The Engineering Problem. Calculating GIC Flow through the EHV System

Size: px
Start display at page:

Download "The Engineering Problem. Calculating GIC Flow through the EHV System"

Transcription

1 The Engineering Problem Calculating GIC Flow through the EHV System 1

2 Creating the GIC System Model Since the EHV system is a three-phase balanced network, it is only necessary to model a single-phase equivalent DC network for GIC North 500 kv calculations: (1) R1= Ω Ie1 V1-3 Re=0.5 Ω Ie2 R2 = R1-3= Ω (2) V1-8 Central 500 kv (3) R1-8= Ω R1= Ω RS= Ω Ie3 Ie4 Re= Re=0.5 Ω Ie5 R2 = Rc= Ω (5) V3-8 R3-8= Ω V4-9 Central 230 kv (4) V4-6 R4-6=3.4182Ω East 230 kv (6) R1= Ω R1= Ω RS= Ω RS= Ω South 500 kv (8) R4-9= Ω Ie6 Re=1.0 Ω Ie7 Rc= Ω Re= Rc= Ω Re= R2= R2= East 138 kv (7) R1= Ω Ie10 R2 = South 230 kv (9) Ie9 Re=0.5 Ω (10) Three-Phase Model Single Phase DC model 2

3 Data Requirements To perform a GIC Analysis the following data items are required for the equipment listed below, at voltage levels greater than 200 kv and up for a given system area: Feeder Data (extracted from load flow or short circuit databases) From & To Bus 60 Hz AC Resistance or DC resistance Transformer Data (extracted from transformer test reports) From & To Bus DC winding resistivity Construction: Auto, Y-Y, Y-Delta, etc. Substation Data (extracted from GPS and test data) Latitude & Longitude Substation Ground Grid Resistance 3

4 GIC/DC Equivalent Models Component 60 Hz Model DC/GIC Model Transmission Line R = R DC Series Capacitor Shunt Capacitor or or R = inf. R = inf. Series Reactor R = R DC Shunt Reactor R = R DC 4

5 GIC/DC Equivalent Models (Cont.) Component 60 Hz Model DC/GIC Model Auto Transformer R s = R DC R c = R DC Y Y Transformer / PAR Y Y R P = R DC R S = R DC Y Delta Transformer / PAR Y D R P = R DC R S = inf. Ground Grid R= 3*R G 5

6 Transformer Data Data Quality Recommendations When modeling transformers for GIC Analysis it is best practice to use DC winding resistances found in transformer test reports. Note that it is common for transformer test reports to list the DC winding resistance of three-phase units as three (3) times the single-phase value. It is important to account for this (divide by a factor of three (3)), when applicable. Modeling transformer winding resistances using series resistances (R 12 ) extracted from load flow data bases can produce inconsistent results. Actual transformer DC winding resistance is a direct function of winding length, which can vary significantly dependent on transformer construction type (core form, shell form). Modeling Substation Ground Grid Resistivity Using accurate ground grid resistivity is important. When modeled lower than actual values more GIC will flow to ground (GIC flows are locally over conservative and less conservative elsewhere). When modeled higher than actual values GIC will be redirected elsewhere in the system. 6

7 Sample Transformer Test Report 7

8 GMD Model Sizing When building a GIC model it is important to account for the impact of neighboring systems. However, there is presently no consensus on how far outside of a study area GIC system models should be built. The following can be considered: Build a GIC model that encompasses the entire system of interest as well as all transmission lines extending into neighboring busses. Use a conservative earthing resistance (transformer resistances plus ground grid resistance) at each neighboring substation location (~ ohms) to increase GIC flow into system of interest and allow for conservative results. 8

9 Calculating the Induced E on Transmission Lines When using the 1-D planewave approach exact transmission line routing is irrelevant when calculating the induced E (V im ). All that is necessary is the vector distance between the transmission line origin and destination and the angular difference between the direction of the E and the transmission line vector. V im =E T= E T cos θ E θ T T x T y V T y E 9

10 Sample Problem 1 The system shown below has a transmission line vector of T km and is subjected to a GMD with an associated E V/km, calculate the GIC Flow. R DC = 1.4 Ω Substation B R G = 0.05 Ω Y D Substation A R G = 0.05 Ω R DC = 0.1 Ω D Y R DC = 0.2 Ω 10

11 Sample Problem 1 Solution Step 1: GIC System Model 1.4 Ω V im 0.2 Ω 0.1 Ω Step 2: Calculate Induced E V im = (100 km)(1 V/km)cos(60 ) V im = 50 V 3*0.05 Ω I e 3*0.05 Ω I e = Step 3: Calculate Substation Neutral Current V im R T0TAL = 50 V ( ) Ω = 50 V 2.0 Ω = 25 A 11

12 The Engineering Problem Quantifying the Impact of GIC Flows 12

13 The System-Wide Impact Ref: 2012 Special Reliability Assessment, Interim Report: Effects of Geomagnetic Disturbances on the Bulk Power System, NERC 13

14 How Do You Solve the Problem? GIC Analysis Finite Element Analysis Electromagnetic Transients Analysis Voltage Stability Analyses Ref: 2012 Special Reliability Assessment, Interim Report: Effects of Geomagnetic Disturbances on the Bulk Power System, NERC 14

15 Asymmetrical Transformer Saturation Dependent on Transformer Core Type and Construction Reluctance of the DC flux path dictates the degree of saturation. Three phase, three limb, core form transformers are typically most resistant to saturation from GIC (to a certain threshold). All other transformers types are less resistant and approximately equally susceptible. Three Major Impacts Reactive Power Loss Difficult to Harmonic Generation Estimate (Unit Specific) Loss of Life Ref: 2012 Special Reliability Assessment, Interim Report: Effects of Geomagnetic Disturbances on the Bulk Power System, NERC 15

16 Asymmetrical Transformer Saturation Saturated Core (Field Intensity Plot) Saturated Core (Flux Plot)

17 Asymmetrical Transformer Saturation Magnetizing Current Primary Current FFT Phase A FFT Phase C FFT Phase B July A/Phase GIC Excitation

18 Transformer Manufacturer Analyses and Testing Detailed analyses can be performed by manufacturers to provide more accurate harmonic and reactive power loss evaluations. Manufacturer analysis and testing is required to establish thermal models of transformers.

19 Estimating Reactive Power Losses Linear relationships between transformer reactive power losses and GIC have been published. Formulas based on test data and measured values. Estimated reactive losses are imperfect but can be used for voltage stability analyses EPRI / Kappenman Loss Approximation Core Design Single Phase Q = V (I ex (I Eff )) Dong / Liu / Kappenman approximation Q = k1*i EFF + V(I ex ) Three Phase Shell Form Three Phase 3 Legged Core Form Three phase 5 Legged Core Form k I ex = Transformer exciting current (without GIC) I Eff = Effective GIC in the transformer windings For Y-Y/Y-Delta Transformers: i P i For Autotransformers: ai s ic a 1 a N s N c V H V L 1

20 Estimating Reactive Power Losses Ref:TPL Technical Conference, July 17, 2014 NERC

21 Transformer Thermal Models Ref:TPL Technical Conference, July 17, 2014 NERC

22 Transformer Thermal Assessment Technique Outlined in TPL Supporting Documents Ref:TPL Technical Conference, July 17, 2014 NERC

23 Transformer Thermal Assessment Technique Outlined in TPL Supporting Documents Ref: NERC TPL Screening Criterion for Transformer Thermal Impact Assessment

24 Estimating Harmonics Although linear relationships between Harmonics and GIC magnitude have been suggested, there presently isn t significant confidence with this work. Variation in transformer DC flux path reluctance can have significant influence on harmonic magnitude and profile. Linear vs. GIC? 100% Harmonic Content (% of net harmonic current) 90% 80% 70% 60% 50% 40% 30% 20% 10% H(n) 1 H(n) 2 H(n) 3 H(n) 4 H(n) 5 H(n) 6 H(n) 7 H(n) 8 H(n) 9 H(n) 10 0% GIC Current Ieff (A/Phase) Ref: 2012 Special Reliability Assessment, Interim Report: Effects of Geomagnetic Disturbances on the Bulk Power System, NERC 24

25 Steady State Voltage Stability Analysis for GIC A systems ability to withstand voltage collapse from the Mvar losses from GIC can be evaluated using methods similar to traditional voltage stability analyses (P-V and V-Q) and the results of a GIC flow analysis. Sample Voltage Stability Analysis Approach for GIC 1. Calculate GIC flows for system. 2. Estimate Mvar losses associated with each transformer modeled. 3. Model loads at each transformer location (equal to 1% of Mvar losses to start). 4. Increase loads linearly until voltage collapse or maximum Mvar loss levels are reached. a) TPL specifies studies for both System On-Peak load and Off- Peak Load Near-Term Planning Horizon cases. b) Must consider several storm directions (0-180 Deg. each 15 Deg.?) 5. Repeat Steps 1-4 until no voltage violations identified, adding mitigation if necessary (cap banks, operational measures, neutral blocking, etc.). 25

26 NERC TPL Assessment Process Ref:TPL Technical Conference, July 17, 2014 NERC

27 Why is Geomagnetically Induced Current Important? 27

28 NERC TPL Compliance Requirements and Timetable Requirement R1 R2 R5 R6 R3 R4 R7 Description Identify the indiviual(s) responsible for managing TPL compliance. Complete GIC System Model Construction Complete GIC Flow Analyses Complete Transformer Thermal Assessment Establish Steady State Voltage Criteria for system during GMD events Perform System Planning Assessment for GMD events Submit Corrective Action Procedure addressing how system performace will be met. NERC Enforcement Dates 07/01/ /01/ /01/ /01/ /01/ /01/ /01/2022

29 NERC TPL Contents Currently Under for Revision at per FERC Mandate for TPL Modify the benchmark GMD event definition used for GMD Vulnerability Assessments; Make related modifications to requirements pertaining to transformer thermal impact assessments; Require collection of GMD-related data. NERC is directed to make data available; and Require deadlines for Corrective Action Plans (CAPs) and GMD mitigating actions.

30 FERC Vision of GMD Standard Implementation

31 Localized Extreme Events vs. Spatial Averaging for the Benchmark Event Ref: Benchmark Geomagnetic Disturbance Event Description, May 12, 2016 NERC

GMD Voltage Collapse Study

GMD Voltage Collapse Study GMD Voltage Collapse Study Terry Volkmann 2016 Fall Reliability Conference November 2, 2016 1 GMD Voltage Collapse Studies in Wisconsin and Maine Overview: Modeling shows GMD Voltage Collapse Issues: Power

More information

Transformer Thermal Impact Assessment White Paper TPL Transmission System Planned Performance for Geomagnetic Disturbance Events

Transformer Thermal Impact Assessment White Paper TPL Transmission System Planned Performance for Geomagnetic Disturbance Events Transformer Thermal Impact Assessment White Paper TPL-007-2 Transmission System Planned Performance for Geomagnetic Disturbance Events Background Proposed TPL 007 2 includes requirements for entities to

More information

GIC Analysis using PSS E. K.V. PATIL Siemens Power Technologies International Schenectady, New York, USA

GIC Analysis using PSS E. K.V. PATIL Siemens Power Technologies International Schenectady, New York, USA CIGRÉ-697 2015 CIGRÉ Canada Conference 21, rue d Artois, F-75008 PARIS http : //www.cigre.org Winnipeg, Manitoba, August 31-September 2, 2015 GIC Analysis using PSS E K.V. PATIL Siemens Power Technologies

More information

Modeling and Evaluation of Geomagnetic Storms in the Electric Power System

Modeling and Evaluation of Geomagnetic Storms in the Electric Power System 21, rue d Artois, F-75008 PARIS C4-306 CIGRE 2014 http : //www.cigre.org Modeling and Evaluation of Geomagnetic Storms in the Electric Power System K. PATIL Siemens Power Technologies International, Siemens

More information

Transformer Thermal Impact Assessment White Paper TPL Transmission System Planned Performance for Geomagnetic Disturbance Events

Transformer Thermal Impact Assessment White Paper TPL Transmission System Planned Performance for Geomagnetic Disturbance Events Transformer Thermal Impact Assessment White Paper TPL-007-2 Transmission System Planned Performance for Geomagnetic Disturbance Events Background Proposed TPL-007-2 includes requirements for entities to

More information

Transformer Thermal Impact Assessment White Paper Project (Geomagnetic Disturbance Mitigation)

Transformer Thermal Impact Assessment White Paper Project (Geomagnetic Disturbance Mitigation) Transformer Thermal Impact Assessment White Paper Project 2013-03 (Geomagnetic Disturbance Mitigation) TPL-007-1 Transmission System Planned Performance for Geomagnetic Disturbance Events Background On

More information

TPL Transmission System Planned Performance for Geomagnetic Disturbance Events

TPL Transmission System Planned Performance for Geomagnetic Disturbance Events TPL-007-1 Transmission System Planned Performance for Geomagnetic Disturbance Events Stan Sliwa Transmission Planning RSCS Meeting May 18, 2017 www.pjm.com TPL-007-1 Purpose: Establish requirements for

More information

Transformer Thermal Impact Assessment White Paper (Draft) Project (Geomagnetic Disturbance Mitigation)

Transformer Thermal Impact Assessment White Paper (Draft) Project (Geomagnetic Disturbance Mitigation) Transformer Thermal Impact Assessment White Paper (Draft) Project 2013-03 (Geomagnetic Disturbance Mitigation) TPL-007-1 Transmission System Planned Performance during Geomagnetic Disturbances Background

More information

TPL is a new Reliability Standard to specifically address the Stage 2 directives in Order No. 779.

TPL is a new Reliability Standard to specifically address the Stage 2 directives in Order No. 779. Transformer Thermal Impact Assessment White Paper Project 2013-03 (Geomagnetic Disturbance Mitigation) TPL-007-12 Transmission System Planned Performance for Geomagnetic Disturbance Events Background On

More information

Power System Impacts of Geomagnetic Disturbances

Power System Impacts of Geomagnetic Disturbances 1 Power System Impacts of Geomagnetic Disturbances Thomas J. Overbye Fox Family Professor of Electrical l and Computer Engineering i University of Illinois at Urbana Champaign overbye@illinois.edu September

More information

Geomagnetic Disturbances. IEEE PES Chicago Chapter Technical Presentation March 12, Alan Engelmann Transmission Planning ComEd.

Geomagnetic Disturbances. IEEE PES Chicago Chapter Technical Presentation March 12, Alan Engelmann Transmission Planning ComEd. Geomagnetic Disturbances IEEE PES Chicago Chapter Technical Presentation March 12, 2014 Alan Engelmann Transmission Planning ComEd GMD Background Solar Disturbances Impacts Monitoring Events 2 Solar Disturbances

More information

GIC Calculations Using PSS E. Live Demonstration February 16, 2017

GIC Calculations Using PSS E. Live Demonstration February 16, 2017 GIC Calculations Using PSS E Live Demonstration February 16, 2017 usa.siemens.com/digitalgrid NERC TPL-007-1 GMD Vulnerability Assessment Process Source: NERC GMD Task Force Documents Page 2 How to run

More information

Case Study Effects of Geomagnetically Induced Current (GIC) Neutral Blocking Device

Case Study Effects of Geomagnetically Induced Current (GIC) Neutral Blocking Device 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2014 Grid of the Future Symposium Case Study Effects of Geomagnetically Induced Current (GIC) Neutral Blocking Device

More information

2013 Grid of the Future Symposium. Effect of GIC and GIC Capability of EHV Power Transformers A Case Study on an AEP 765 kv Power Transformer Design

2013 Grid of the Future Symposium. Effect of GIC and GIC Capability of EHV Power Transformers A Case Study on an AEP 765 kv Power Transformer Design 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2013 Grid of the Future Symposium Effect of GIC and GIC Capability of EHV Power Transformers A Case Study on an AEP 765

More information

Vulnerability Assessment and Planning

Vulnerability Assessment and Planning Vulnerability Assessment and Planning Project 2013-03 (GMD Mitigation) Standard Drafting Team GMD Task Force In-person meeting March 18-19, 2014 Topics Application of the Benchmark GMD Event in System

More information

See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, Filed by NERC in Docket No. RM15 11 on June 28, 2016.

See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, Filed by NERC in Docket No. RM15 11 on June 28, 2016. Screening Criterion for Transformer Thermal Impact Assessment White Paper TPL-007-2 Transmission System Planned Performance for Geomagnetic Disturbance Events Summary Proposed TPL 007 2 includes requirements

More information

A Process for Evaluating the Degree of Susceptibility of a fleet of Power Transformers to Effects of GIC

A Process for Evaluating the Degree of Susceptibility of a fleet of Power Transformers to Effects of GIC 1 A Process for Evaluating the Degree of Susceptibility of a fleet of Power Transformers to Effects of GIC Ramsis Girgis, Kiran Vedante, and Gary Burden ABB Power Transformers Abstract: There has been

More information

G. KOBET, I. GRANT, G. GOZA Tennessee Valley Authority USA. R. GIRGIS, M. ESPINDOLA ABB Corporation USA SUMMARY

G. KOBET, I. GRANT, G. GOZA Tennessee Valley Authority USA. R. GIRGIS, M. ESPINDOLA ABB Corporation USA SUMMARY 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2016 Grid of the Future Symposium Assessment of the Impact of GMD on the TVA 500 kv Grid & Power Transformers Part II:

More information

Consolidated Edison s Experience with On-line Monitoring and Mitigation of Geomagnetic Disturbances

Consolidated Edison s Experience with On-line Monitoring and Mitigation of Geomagnetic Disturbances Consolidated Edison s Experience with On-line Monitoring and Mitigation of Geomagnetic Disturbances Gary R. Hoffman, Advanced Power Technologies Sam Sambasivan, Consolidated Edison Vincenzo Panuccio, Consolidated

More information

Evaluating Transformer Heating due to Geomagnetic Disturbances

Evaluating Transformer Heating due to Geomagnetic Disturbances Evaluating Transformer Heating due to Geomagnetic Disturbances Presented by: Brian Penny, American Transmission Company 53 rd Annual Minnesota Power Systems Conference November 7, 2017 atcllc.com Presentation

More information

IEEE PES/IAS Joint Chapter July Technical Presentation Meeting Basics of solar phenomena & How transformers react and handle events

IEEE PES/IAS Joint Chapter July Technical Presentation Meeting Basics of solar phenomena & How transformers react and handle events Topic and abstract Geomagnetic disturbances Events associated with GMD have been known and studied in power systems since the 1960 s. Early events pre dating the AC power have been recorded to the 1850

More information

See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, Filed by NERC in RM15-11 on June 28,

See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, Filed by NERC in RM15-11 on June 28, Screening Criterion for Transformer Thermal Impact Assessment Project 2013-03 (Geomagnetic Disturbance Mitigation) TPL-007-12 Transmission System Planned Performance for Geomagnetic Disturbance Events

More information

Unofficial Comment Form Project Geomagnetic Disturbance Mitigation

Unofficial Comment Form Project Geomagnetic Disturbance Mitigation Project 2013-03 Geomagnetic Disturbance Mitigation Please DO NOT use this form for submitting comments. Please use the electronic form to submit comments on the Standard. The electronic comment form must

More information

Grounding Resistance

Grounding Resistance Grounding Resistance Substation grounding resistance is the resistance in ohms between the substation neutral and earth ground (zeropotential reference) An actual fall of potential test is the best way

More information

Interfacing Power System Simulators with Geomagnetically Induced Currents (GIC) Simulation Programs. Luis Marti Hydro One, Canada

Interfacing Power System Simulators with Geomagnetically Induced Currents (GIC) Simulation Programs. Luis Marti Hydro One, Canada 1 Interfacing Power System Simulators with Geomagnetically Induced Currents (GIC) Simulation Programs Luis Marti Hydro One, Canada 2 GMD 101 Background. What is a GMD event. Effects on the power system

More information

Geo-Magnetic Disturbance Analysis of HV and EHV Grids

Geo-Magnetic Disturbance Analysis of HV and EHV Grids Engineering Conferences International ECI Digital Archives Modeling, Simulation, And Optimization for the 21st Century Electric Power Grid Proceedings Fall 10-22-2012 Geo-Magnetic Disturbance Analysis

More information

Model, Monitor & Mitigate Geomagnetically Induced Currents

Model, Monitor & Mitigate Geomagnetically Induced Currents Model, Monitor & Mitigate Geomagnetically Induced Currents Jeff Fleeman, American Electric Power CIGRE Grid of the Future Boston, MA October 22, 2013 CWG/9416P Page 1 Solar Storm Impacts Coronal mass ejections

More information

TPL Project Geomagnetic Disturbance Mitigation. Technical Conference July 17, 2014

TPL Project Geomagnetic Disturbance Mitigation. Technical Conference July 17, 2014 TPL-007-1 Project 2013-03 Geomagnetic Disturbance Mitigation Technical Conference July 17, 2014 Administrative Meeting Space Safety Information Presentations available on the project page: http://www.nerc.com/pa/stand/pages/geomagnetic-disturbance-

More information

SolidGround TM grid stability and harmonics mitigation system Geomagnetic Storm Induced Current (GIC) and Electromagnetic Pulse (EMP) protection

SolidGround TM grid stability and harmonics mitigation system Geomagnetic Storm Induced Current (GIC) and Electromagnetic Pulse (EMP) protection SolidGround TM grid stability and harmonics mitigation system Geomagnetic Storm Induced Current (GIC) and Electromagnetic Pulse (EMP) protection SolidGround TM GIC grid stability and harmonics mitigation

More information

Screening Criterion for Transformer Thermal Impact Assessment Summary Justification Figure 1 Figure 1

Screening Criterion for Transformer Thermal Impact Assessment Summary Justification Figure 1 Figure 1 Screening Criterion for Transformer Thermal Impact Assessment Project 213-3 (Geomagnetic Disturbance Mitigation) TPL-7-1 Transmission System Planned Performance for Geomagnetic Disturbance vents Summary

More information

Screening Criterion for Transformer Thermal Impact Assessment Summary Justification Figure 1 Figure 1

Screening Criterion for Transformer Thermal Impact Assessment Summary Justification Figure 1 Figure 1 Screening Criterion for Transformer Thermal Impact Assessment Project 213-3 (Geomagnetic Disturbance Mitigation) TPL-7-1 Transmission System Planned Performance for Geomagnetic Disturbance vents Summary

More information

MHD-EMP (E3) Assessment of the US Power Grid GIC and Transformer Thermal Assessment

MHD-EMP (E3) Assessment of the US Power Grid GIC and Transformer Thermal Assessment MHD-EMP (E3) Assessment of the US Power Grid GIC and Transformer Thermal Assessment NERC Joint OC-PC Webinar July 25, 2017 Randy Horton, Ph.D., P.E. Senior Program Manager High-altitude Electromagnetic

More information

GIC Distribution. Carlos David Fernández Barroso. Division of Industrial Electrical Engineering and Automation Faculty of Engineering, Lund University

GIC Distribution. Carlos David Fernández Barroso. Division of Industrial Electrical Engineering and Automation Faculty of Engineering, Lund University CODEN:LUTEDX/(TEIE-5328)/1-062/(2014) GIC Distribution Carlos David Fernández Barroso Division of Industrial Electrical Engineering and Automation Faculty of Engineering, Lund University Table of contents

More information

Integration of Geomagnetic Disturbance Modeling into the Power Flow: A Methodology for Large-Scale System Studies

Integration of Geomagnetic Disturbance Modeling into the Power Flow: A Methodology for Large-Scale System Studies Copyright 2012 IEEE. Reprinted, with permission from: Integration of Geomagnetic Disturbance Modeling into the Power Flow: A Methodology for Large-Scale System Studies Thomas J. Overbye, Trevor R. Hutchins,

More information

TPL Project Geomagnetic Disturbance Mitigation. Technical Conference May 20, 2014

TPL Project Geomagnetic Disturbance Mitigation. Technical Conference May 20, 2014 TPL-007-1 Project 2013-03 Geomagnetic Disturbance Mitigation Technical Conference May 20, 2014 Administrative Internet passcode: 3htw0br3wt1s (label located on desk) Presentations available on the project

More information

Screening Criterion for Transformer Thermal Impact Assessment Summary Justification Figure 1 Figure 1

Screening Criterion for Transformer Thermal Impact Assessment Summary Justification Figure 1 Figure 1 Screening Criterion for Transformer Thermal Impact Assessment Project 2013-03 (Geomagnetic Disturbance Mitigation) TPL-007-1 Transmission System Planned Performance for Geomagnetic Disturbance Events Summary

More information

Effects of GIC on Power Transformers and Power Systems

Effects of GIC on Power Transformers and Power Systems Effects of GIC on Power Transformers and Power Systems Prepared by Dr. Ramsis Girgis and Kiran Vedante (USA) in the name of CIGRE SC A2 Background There has been some misconception in the electric power

More information

High-Level Harmonic Distortion During Geomagnetic Disturbances - a Hidden Threat to Grid Security

High-Level Harmonic Distortion During Geomagnetic Disturbances - a Hidden Threat to Grid Security 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2014 Grid of the Future Symposium High-Level Harmonic Distortion During Geomagnetic Disturbances - a Hidden Threat to

More information

Dietrich Bonmann, ABB AG Bad Honnef, March 15, Impact of GIC on transformers and the transmission network

Dietrich Bonmann, ABB AG Bad Honnef, March 15, Impact of GIC on transformers and the transmission network Dietrich Bonmann, ABB AG Bad Honnef, March 15, 2016 Impact of GIC on transformers and the transmission network Impact of GIC on transformers and the transmission network : From GIC to black-out Main network

More information

GMD Impacts on Generators

GMD Impacts on Generators Walling Energy Systems Consulting, LLC GMD Impacts on Generators Reigh Walling 1 CME interacts with earth magnetic field Large solar flare - Coronal Mass Ejection (CME) Protons and electrons in solar wind

More information

2012 Grid of the Future Symposium. Geomagnetic Disturbance Impacts and AEP GIC/Harmonics Monitoring System

2012 Grid of the Future Symposium. Geomagnetic Disturbance Impacts and AEP GIC/Harmonics Monitoring System 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2012 Grid of the Future Symposium Geomagnetic Disturbance Impacts and AEP GIC/Harmonics Monitoring System Q. QIU, J. FLEEMAN

More information

Operational Experiences of an HV Transformer Neutral Blocking Device

Operational Experiences of an HV Transformer Neutral Blocking Device MIPSYCON NOVEMBER 7, 2017 Operational Experiences of an HV Transformer Neutral Blocking Device Fred R. Faxvog, Emprimus Michael B. Marz, American Transmission Co. SolidGround GIC Neutral Blocker Fully

More information

FINNISH EXPERIENCES ON GRID EFFECTS OF GIC'S

FINNISH EXPERIENCES ON GRID EFFECTS OF GIC'S FINNISH EXPERIENCES ON GRID EFFECTS OF GIC'S ESA-SPACE WEATHER WORKSHOP The Netherlands 17. November, 2005 by J. Elovaara 1 Jarmo Elovaara Oct. 25, 2005 Content: 1. About the potential effects of GIC's

More information

A Novel Method to Analyse the Effects of Geomagnetic Induced Current on Transformer

A Novel Method to Analyse the Effects of Geomagnetic Induced Current on Transformer IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 07 December 2016 ISSN (online): 2349-6010 A Novel Method to Analyse the Effects of Geomagnetic Induced Current

More information

concerning the risks to the electric power grid from geomagnetic storms,

concerning the risks to the electric power grid from geomagnetic storms, Description of document: Requested date: Released date: Posted date: Source of document: Idaho Public Utilities Commission (PUC) records concerning the risks to the electric power grid from geomagnetic

More information

DIRECT CURRENT COMPENSATION FIELD EXPERIENCE UNDER SERVICE CONDITIONS

DIRECT CURRENT COMPENSATION FIELD EXPERIENCE UNDER SERVICE CONDITIONS Journal of Energy VOLUME 63 2014 journal homepage: http://journalofenergy.com/ Helfried Passath Siemens AG Österreich Transformers Weiz helfried.passath@siemens.com Peter Hamberger Siemens AG Österreich

More information

Magnetohydrodynamic Electromagnetic Pulse Assessment of the Continental U.S. Electric Grid

Magnetohydrodynamic Electromagnetic Pulse Assessment of the Continental U.S. Electric Grid Magnetohydrodynamic Electromagnetic Pulse Assessment of the Continental U.S. Electric Grid Geomagnetically Induced Current and Transformer Thermal Analysis 3002009001 Magnetohydrodynamic Electromagnetic

More information

Tertiary Winding Design in wye-wye Connected Transformers Restricted Siemens Energy 2013 All rights reserved.

Tertiary Winding Design in wye-wye Connected Transformers Restricted Siemens Energy 2013 All rights reserved. Pomona, CA, May 24 & 25, 2016 Tertiary Winding Design in wye-wye Connected Transformers Scope of Presentation > Tertiary vs. Stabilizing Winding? Tertiary vs. Stabilizing Winding? Need for Stabilizing

More information

Grid Impact of Neutral Blocking for GIC Protection:

Grid Impact of Neutral Blocking for GIC Protection: Report submitted to EMPRIMUS - Critical Infrastructure Protection Grid Impact of Neutral Blocking for GIC Protection: Impact of neutral grounding capacitors on network resonance Prepared By: Athula Rajapakse

More information

Impact of transformer saturation from GIC on power system voltage regulation

Impact of transformer saturation from GIC on power system voltage regulation Impact of transformer saturation from GIC on power system voltage regulation L. Gérin-Lajoie, S. Guillon, J. Mahseredjian, O. Saad Abstract - Geomagnetically induced currents (GICs) affect power systems

More information

Geomagnetic Disturbance Planning Guide

Geomagnetic Disturbance Planning Guide Geomagnetic Disturbance Planning Guide December 2013 1 of 20 3353 Peachtree Road NE Suite 600, North Tower Atlanta, GA 30326 Table of Contents Table of Contents... ii Preface... iii Chapter 1 Introduction...

More information

GIC Neutral Blocking System Prototype to Production

GIC Neutral Blocking System Prototype to Production IEEE Meeting in Augusta, Maine GIC Neutral Blocking System Prototype to Production July 22, 2015 SolidGround TM Installed in Wisconsin Dr. Arnold Vitols, ABB Sr. Scientist and Dr. Fred Faxvog, Sr. Research

More information

Low-Frequency Protection Concepts for the Electric Power Grid: Geomagnetically Induced Current (GIC) and E3 HEMP Mitigation

Low-Frequency Protection Concepts for the Electric Power Grid: Geomagnetically Induced Current (GIC) and E3 HEMP Mitigation Meta-R-322 Low-Frequency Protection Concepts for the Electric Power Grid: Geomagnetically Induced Current (GIC) and E3 HEMP Mitigation John Kappenman Metatech Corporation 358 S. Fairview Ave., Suite E

More information

ITC Holdings Planning Criteria Below 100 kv. Category: Planning. Eff. Date/Rev. # 12/09/

ITC Holdings Planning Criteria Below 100 kv. Category: Planning. Eff. Date/Rev. # 12/09/ ITC Holdings Planning Criteria Below 100 kv * Category: Planning Type: Policy Eff. Date/Rev. # 12/09/2015 000 Contents 1. Goal... 2 2. Steady State Voltage & Thermal Loading Criteria... 2 2.1. System Loading...

More information

Application Guide. Computing Geomagnetically-Induced Current in the Bulk-Power System. December 2013

Application Guide. Computing Geomagnetically-Induced Current in the Bulk-Power System. December 2013 Application Guide Computing Geomagnetically-Induced Current in the Bulk-Power System December 2013 1 3353 Peachtree Road NE Suite 600, North Tower Atlanta, GA 30326 Table of Contents Table of Contents...

More information

Impact of Solar Storms on the Swiss Transmission Network

Impact of Solar Storms on the Swiss Transmission Network Impact of Solar Storms on the Swiss Transmission Network Research Center for Energy Networks - ETH Zurich Giovanni Beccuti Impact of Solar Storms on the Swiss Transmission Network 1/25 Contents 1 Introduction

More information

Disturbances. Their Impact on the Power Grid. By the IEEE Power & Energy Society Technical Council Task Force on

Disturbances. Their Impact on the Power Grid. By the IEEE Power & Energy Society Technical Council Task Force on By the IEEE Power & Energy Society Technical Council Task Force on Geomagnetic Disturbances nasa/sdo/aia Geomagnetic Disturbances Their Impact on the Power Grid Digital Object Identifier 1.119/MPE.213.2256651

More information

ISSN: X Impact factor: (Volume 3, Issue 6) Available online at Modeling and Analysis of Transformer

ISSN: X Impact factor: (Volume 3, Issue 6) Available online at   Modeling and Analysis of Transformer ISSN: 2454-132X Impact factor: 4.295 (Volume 3, Issue 6) Available online at www.ijariit.com Modeling and Analysis of Transformer Divyapradeepa.T Department of Electrical and Electronics, Rajalakshmi Engineering

More information

Validation of a Power Transformer Model for Ferroresonance with System Tests on a 400 kv Circuit

Validation of a Power Transformer Model for Ferroresonance with System Tests on a 400 kv Circuit Validation of a Power Transformer Model for Ferroresonance with System Tests on a 4 kv Circuit Charalambos Charalambous 1, Z.D. Wang 1, Jie Li 1, Mark Osborne 2 and Paul Jarman 2 Abstract-- National Grid

More information

Transformer Technology Seminar GIC Capability of Power Transformers

Transformer Technology Seminar GIC Capability of Power Transformers Pomona CA, May 24-25, 2016 Transformer Technology Seminar GIC Capability of Power Transformers Siemens AG Transformers siemens.com/answers Geo-magnetic Induced Current GIC resistant Transformers page 2

More information

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 4: (June 10, 2013) Page 1 of 75

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 4: (June 10, 2013) Page 1 of 75 PRC-025-1 Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive general discussion

More information

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 5: (August 2, 2013) Page 1 of 76

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 5: (August 2, 2013) Page 1 of 76 PRC-025-1 Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive general discussion

More information

Geomagnetic Disturbances: Impact on Power System Components

Geomagnetic Disturbances: Impact on Power System Components Geomagnetic Disturbances: Impact on Power System Components Sakis Meliopoulos Georgia Power Distinguished Professor School of Electrical and Computer Engineering Georgia Institute of Technology tlanta,

More information

Power Grid Sensitivity Analysis of Geomagnetically Induced Currents

Power Grid Sensitivity Analysis of Geomagnetically Induced Currents IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 4, NOVEMBER 2013 4821 Power Grid Sensitivity Analysis of Geomagnetically Induced Currents Thomas J. Overbye, Fellow, IEEE, Komal S. Shetye, Member, IEEE,

More information

NORMES DE FIABILITÉ DE LA NERC (VERSION ANGLAISE)

NORMES DE FIABILITÉ DE LA NERC (VERSION ANGLAISE) COORDONNATEUR DE LA FIABILITÉ Direction Contrôle des mouvements d énergie Demande R-3944-2015 NORMES DE FIABILITÉ DE LA NERC (VERSION ANGLAISE) Original : 2016-10-14 HQCMÉ-10, Document 2 (En liasse) Standard

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control Spring 2014 Instructor: Kai Sun 1 References Saadat s Chapters 12.6 ~12.7 Kundur s Sections

More information

DISTURBANCES IN THE SOUTHERN AFRICAN POWER NETWORK DUE TO GEOMAGNETICALLY INDUCED CURRENTS

DISTURBANCES IN THE SOUTHERN AFRICAN POWER NETWORK DUE TO GEOMAGNETICALLY INDUCED CURRENTS Cigré Session, Paris, Paper 36-26 August 22 DISTURBANCES IN THE SOUTHERN AFRICAN POWER NETWORK DUE TO GEOMAGNETICALLY INDUCED CURRENTS J. Koen *, C.T. Gaunt University of Cape Town, South Africa 1. INTRODUCTION

More information

The Use of Intensity Modulated Optical Sensing Technology to Identify and Measure Impacts of GIC on the Power System

The Use of Intensity Modulated Optical Sensing Technology to Identify and Measure Impacts of GIC on the Power System The Use of Intensity Modulated Optical Sensing Technology to Identify and Measure Impacts of GIC on the Power System Written By: Jill Duplessis, SmartSenseCom, Inc. dwells@smartsensecom.com Washington,

More information

Central East Voltage and Stability Analysis for Marcy FACTS Project Phase I

Central East Voltage and Stability Analysis for Marcy FACTS Project Phase I Prepared by NYISO Operations Engineering 1. INTRODUCTION Central East Voltage and Stability Analysis for The Marcy Flexible AC Transmission System (FACTS) project is a joint technology partnership between

More information

Standard PRC Coordination of Generating Unit or Plant Capabilities, Voltage Regulating Controls, and Protection

Standard PRC Coordination of Generating Unit or Plant Capabilities, Voltage Regulating Controls, and Protection A. Introduction 1. Title: Coordination of Generating Unit or Plant Capabilities, Voltage Regulating Controls, and Protection 2. Number: PRC-019-2 3. Purpose: To verify coordination of generating unit Facility

More information

R10. III B.Tech. II Semester Supplementary Examinations, January POWER SYSTEM ANALYSIS (Electrical and Electronics Engineering) Time: 3 Hours

R10. III B.Tech. II Semester Supplementary Examinations, January POWER SYSTEM ANALYSIS (Electrical and Electronics Engineering) Time: 3 Hours Code No: R3 R1 Set No: 1 III B.Tech. II Semester Supplementary Examinations, January -14 POWER SYSTEM ANALYSIS (Electrical and Electronics Engineering) Time: 3 Hours Max Marks: 75 Answer any FIVE Questions

More information

148 Electric Machines

148 Electric Machines 148 Electric Machines 3.1 The emf per turn for a single-phase 2200/220- V, 50-Hz transformer is approximately 12 V. Calculate (a) the number of primary and secondary turns, and (b) the net cross-sectional

More information

Texas Reliability Entity Event Analysis. Event: May 8, 2011 Loss of Multiple Elements Category 1a Event

Texas Reliability Entity Event Analysis. Event: May 8, 2011 Loss of Multiple Elements Category 1a Event Texas Reliability Entity Event Analysis Event: May 8, 2011 Loss of Multiple Elements Category 1a Event Texas Reliability Entity July 2011 Page 1 of 10 Table of Contents Executive Summary... 3 I. Event

More information

PowerWorld Simulator GIC

PowerWorld Simulator GIC Tom Overbye PowerWorld Client Conference February 23, 2016 2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 support@powerworld.com http://www.powerworld.com Geomagnetic Disturbances

More information

ANALYSIS OF THE MITIGATION METHODS OF GEOMAGNETICALLY INDUCED CURRENT

ANALYSIS OF THE MITIGATION METHODS OF GEOMAGNETICALLY INDUCED CURRENT ANALYSIS OF THE MITIGATION METHODS OF GEOMAGNETICALLY INDUCED CURRENT AnkitNimje 1, Nikhil Bhagadkar 2, Shubham Marsinge 3, Prof. C.S.Hiwarkar 4 1 Ankit Nimje, Electrical Department, K.D.K.C.E, Maharashtra,

More information

Document C-29. Procedures for System Modeling: Data Requirements & Facility Ratings. January 5 th, 2016 TFSS Revisions Clean Open Process Posting

Document C-29. Procedures for System Modeling: Data Requirements & Facility Ratings. January 5 th, 2016 TFSS Revisions Clean Open Process Posting Document C-29 Procedures for System Modeling: January 5 th, 2016 TFSS Revisions Clean Open Process Posting Prepared by the SS-37 Working Group on Base Case Development for the Task Force on System Studies.

More information

MITIGATING GEOMAGNETIC INDUCED CURRENTS USING SURGE ARRESTERS. Alberto Ramirez Orquin Vanessa Ramirez Resilient Grids, LLC.

MITIGATING GEOMAGNETIC INDUCED CURRENTS USING SURGE ARRESTERS. Alberto Ramirez Orquin Vanessa Ramirez Resilient Grids, LLC. MITIGATING GEOMAGNETIC INDUCED CURRENTS USING SURGE ARRESTERS Alberto Ramirez Orquin Vanessa Ramirez Resilient Grids, LLC. September, 2015 General Introducing a simple, cost-effective, means to deal with

More information

The power transformer

The power transformer ELEC0014 - Introduction to power and energy systems The power transformer Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct November 2017 1 / 35 Power transformers are used: to transmit

More information

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation Course ELEC0014 - Introduction to electric power and energy systems Additional exercises with answers December 2017 Exercise A1 Consider the system represented in the figure below. The four transmission

More information

Space Weather Impact on the Scandinavian Interconnected Power Transmission System

Space Weather Impact on the Scandinavian Interconnected Power Transmission System Space Weather Impact on the Scandinavian Interconnected Power Transmission System Roberta Piccinelli and Elisabeth Krausmann 2015 Report EUR 27571 EN European Commission Joint Research Centre Institute

More information

Spring 2000 EE361: MIDTERM EXAM 1

Spring 2000 EE361: MIDTERM EXAM 1 NAME: STUDENT NUMBER: Spring 2000 EE361: MIDTERM EXAM 1 This exam is open book and closed notes. Assume f=60 hz and use the constant µ o =4π 10-7 wherever necessary. Be sure to show all work clearly. 1.

More information

System Operating Limit Definition and Exceedance Clarification

System Operating Limit Definition and Exceedance Clarification System Operating Limit Definition and Exceedance Clarification The NERC-defined term System Operating Limit (SOL) is used extensively in the NERC Reliability Standards; however, there is much confusion

More information

Chapter 11. Alternating Current

Chapter 11. Alternating Current Unit-2 ECE131 BEEE Chapter 11 Alternating Current Objectives After completing this chapter, you will be able to: Describe how an AC voltage is produced with an AC generator (alternator) Define alternation,

More information

Level 6 Graduate Diploma in Engineering Electrical Energy Systems

Level 6 Graduate Diploma in Engineering Electrical Energy Systems 9210-114 Level 6 Graduate Diploma in Engineering Electrical Energy Systems Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler,

More information

POWER TRANSFORMER SPECIFICATION, DESIGN, QUALITY CONTROL AND TESTING 18 MARCH 2009

POWER TRANSFORMER SPECIFICATION, DESIGN, QUALITY CONTROL AND TESTING 18 MARCH 2009 POWER TRANSFORMER SPECIFICATION, DESIGN, QUALITY CONTROL AND TESTING 18 MARCH 2009 Nkosinathi Buthelezi Senior Consultant: Power Transformers and Reactors Presentation Content Standardization of Power

More information

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits QUESTION BANK ETE (17331) CM/IF Chapter1: DC Circuits Q1. State & explain Ohms law. Also explain concept of series & parallel circuit with the help of diagram. 3M Q2. Find the value of resistor in fig.

More information

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements Division 502 Technical Applicability 1(1) Section 502.1 applies to: Expedited Filing Draft August 22, 2017 the legal owner of an aggregated generating facility directly connected to the transmission system

More information

Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard. Event Selection Process

Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard. Event Selection Process This procedure outlines the Electric Reliability Organization (ERO) process for supporting the Frequency Response Standard (FRS). A Procedure revision request may be submitted to the ERO for consideration.

More information

Investigation of Geomagnetic Induced Current Effects on Power Transformer

Investigation of Geomagnetic Induced Current Effects on Power Transformer International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Investigation of Geomagnetic Induced Current Effects on Power Transformer Roshni.R.Jethani 1, Dr.Harikumar Naidu 2,

More information

Study of Power Transformer Abnormalities and IT Applications in Power Systems

Study of Power Transformer Abnormalities and IT Applications in Power Systems Study of Power Transformer Abnormalities and IT Applications in Power Systems Xuzhu Dong Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University In partial fulfillment

More information

Methodology Utilized in Black-Start Studies on EHV Power Networks

Methodology Utilized in Black-Start Studies on EHV Power Networks Methodology Utilized in Black-Start Studies on EHV Power Networks C. Saldaña / G. Calzolari Av. Millán 4016 - Montevideo 11700 - Uruguay gracclau@adinet.com.uy Abstract - This article presents the methodology

More information

Lecture 4 Power System Instrumentation. Course map

Lecture 4 Power System Instrumentation. Course map Lecture 4 Power System Instrumentation 1 Course map 2 1 Outline of the Lecture Instrument Transformers Voltage Transformer Current Transformers Measurement Setups Instrumentation 3 The Current Transformer

More information

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Wind Aggregated Generating Facilities Technical Requirements

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Wind Aggregated Generating Facilities Technical Requirements Applicability 1(1) Section 502.1 applies to the ISO, and subject to the provisions of subsections 1(2), (3) and (4) to any: (a) a new wind aggregated generating facility to be connected to the transmission

More information

Solar Storm Probabilities Grid Contingencies Harmonic Relay Settings

Solar Storm Probabilities Grid Contingencies Harmonic Relay Settings Presentation to NERC GMD Meeting March 18 th 19 th, 2014 SolidGround TM Transformer Neutral Blocking System Solar Storm Probabilities Grid Contingencies Harmonic Relay Settings Agenda US Power Usage and

More information

Transmission Interconnection Requirements for Inverter-Based Generation

Transmission Interconnection Requirements for Inverter-Based Generation Transmission Requirements for Inverter-Based Generation June 25, 2018 Page 1 Overview: Every generator interconnecting to the transmission system must adhere to all applicable Federal and State jurisdictional

More information

ELECTRICAL POWER TRANSMISSION TRAINER

ELECTRICAL POWER TRANSMISSION TRAINER ELECTRICAL POWER TRANSMISSION TRAINER ELECTRICAL POWER TRANSMISSION TRAINER This training system has been designed to provide the students with a fully comprehensive knowledge in Electrical Power Engineering

More information

Benchmark Geomagnetic Disturbance Event Description

Benchmark Geomagnetic Disturbance Event Description Benchmark Geomagnetic Disturbance Event Description Project 2013-03 GMD Mitigation Standard Drafting Team May 12, 2016 NERC Report Title Report Date 1 of 23 Table of Contents Preface...3 Introduction...4

More information

Comprehensive Study on Magnetization Current Harmonics of Power Transformers due to GICs

Comprehensive Study on Magnetization Current Harmonics of Power Transformers due to GICs Comprehensive Study on Magnetization Current Harmonics of Power Transformers due to GICs S. A. Mousavi, C. Carrander, G. Engdahl Abstract-- This paper studies the effect of DC magnetization of power transformers

More information

DUKE ENERGY CAROLINAS TRANSMISSION SYSTEM PLANNING GUIDELINES. Transmission Planning

DUKE ENERGY CAROLINAS TRANSMISSION SYSTEM PLANNING GUIDELINES. Transmission Planning DUKE ENERGY CAROLINAS TRANSMISSION SYSTEM PLANNING GUIDELINES Transmission Planning TABLE OF CONTENTS I. SCOPE 1 II. TRANSMISSION PLANNING OBJECTIVES 2 III. PLANNING ASSUMPTIONS 3 A. Load Levels 3 B. Generation

More information

NERC Protection Coordination Webinar Series June 16, Phil Tatro Jon Gardell

NERC Protection Coordination Webinar Series June 16, Phil Tatro Jon Gardell Power Plant and Transmission System Protection Coordination Phase Distance (21) and Voltage-Controlled or Voltage-Restrained Overcurrent Protection (51V) NERC Protection Coordination Webinar Series June

More information