15/2002 PP.AFD.08 1 of 28

7/15/2002 PP.AFD.08 1 of 28 Power Quality Considerations When Applying Adjustable Frequency Drives Explanations and Various Countermeasures 7/15/2002 PP.AFD.08 1 of 28 Power Quality Why the Renewed Interest in Power Quality? Copy

More information

Available online at ScienceDirect. Procedia Technology 21 (2015 ) SMART GRID Technologies, August 6-8, 2015

Available online at   ScienceDirect. Procedia Technology 21 (2015 ) SMART GRID Technologies, August 6-8, 2015 Available online at www.sciencedirect.com ScienceDirect Procedia Technology 21 (2015 ) 310 316 SMART GRID Technologies, August 6-8, 2015 A Zig-Zag Transformer and Three-leg VSC based DSTATCOM for a Diesel

More information

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 58 CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 4.1 INTRODUCTION Conventional voltage source inverter requires high switching frequency PWM technique to obtain a quality output

More information

Selective Harmonic Elimination Using Three Phase Shunt Active Power Filter

Selective Harmonic Elimination Using Three Phase Shunt Active Power Filter Selective Harmonic Elimination Using Three Phase Shunt Active Power Filter A.Ilakkia 1, R.Rajalakshmi 2 PG Student [PED], Dept of EEE, PSNA College of Engg and Tech, Dindigul, Tamilnadu, India 1 Assistant

More information

Shunt Active Power Filter for Compensation of System Harmonics

Shunt Active Power Filter for Compensation of System Harmonics Volume 5, Issue 1 (February, 018) E-ISSN : 48-7 P-ISSN : 454-1 Shunt Active Power Filter for of System Harmonics Badal Devanand Umare 1, A. S. Sindekar 1 PG Scholar, HOD, Department of Electrical Engineering,

More information

International Journal of Research Available at

International Journal of Research Available at Multipulse Ac Dc Converters With Reduced Magntetics Feeding Vector Controlled Induction Motor Drives For Improving The Power Quality At The Point of Common Coupling M. Akhila 1 Dr.Samalla Krishna 2 Mr.S.Srikanth

More information

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads Ponananthi.V, Rajesh Kumar. B Final year PG student, Department of Power Systems Engineering, M.Kumarasamy College of

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 16.4. Power phasors in sinusoidal systems Apparent power is the product of the rms voltage and

More information

Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System

Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System 1 Leena N C, 2 B. Rajesh Kamath, 3 Shri Harsha 1,2,3 Department of EEE, Sri Siddhartha Institute of Technology, Tumkur-572105,

More information

Analysis of Advanced Techniques to Eliminate Harmonics in AC Drives

Analysis of Advanced Techniques to Eliminate Harmonics in AC Drives Analysis of Advanced Techniques to Eliminate Harmonics in AC Drives Amit P. Wankhade 1, Prof. C. Veeresh 2 2 Assistant Professor, MIT mandsour E-mail- amitwankhade03@gmail.com Abstract Variable speed AC

More information

Power Quality Improvement using Shunt Passive Filter

Power Quality Improvement using Shunt Passive Filter Power Quality Improvement using Shunt Passive Filter Assistant Professor, Department of Electrical Engineering Bhutta Group of Institutions, India Abstract: The electricity supply would, ideally, show

More information

Harmonics and Their Impact on Power Quality. Wayne Walcott Application Engineering Manager June, 2017

Harmonics and Their Impact on Power Quality. Wayne Walcott Application Engineering Manager June, 2017 Harmonics and Their Impact on Power Quality Wayne Walcott Application Engineering Manager June, 2017 Presentation Overview A little about harmonics What are harmonics What are NOT harmonics What creates

More information

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION 1 Arsha.S.Chandran, 2 Priya Lenin 1 PG Scholar, 2 Assistant Professor 1 Electrical & Electronics Engineering 1 Mohandas College of Engineering

More information

Power Factor & Harmonics

Power Factor & Harmonics Power Factor & Harmonics Andy Angrick 2014 Harmonic Distortion Harmonic problems are becoming more apparent because more equipment that produce harmonics are being applied to power systems Grounding Harmonics

More information

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 86 CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 5.1 POWER QUALITY IMPROVEMENT This chapter deals with the harmonic elimination in Power System by adopting various methods. Due to the

More information

A Review on Simulation and Implementation of Thyristor controlled reactor and Shunt Hybrid Power Filter

A Review on Simulation and Implementation of Thyristor controlled reactor and Shunt Hybrid Power Filter A Review on Simulation and Implementation of Thyristor controlled reactor and Shunt Hybrid Power Filter Swapnil S. Motaphale Affiliation TSSM S BSCOER, Pune ME Electrical (Power System) Savitribai Phule

More information

Tuningintobetter power quality

Tuningintobetter power quality Technology Review Third harmonic filters Tuningintobetter power quality Jouko Jaakkola Your PC screen flickers, stops flickering, starts again... Irritating to be sure, and perhaps the first visible sign

More information

CHAPTER 3. NOVEL MODULATION TECHNIQUES for MULTILEVEL INVERTER and HYBRID MULTILEVEL INVERTER

CHAPTER 3. NOVEL MODULATION TECHNIQUES for MULTILEVEL INVERTER and HYBRID MULTILEVEL INVERTER CHAPTER 3 NOVEL MODULATION TECHNIQUES for MULTILEVEL INVERTER and HYBRID MULTILEVEL INVERTER In different hybrid multilevel inverter topologies various modulation techniques can be applied. Every modulation

More information

International Journal of Engineering Research and General Science Volume 5, Issue 2, March-April, 2017 ISSN

International Journal of Engineering Research and General Science Volume 5, Issue 2, March-April, 2017 ISSN Analysis of H Link in Large Scale Offshore farm, Study and Comparison of LCC and SC Based H Links and Interconnection of Asynchronous Power Systems Utilizing SC-Based H Converter *Usman Raees Baig, **Mokhi

More information

Eyenubo, O. J. & Otuagoma, S. O.

Eyenubo, O. J. & Otuagoma, S. O. PERFORMANCE ANALYSIS OF A SELF-EXCITED SINGLE-PHASE INDUCTION GENERATOR By 1 Eyenubo O. J. and 2 Otuagoma S. O 1 Department of Electrical/Electronic Engineering, Delta State University, Oleh Campus, Nigeria

More information

Reactive power compensation for linear and non linear loads by using active and passive filter for smart grid applications.

Reactive power compensation for linear and non linear loads by using active and passive filter for smart grid applications. Reactive power compensation for linear and non linear loads by using active and passive filter for smart grid applications. 1 Vikas Kumar Chandra, 2 Mahendra Kumar Pradhan 1,2 ECE Department, School of

More information

Study and analysis of THD and content of Harmonics in Three Phase PWM Inverter with Filters.

Study and analysis of THD and content of Harmonics in Three Phase PWM Inverter with Filters. Study and analysis of THD and content of Harmonics in Three Phase PWM Inverter with Filters. Abstract- In this paper a traditional three phase inverter drive is constructed with RL load. The inverter and

More information

Hybrid Active Power Filters for Reactive Power Compensation with Adaptive DC-Link Voltage Control

Hybrid Active Power Filters for Reactive Power Compensation with Adaptive DC-Link Voltage Control International Journal of Scientific Engineering and Research (IJSER) Hybrid Active Power Filters for Reactive Power Compensation with Adaptive DC-Link Voltage Control Rahul Kumar Patel 1, S. Subha 2 Abstract:

More information

Power Quality Improvement in Induction Motor Drive using 24-Pulse AC-DC Converter Employing Pulse Multiplication Technique

Power Quality Improvement in Induction Motor Drive using 24-Pulse AC-DC Converter Employing Pulse Multiplication Technique Power Quality Improvement in Induction Motor Drive using 24-Pulse AC-DC Converter Employing Pulse Multiplication Technique Greeshma C 1, Rajesh M 2 Student, Electrical &Electronics Department, Govt. College

More information

THE COMPREHENSIVE APPROACH TO FACILITY POWER QUALITY

THE COMPREHENSIVE APPROACH TO FACILITY POWER QUALITY by Cesar Chavez, Engineering Manager, Arteche / Inelap, and John Houdek, President, Allied Industrial Marketing, Inc. Abstract: Industrial facility harmonic distortion problems can surface in many different

More information