Unit V. Multi-User Radio Communication

Size: px
Start display at page:

Download "Unit V. Multi-User Radio Communication"

Transcription

1 Unit V Multi-User Radio Communication ADVANCED MOBILE PONE SERVICE (AMPS) 1906: 1 st radio transmission of Human voice. What s the medium? Used an RC circuit to modulate a carrier frequency that radiated up and down an antenna. Receiver had a matched RC circuit with an antenna 1910: Lars Ericsson in Sweden invents the first car phone. However, Morse Code continues to be the primary method of sending information without a wire. 1934: Federal Communications Commission is founded by Roosevelt s New Deal. Charged to allocate the radio spectrum with the public interest in mind. The FCC was corrupt until the mid 60 s, it propped up AM radio for years to keep out newer FM stations. The FCC gave priority in terms of broadcast channels to emergency and government units. WW2: Many innovations, including RADAR. Also the first mobile FM Transmitter/Receiver. Weighed over 30 lbs. More like a Walkie Talkie. Developed by Motorola. 1946: In St. Louis, AT&T and Southwestern Bell introduced the first mobile telephone service. There were 6 channels in the 150 MHz band with 60 KHz allocated to each channel. A very powerful antennae sat atop a centrally located building. All calls were routed through here. Not full duplex; it was like a walkie/talkie. Operators routed all calls 1954/1958: Silicon transistor and integrated circuits are invented at Texas Instruments. Walkie/Talkies were now the size of a large shoe. 1960: Bell employees informally outline a cellular plan and request 75 MHz of bandwidth around the 800 MHz band. Everything that was needed to have mobile communications was invented at this point except the microprocessor (1971 by Intel). CS Analog & Digital Communication,Unit 5 Page 1

2 1973: Martin Cooper from Motorola files for a patent on the first handheld mobile phone. He didn t invent cellular phones, however, Bell had a working system on trains 4 years earlier, but it wasn t handheld. They were both cellular with frequency reuse. 1974: The FCC releases all the requested bandwidth 1975: Bell receives permission to start a commercial cellular network in Chicago. They order 135 phones at a cost of over $500, : Lucent makes the first DSP on one chip. October 12, 1983: Bell rolls out the first full-scale cellular network in Chicago. Covers 2100 square miles with 12 cellular sites. Uses a system called AMPS Operated in the 800 MHz band that had been allocated by the FCC. Telephones were expensive suit case type phones 1983 are cell phone. AMPS: Advanced Mobile Phone System Known as First Generation Wireless Analog channels of 30 KHz. Uses Frequency Division Multiple Access Uses frequency reuse people in other cells can use your frequency without interference. Very susceptible to static. Very easy to ease drop. Introduced in Must be supported by every wireless carrier until February, OnStar still uses AMPS. In 2005, 15% of Alltel s customers were still using AMPS. Replaced by TDMA and now CDMA (all digital) technologies. First generation of cell phones 3 basic devices mobile base transceiver mobile telephone switching office (MTSO) Voice and Control Channels Outgoing from mobile input phone number and press send CS Analog & Digital Communication,Unit 5 Page 2

3 mobile links to base xcvr via control channel base to MTSO to POTS MTSO routes connection back to mobile via voice channel mobile shifts from control to voice Incoming to mobile call goes from POTS to MTSO on control channel, MTSO searches for mobile by PAGING every active mobile if found, MTSO rings it and establishes voice channel connection uses xcvr with strongest signal from mobile The only system available in the United States until about 1997 The first system used for cellular telephony- is analog Uses the 800 MHz frequency band of the spectrum Is still being used widely - The number of subscribers began to decrease in 1999 due to migration to digital Utilizes FDMA (Frequency division multiple access) to separate users In FDMA, users are separated in frequency. i.e. mobile phones communicate at different frequencies than the others within each cell. The radio spectrum is shared among users GLOBAL SYSTEM FOR MOBILE COMMUNICATIONS (GSM) A version of time division multiple access (TDMA) technology, because it divides frequency bands into channels and assigns signals time slots within each channel. Makes more efficient use of limited bandwidth than the IS-136 TDMA standard common in the United States. Makes use of silences in a phone call to increase its signal compression, leaving more open time slots in the channel. More than 800 million end users in 190 countries and representing over 70% of today's digital wireless market. Israel source: GSM Association Orange uses GSM Pelephone and Cellcom are about to use GSM GSM Services GSM was designed to do 3 things: 1. Bearer data services: Faxes, text messages, web pages. Basic GSM had a basic data rate that is limited to 9.6 kbps CS Analog & Digital Communication,Unit 5 Page 3

4 Extended by GMRS and EDGE to around 384 Kbps 2. Tele Services: Voice traffic But, at a lower quality than analog. 3. Supplementary services Call forwarding, caller id, etc Meaning, we need to connect to the SS7 network GSM functional architecture System architecture As with all systems in the telecommunication area, GSM comes with a hierarchical, complex system architecture comprising many entities, interfaces, and acronyms. A GSM system consists of three subsystems, the radio sub system (RSS), the network and switching subsystem (NSS), and the operation subsystem (OSS). Each subsystem will be discussed in more detail in the following sections. Generally, a GSM customer only notices a very small fraction of the whole network - the mobile stations (MS) and some antenna masts of the base transceiver stations (BTS) Radio subsystem Base station subsystem (BSS): A GSM network comprises many BSSs, each controlled by a base station controller (BSC). The BSS performs all functions necessary to maintain radio connections to an MS, coding/decoding of voice, and rate adaptation to/from the wireless network part. Besides a BSC, the BSS contains several BTSs. Base transceiver station (BTS): A BTS comprises all radio equipment, i.e., antennas, signal processing, amplifiers necessary for radio transmission. A BTS can form a radio CS Analog & Digital Communication,Unit 5 Page 4

5 cell or, using sectorized antennas, several cells, and is connected to MS via the Um interface (ISDN U interface for mobile use), and to the BSC via the Abis interface. The Um interface contains all the mechanisms necessary for wireless transmission (TDMA, FDMA etc.) and will be discussed in more detail below. The Abis interface consists of 16 or 64 kbit/s connections. A GSM cell can measure between some 100 m and 35 km depending on the environment (buildings, open space, mountains etc.) but also expected traffic. Base station controller (BSC): The BSC basically manages the BTSs. It reserves radio frequencies, handles the handover from one BTS to another within the BSS, and performs paging of the MS. The BSC also multiplexes the radio channels onto the fixed network connections at the A interface. Mobile station (MS): The MS comprises all user equipment and software needed for communication with a GSM network. An MS consists of user independent hard- and software and of the subscriber identity module (SIM), which stores all user-specific data that is relevant to GSM.3 While an MS can be identified via the international mobile equipment identity (IMEI), a user can personalize any MS using his or her SIM, i.e., userspecific mechanisms like charging and authentication are based on the SIM, not on the device itself. Device-specific mechanisms, e.g., theft protection, use the device specific IMEI. Without the SIM, only emergency calls are possible. The SIM card contains many identifiers and identity number (PIN), a PIN unblocking key (PUK), an authentication key Ki, and the inter-national mobile subscriber identity tables, such as card-type, serial number, a list of subscribed services, a personal (IMSI) The PIN is used to unlock the MS. Using the wrong PIN three times will lock the SIM. In such cases, the PUK is needed to unlock the SIM. The MS stores dynamic information while logged onto the GSM system, such as, e.g., the cipher key Kc and he location information consisting of a temporary mobile subscriber identity (TMSI) and the location area identification (LAI). Typical MSs for GSM900 have a transmit power of up to 2 W, whereas for GSM W is enough due to the smaller cell size. Apart from the telephone interface, an MS can also offer other types of interfaces to users with display, loudspeaker, microphone, and programmable soft keys. Further interfaces comprise computer modems, IrDA, or Bluetooth. Typical MSs, e.g., mobile phones, comprise many more vendor-specific functions and components, such as cameras, fingerprint sensors, calendars, address books, games, and Internet browsers. Personal digital assistants (PDA) with mobile phone functions are also available. The reader should be aware that an MS could also be integrated into a car or be used for location tracking of a container. Network and switching subsystem The heart of the GSM system is formed by the network and switching subsystem (NSS). The NSS connects the wireless network with standard public networks, performs handovers between different BSSs, comprises functions for worldwide localization of users and supports charging, accounting, and roaming of users between different CS Analog & Digital Communication,Unit 5 Page 5

6 providers in different countries. The NSS consists of the following switches and databases: Mobile services switching center (MSC): MSCs are high-performance digital ISDN switches. They set up connections to other MSCs and to the BSCs via the A interface, and form the fixed backbone network of a GSM system. Typically, an MSC manages several BSCs in a geographical region. A gateway MSC (GMSC) has additional connections to other fixed networks, such as PSTN and ISDN. Using additional interworking functions (IWF), an MSC can also connect to public data networks (PDN) such as X.25. An MSC handles all signaling needed for connection setup, connection release and handover of connections to other MSCs. The standard signaling system No. 7 (SS7) is used for this purpose. SS7 covers all aspects of control signaling for digital networks (reliable routing and delivery of control messages, establishing and monitoring of calls). Features of SS7 are number portability, free phone/toll/collect/credit calls, call forwarding, three-way calling etc. An MSC also performs all functions needed for supplementary services such as call forwarding, multi-party calls, reverse charging etc Home location register (HLR): The HLR is the most important database in a GSM system as it stores all user-relevant information. This comprises static information, such as the mobile subscriber ISDN number (MSISDN), sub-scribed services (e.g., call forwarding, roaming restrictions, GPRS), international mobile subscriber identity (IMSI). Dynamic information is also needed, e.g., the current location area (LA) of the MS, the mobile subscriber roaming number (MSRN), the current VLR and MSC. As soon as an MS leaves its current LA, the information in the HLR is updated. This information is necessary to localize a user in the worldwide GSM network. All these user-specific information elements only exist once for each user in a single HLR, which also supports charging and accounting. HLRs can manage data for several million customers and contain highly specialized data bases which must fulfill certain real-time requirements to answer requests within certain time-bounds. Visitor location register (VLR): The VLR associated to each MSC is a dynamic database which stores all important information needed for the MS users currently in the LA that is associated to the MSC (e.g., IMSI, MSISDN, HLR address). If a new MS comes into an LA the VLR is responsible for, it copies all relevant information for this user from the HLR. This hierarchy of VLR and HLR avoids frequent HLR updates and long-distance signaling of user information. Some VLRs in existence, are capable of managing up to one million customers. Operation subsystem The third part of a GSM system, the operation subsystem (OSS), contains the necessary functions for network operation and maintenance. The OSS possesses network entities of its own and accesses other entities via SS7 signaling The following entities have been defined: CS Analog & Digital Communication,Unit 5 Page 6

7 Operation and maintenance center (OMC): The OMC monitors and controls all other network entities via the O interface (SS7 with X.25). Typical OMC management functions are traffic monitoring, status reports of network entities, subscriber and security management, or accounting and billing. OMCs use the concept of telecommunication management network (TMN) as standardized by the ITU-T. Authentication centre (AuC): As the radio interface and mobile stations are particularly vulnerable, a separate AuC has been defined to protect user identity and data transmission. The AuC contains the algorithms for authentication as well as the keys for encryption and generates the values needed for user authentication in the HLR. The AuC may, in fact, be situated in a special protected part of the HLR. Equipment identity register (EIR): The EIR is a database for all IMEIs, i.e., it stores all device identifications registered for this network. As MSs are mobile, they can be easily stolen. With a valid SIM, anyone could use the stolen MS. The EIR has a blacklist of stolen (or locked) devices. In theory an MS is useless as soon as the owner has reported a theft. Unfortunately, the blacklists of different providers are not usually synchronized and the illegal use of a device in another operator s network is possible (the reader may speculate as to why this is the case). The EIR also contains a list of valid IMEIs (white list), and a list of malfunctioning devices (gray list). CDMA Third generation system Code Division Multiple Access (CDMA) Separates users by assigning them digital codes within a broad range of the radio frequency First technology to use soft-handoff Employs spread spectrum technique Advantages Improved capacity, coverage, voice quality, and immunity from interference Each voice signal is digitized and assigned a unique code, and then small components of the signal are issued over multiple frequencies using the spread spectrum technique. CS Analog & Digital Communication,Unit 5 Page 7

8 Cells In a city, there might be one MTSO There will be many xcvrs, each in its own area or CELL Cell is hexagonal, with dia. of 6 miles or less Channels Every mobile in a cell who is talking must have its own channel Otherwise, there will be interference More channels = more users Rule of thumb - one channel can support 20 users Cell Sectorization Cells can be divided into sectors to provide a smaller coverage area, and therefore, more frequency reuse. Cell Area Cellular areas aren t really circular as the area depends on the terrain and the interference that s present. Why Hexagons? CS Analog & Digital Communication,Unit 5 Page 8

9 Using hexagons, as opposed to circles or boxes, allows for a better visualization of the coverage areas. Also, a system of hexagons helps offset cells from linear road boundaries (where cell phones were envisioned to be used). Making a Call When a mobile is idle, i.e., it is not experiencing the process of a call, then it searches all the FCCs to determine the one with the highest signal strength. The mobile then monitors this particular FCC. However, when the signal strength falls below a particular threshold that is insufficient for a call to take place, the mobile again searches all the FCCs for the one with the highest signal strength. For a particular country or continent, the control channels will be the same. So all mobiles in that country or continent will search among the same set of control channels. However, when mobile moves to a different country or continent, then the control channels for that particular location will be different and hence the mobile will not work. Each mobile has a mobile identification number (MIN). When a user wants to make a call, he sends a call request to the MSC on the reverse control channel. He also sends the MIN of the person to whom the call has to be made. The MSC then sends this MIN to all the base stations. The base station transmits this MIN and all the mobiles within the coverage area of that base station receive the MIN and match it with their own. If the MIN matches with a particular MS, that mobile sends an acknowledgment to the BS. The BS then informs the MSC that the mobile is within its coverage area. The MSC then instructs the base station to access specific unused voice channel pair. The base station then sends a message to the mobile to move to the particular channels and it also sends a signal to the mobile for ringing. In order to maintain the quality of the call, the MSC adjusts the transmitted power of the mobile which is usually expressed in db or dbm. When a mobile moves from the coverage area of one base station to the coverage area of another base station i.e., from one cell to another cell, then the signal strength of the initial base station may not be sufficient to continue the call in progress. So the call has to be transferred to the other base station. This is called handoff. In such cases, in order to maintain the call, the MSC transfers the CS Analog & Digital Communication,Unit 5 Page 9

10 call to one of the unused voice channels of the new base station or it transfers the control of the current voice channels to the new base station. Spectral Allocation In U.S., we use two 25mHz bands l one band from mobile to xcvr l one band from xcvr to mobile Each channel uses 30 khz So - about 832 channels for a city But - channels split between two companies 21 for control, 395 for voice So - can support about 7900 users Frequency Reuse Also called Spatial Allocation Cells are small, so signals can be low power Can use same freq. in a cell that is far away, but not one nearby l at least 7 cells must intervene So - each cell can use about 57 channels So - each cell can support 1140 users Hand-offs Mobile phones move from cell to cell As signal fades, mobile asks MTSO for a new base xcvr MTSO polls all base xcvrs to see which has strongest signal with mobile Mobile shifts to new channel coming from new base Roaming Mobile has moved to a different city or subscriber area MTSO will check with your provider, via land-line Then will allow you access Keeps track of billing data Multiple Access First generation system Based on FDMA (Frequency Division Multiple Access), where frequency band is divided into a number of channels. Each channel carries only one voice conversation at a time. AMPS operates on 800 MHz or 1800 MHz CS Analog & Digital Communication,Unit 5 Page 10

11 FDMA Advantages: Widest coverage Limitations: Inadequate to satisfy the increasing demand Poor security Not optimized for data TDMA Second generation system Enables users to access the whole channel bandwidth for a fraction of the time, called slot, on a periodic basis Has applications in satellite communications Advantages Improved capacity CS Analog & Digital Communication,Unit 5 Page 11

12 CDMA Third generation system Separates users by assigning them digital codes within a broad range of the radio frequency First technology to use soft-handoff Employs spread spectrum technique Advantages Improved capacity, coverage, voice quality, and immunity from interference CS Analog & Digital Communication,Unit 5 Page 12

13 CS Analog & Digital Communication,Unit 5 Page 13

14 CS Analog & Digital Communication,Unit 5 Page 14

15 CS Analog & Digital Communication,Unit 5 Page 15

16 CS Analog & Digital Communication,Unit 5 Page 16

17 CS Analog & Digital Communication,Unit 5 Page 17

18 CS Analog & Digital Communication,Unit 5 Page 18

19 CS Analog & Digital Communication,Unit 5 Page 19

20 CS Analog & Digital Communication,Unit 5 Page 20

21 CS Analog & Digital Communication,Unit 5 Page 21

22 CS Analog & Digital Communication,Unit 5 Page 22

23 CS Analog & Digital Communication,Unit 5 Page 23

24 CS Analog & Digital Communication,Unit 5 Page 24

25 CS Analog & Digital Communication,Unit 5 Page 25

An Introduction to Wireless Technologies Part 2. F. Ricci

An Introduction to Wireless Technologies Part 2. F. Ricci An Introduction to Wireless Technologies Part 2 F. Ricci Content Medium access control (MAC): FDMA = Frequency Division Multiple Access TDMA = Time Division Multiple Access CDMA = Code Division Multiple

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 GSM 2 GSM Architecture Frequency Band and Channels Frames in GSM Interfaces, Planes, and Layers of GSM Handoff Short Message Service (SMS) 3 subscribers

More information

Communication Systems GSM

Communication Systems GSM Communication Systems GSM Computer Science Organization I. Data and voice communication in IP networks II. Security issues in networking III. Digital telephony networks and voice over IP 2 last to final

More information

An Introduction to Wireless Technologies Part 2. F. Ricci 2008/2009

An Introduction to Wireless Technologies Part 2. F. Ricci 2008/2009 An Introduction to Wireless Technologies Part 2 F. Ricci 2008/2009 Content Multiplexing Medium access control Medium access control (MAC): FDMA = Frequency Division Multiple Access TDMA = Time Division

More information

Outline / Wireless Networks and Applications Lecture 18: Cellular: 1G, 2G, and 3G. Advanced Mobile Phone Service (AMPS)

Outline / Wireless Networks and Applications Lecture 18: Cellular: 1G, 2G, and 3G. Advanced Mobile Phone Service (AMPS) Outline 18-452/18-750 Wireless Networks and Applications Lecture 18: Cellular: 1G, 2G, and 3G 1G: AMPS 2G: GSM 2.5G: EDGE, CDMA 3G: WCDMA Peter Steenkiste Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17

More information

MOBILE COMPUTING 4/8/18. Basic Call. Public Switched Telephone Network - PSTN. CSE 40814/60814 Spring Transit. switch. Transit. Transit.

MOBILE COMPUTING 4/8/18. Basic Call. Public Switched Telephone Network - PSTN. CSE 40814/60814 Spring Transit. switch. Transit. Transit. MOBILE COMPUTING CSE 40814/60814 Spring 2018 Public Switched Telephone Network - PSTN Transit switch Transit switch Long distance network Transit switch Local switch Outgoing call Incoming call Local switch

More information

Page 1. Problems with 1G Systems. Wireless Wide Area Networks (WWANs) EEC173B/ECS152C, Spring Cellular Wireless Network

Page 1. Problems with 1G Systems. Wireless Wide Area Networks (WWANs) EEC173B/ECS152C, Spring Cellular Wireless Network EEC173B/ECS152C, Spring 2009 Wireless Wide Area Networks (WWANs) Cellular Wireless Network Architecture and Protocols Applying concepts learned in first two weeks: Frequency planning, channel allocation

More information

GSM and Similar Architectures Lesson 04 GSM Base station system and Base Station Controller

GSM and Similar Architectures Lesson 04 GSM Base station system and Base Station Controller GSM and Similar Architectures Lesson 04 GSM Base station system and Base Station Controller 1 GSM network architecture Radio subsystem (RSS) Network subsystem (NSS) Operation subsystem (OSS) 2 RSS Consists

More information

Chapter 2: Global System for Mobile Communication

Chapter 2: Global System for Mobile Communication Chapter 2: Global System for Mobile Communication (22 Marks) Introduction- GSM services and features, GSM architecture, GSM channel types, Example of GSM Call: GSM to PSTN call, PSTN to GSM call. GSM frame

More information

UNIT- 2. Components of a wireless cellular network

UNIT- 2. Components of a wireless cellular network UNIT- 2 Components of a wireless cellular network These network elements may be divided into three groups. MS- Provides the user link to wireless network RBS, BSC The B.S system provides the wireless system

More information

First Generation Systems

First Generation Systems Intersystem Operation and Mobility Management David Tipper Associate Professor Graduate Program in Telecommunications and Networking University of Pittsburgh Telcom 2720 Slides 6 http://www.tele.pitt.edu/tipper.html

More information

GSM SYSTEM OVERVIEW. Important Principles and Technologies of GSM

GSM SYSTEM OVERVIEW. Important Principles and Technologies of GSM GSM SYSTEM OVERVIEW Important Principles and Technologies of GSM INTRODUCTION TO GSM WHAT IS GSM? GROUPE SPECIALE MOBILE GLOBAL SYSTEM for MOBILE COMMUNICATIONS OBJECTIVES To be aware of the developments

More information

Cellular Network. Ir. Muhamad Asvial, MSc., PhD

Cellular Network. Ir. Muhamad Asvial, MSc., PhD Cellular Network Ir. Muhamad Asvial, MSc., PhD Center for Information and Communication Engineering Research (CICER) Electrical Engineering Department - University of Indonesia E-mail: asvial@ee.ui.ac.id

More information

Chapter 5 Acknowledgment:

Chapter 5 Acknowledgment: Chapter 5 Acknowledgment: This material is based on the slides formatted by Dr Sunilkumar S. Manvi and Dr Mahabaleshwar S. Kakkasageri, the authors of the textbook: Wireless and Mobile Networks, concepts

More information

Wireless Telecommunication Systems GSM as basis of current systems Enhancements for data communication: HSCSD, GPRS, EDGE UMTS: Future or not?

Wireless Telecommunication Systems GSM as basis of current systems Enhancements for data communication: HSCSD, GPRS, EDGE UMTS: Future or not? Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Intersystem Operation and Mobility Management. First Generation Systems

Intersystem Operation and Mobility Management. First Generation Systems Intersystem Operation and Mobility Management David Tipper Associate Professor Graduate Program in Telecommunications and Networking University of Pittsburgh Telcom 2700 Slides 6 http://www.tele.pitt.edu/tipper.html

More information

Data and Computer Communications. Chapter 10 Cellular Wireless Networks

Data and Computer Communications. Chapter 10 Cellular Wireless Networks Data and Computer Communications Chapter 10 Cellular Wireless Networks Cellular Wireless Networks 5 PSTN Switch Mobile Telecomm Switching Office (MTSO) 3 4 2 1 Base Station 0 2016-08-30 2 Cellular Wireless

More information

G 364: Mobile and Wireless Networking. CLASS 21, Mon. Mar Stefano Basagni Spring 2004 M-W, 11:40am-1:20pm, 109 Rob

G 364: Mobile and Wireless Networking. CLASS 21, Mon. Mar Stefano Basagni Spring 2004 M-W, 11:40am-1:20pm, 109 Rob G 364: Mobile and Wireless Networking CLASS 21, Mon. Mar. 29 2004 Stefano Basagni Spring 2004 M-W, 11:40am-1:20pm, 109 Rob Global System for Mobile Communications (GSM) Digital wireless network standard

More information

Developing Mobile Applications

Developing Mobile Applications Developing Mobile Applications GSM networks 1 carriers GSM 900 MHz 890-915 MHz 935-960 MHz up down 200 KHz 200 KHz 25 MHz 25 MHz 2 frequency reuse A D K B J L C H E G I F A 3 Reuse patterns 4/12 4 base

More information

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( )

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( ) CHAPTER 2 Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication (2170710) Syllabus Chapter-2.1 Cellular Wireless Networks 2.1.1 Principles of Cellular Networks Underlying technology

More information

Wireless and mobile communication

Wireless and mobile communication Wireless and mobile communication Wireless communication Multiple Access FDMA TDMA CDMA SDMA Mobile Communication GSM GPRS GPS Bluetooth Content What is wireless communication? In layman language it is

More information

APPLICATION PROGRAMMING: MOBILE COMPUTING [ INEA00112W ] Marek Piasecki PhD Wireless Telecommunication

APPLICATION PROGRAMMING: MOBILE COMPUTING [ INEA00112W ] Marek Piasecki PhD Wireless Telecommunication APPLICATION PROGRAMMING: MOBILE COMPUTING [ INEA00112W ] Marek Piasecki PhD Wireless Telecommunication (W6/2013) What is Wireless Communication? Transmitting/receiving voice and data using electromagnetic

More information

2G Mobile Communication Systems

2G Mobile Communication Systems 2G Mobile Communication Systems 2G Review: GSM Services Architecture Protocols Call setup Mobility management Security HSCSD GPRS EDGE References Jochen Schiller: Mobile Communications (German and English),

More information

Wireless Telephony in Germany. Standardization of Networks. GSM Basis of Current Mobile Systems

Wireless Telephony in Germany. Standardization of Networks. GSM Basis of Current Mobile Systems Wireless Telephony in Germany Chapter 2 Technical Basics: Layer Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Telecommunication Networks:

More information

Wireless CommuniCation. unit 5

Wireless CommuniCation. unit 5 Wireless CommuniCation unit 5 V. ADVANCED TRANSCEIVER SCHEMES Spread Spectrum Systems- Cellular Code Division Multiple Access Systems- Principle, Power control, Effects of multipath propagation on Code

More information

GSM. 84 Theoretical and general applications

GSM. 84 Theoretical and general applications GSM GSM, GPRS, UMTS what do all of these expressions mean and what possibilities are there for data communication? Technical descriptions often contain abbreviations and acronyms. We have chosen to use

More information

King Fahd University of Petroleum & Minerals Computer Engineering Dept

King Fahd University of Petroleum & Minerals Computer Engineering Dept King Fahd University of Petroleum & Minerals Computer Engineering Dept COE 543 Mobile and Wireless Networks Term 022 Dr. Ashraf S. Hasan Mahmoud Rm 22-148-3 Ext. 1724 Email: ashraf@ccse.kfupm.edu.sa 4/14/2003

More information

Department of Computer Science & Technology 2014

Department of Computer Science & Technology 2014 Unit 1. Wireless Telecommunication Systems and Networks Short Questions 1. What is Electromagnetic spectrum? 2 State the purpose of Induction. 3. What is the range of Radio Frequency? 4. What are two parameters

More information

Mobile Network Evolution Part 1. GSM and UMTS

Mobile Network Evolution Part 1. GSM and UMTS Mobile Network Evolution Part 1 GSM and UMTS GSM Cell layout Architecture Call setup Mobility management Security GPRS Architecture Protocols QoS EDGE UMTS Architecture Integrated Communication Systems

More information

10EC81-Wireless Communication UNIT-6

10EC81-Wireless Communication UNIT-6 UNIT-6 The first form of CDMA to be implemented is IS-95, specified a dual mode of operation in the 800Mhz cellular band for both AMPS and CDMA. IS-95 standard describes the structure of wideband 1.25Mhz

More information

GTBIT ECE Department Wireless Communication

GTBIT ECE Department Wireless Communication Q-1 What is Simulcast Paging system? Ans-1 A Simulcast Paging system refers to a system where coverage is continuous over a geographic area serviced by more than one paging transmitter. In this type of

More information

Wireless and Mobile Network Architecture. Outline. Introduction. Cont. Chapter 1: Introduction

Wireless and Mobile Network Architecture. Outline. Introduction. Cont. Chapter 1: Introduction Wireless and Mobile Network Architecture Chapter 1: Introduction Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Sep. 2006 Outline Introduction

More information

Wireless and Mobile Network Architecture

Wireless and Mobile Network Architecture Wireless and Mobile Network Architecture Chapter 1: Introduction Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Sep. 2006 1 Outline Introduction

More information

Chapter 8: GSM & CDAMA Systems

Chapter 8: GSM & CDAMA Systems Chapter 8: GSM & CDAMA Systems Global System for Mobile Communication (GSM) Second Generation (Digital) Cellular System Operated in 900 MHz band GSM is also operated in 1800 MHz band and this version of

More information

a) Describe the basic cellular system. (2M Diagram & 2 M Explanation)

a) Describe the basic cellular system. (2M Diagram & 2 M Explanation) Important Instructions to examiners: 1. The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2. The model answer and the answer written by candidate

More information

Chapter 14. Cellular Wireless Networks

Chapter 14. Cellular Wireless Networks Chapter 14 Cellular Wireless Networks Evolu&on of Wireless Communica&ons 1901 Marconi: Trans-Atlantic wireless transmission 1906 Fessenden: first radio broadcast (AM) 1921 Detroit Police Dept wireless

More information

Mobile & Wireless Networking. Lecture 4: Cellular Concepts & Dealing with Mobility. [Reader, Part 3 & 4]

Mobile & Wireless Networking. Lecture 4: Cellular Concepts & Dealing with Mobility. [Reader, Part 3 & 4] 192620010 Mobile & Wireless Networking Lecture 4: Cellular Concepts & Dealing with Mobility [Reader, Part 3 & 4] Geert Heijenk Outline of Lecture 4 Cellular Concepts q Introduction q Cell layout q Interference

More information

Global System for Mobile Communications

Global System for Mobile Communications Global System for Mobile Communications Contents 1. Introduction 2. Features of GSM 3. Network Components 4. Channel Concept 5. Coding, Interleaving, Ciphering 6. Signaling 7. Handover 8. Location Update

More information

CHAPTER4 CELLULAR WIRELESS NETWORKS

CHAPTER4 CELLULAR WIRELESS NETWORKS CHAPTER4 CELLULAR WIRELESS NETWORKS These slides are made available to faculty in PowerPoint form. Slides can be freely added, modified, and deleted to suit student needs. They represent substantial work

More information

G 364: Mobile and Wireless Networking. CLASS 22, Wed. Mar Stefano Basagni Spring 2004 M-W, 11:40am-1:20pm, 109 Rob

G 364: Mobile and Wireless Networking. CLASS 22, Wed. Mar Stefano Basagni Spring 2004 M-W, 11:40am-1:20pm, 109 Rob G 364: Mobile and Wireless Networking CLASS 22, Wed. Mar. 31 2004 Stefano Basagni Spring 2004 M-W, 11:40am-1:20pm, 109 Rob Logical vs. Physical Channels Logical channels (traffic channels, signaling (=control)

More information

CHAPTER 13 CELLULAR WIRELESS NETWORKS

CHAPTER 13 CELLULAR WIRELESS NETWORKS CHAPTER 13 CELLULAR WIRELESS NETWORKS These slides are made available to faculty in PowerPoint form. Slides can be freely added, modified, and deleted to suit student needs. They represent substantial

More information

CHAPTER 19 CELLULAR TELEPHONE CONCEPTS # DEFINITION TERMS

CHAPTER 19 CELLULAR TELEPHONE CONCEPTS # DEFINITION TERMS CHAPTER 19 CELLULAR TELEPHONE CONCEPTS # DEFINITION TERMS 1) The term for mobile telephone services which began in 1940s and are sometimes called Manual telephone systems. Mobile Telephone Manual System

More information

)454 1 '%.%2!,!30%#43 /& 05",)#,!.$ -/"),%.%47/2+3 05",)#,!.$ -/"),%.%47/2+3. )454 Recommendation 1 INTERNATIONAL TELECOMMUNICATION UNION

)454 1 '%.%2!,!30%#43 /& 05,)#,!.$ -/),%.%47/2+3 05,)#,!.$ -/),%.%47/2+3. )454 Recommendation 1 INTERNATIONAL TELECOMMUNICATION UNION INTERNATIONAL TELECOMMUNICATION UNION )454 1 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU 05",)#,!.$ -/"),%.%47/2+3 '%.%2!,!30%#43 /& 05",)#,!.$ -/"),%.%47/2+3 )454 Recommendation 1 (Extract from the

More information

Introduction to IS-95 CDMA p. 1 What is CDMA p. 1 History of CDMA p. 2 Forms of CDMA p MHz CDMA p MHz CDMA (PCS) p. 6 CDMA Parts p.

Introduction to IS-95 CDMA p. 1 What is CDMA p. 1 History of CDMA p. 2 Forms of CDMA p MHz CDMA p MHz CDMA (PCS) p. 6 CDMA Parts p. Introduction to IS-95 CDMA p. 1 What is CDMA p. 1 History of CDMA p. 2 Forms of CDMA p. 3 800 MHz CDMA p. 6 1900 MHz CDMA (PCS) p. 6 CDMA Parts p. 7 Mobile Station p. 8 Base Station Subsystem (BSS) p.

More information

GSM NCN-EG-01 Course Outline for GSM

GSM NCN-EG-01 Course Outline for GSM GSM NCN-EG-01 Course Outline for GSM 1 Course Description: Good understanding of GSM technology and cellular networks is essential for anyone working in GSM or related areas. This course is structured

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 16 EXAMINATION Model Answer Subject Code: 17657 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

Cellular Wireless Networks. Chapter 10

Cellular Wireless Networks. Chapter 10 Cellular Wireless Networks Chapter 10 Cellular Network Organization Use multiple low-power transmitters (100 W or less) Areas divided into cells Each cell is served by base station consisting of transmitter,

More information

2016/10/14. YU Xiangyu

2016/10/14. YU Xiangyu 2016/10/14 YU Xiangyu yuxy@scut.edu.cn Structure of Mobile Communication System Cell Handover/Handoff Roaming Mobile Telephone Switching Office Public Switched Telephone Network Tomasi Advanced Electronic

More information

UCS-805 MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2011

UCS-805 MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2011 Location Management for Mobile Cellular Systems SLIDE #3 UCS-805 MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2011 ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala Email-alakroy.nerist@gmail.com

More information

Chapter 9 GSM. Distributed Computing Group. Mobile Computing Summer 2003

Chapter 9 GSM. Distributed Computing Group. Mobile Computing Summer 2003 Chapter 9 GSM Distributed Computing Group Mobile Computing Summer 2003 Overview GSM Overview Services Architecture Cell management TDMA, FDMA Orientation Handover Authentications HSCSD, GPRS Distributed

More information

An overview of the GSM system

An overview of the GSM system An overview of the GSM system by Javier Gozalvez Sempere An overview of the GSM system Javier Gozálvez Sempere PhD Student in Mobile Communications Communications Division Department of Electronic&Electrical

More information

2018/5/23. YU Xiangyu

2018/5/23. YU Xiangyu 2018/5/23 YU Xiangyu yuxy@scut.edu.cn Structure of Mobile Communication System Cell Handover/Handoff Roaming Mobile Telephone Switching Office Public Switched Telephone Network Tomasi Advanced Electronic

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1 The History of Mobile Radio Communication (1/3) 1880: Hertz Initial demonstration of practical radio communication 1897: Marconi Radio transmission to a tugboat over an 18 mi path

More information

Chapter 7 GSM: Pan-European Digital Cellular System. Prof. Jang-Ping Sheu

Chapter 7 GSM: Pan-European Digital Cellular System. Prof. Jang-Ping Sheu Chapter 7 GSM: Pan-European Digital Cellular System Prof. Jang-Ping Sheu Background and Goals GSM (Global System for Mobile Communications) Beginning from 1982 European standard Full roaming in Europe

More information

AIRCOM Training is committed to providing our customers with quality instructor led Telecommunications Training.

AIRCOM Training is committed to providing our customers with quality instructor led Telecommunications Training. Copyright 2002 AIRCOM International Ltd All rights reserved AIRCOM Training is committed to providing our customers with quality instructor led Telecommunications Training. This documentation is protected

More information

CS 6956 Wireless & Mobile Networks April 1 st 2015

CS 6956 Wireless & Mobile Networks April 1 st 2015 CS 6956 Wireless & Mobile Networks April 1 st 2015 The SIM Card Certain phones contain SIM lock and thus work only with the SIM card of a certain operator. However, this is not a GSM restriction introduced

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

TELE4652 Mobile and Satellite Communications

TELE4652 Mobile and Satellite Communications Mobile and Satellite Communications Lecture 1 Introduction to Cellular Mobile Communications Public Switched Telephone Networks (PSTN) Public Land Mobile Networks (PLMN) evolved from the PSTN - Aimed to

More information

a) Describe the basic cellular system. (2M Diagram & 2 M Explanation)

a) Describe the basic cellular system. (2M Diagram & 2 M Explanation) Important Instructions to examiners: 1. The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2. The model answer and the answer written by candidate

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 3/23/2015

CS6956: Wireless and Mobile Networks Lecture Notes: 3/23/2015 CS6956: Wireless and Mobile Networks Lecture Notes: 3/23/2015 GSM Global System for Mobile Communications (reference From GSM to LET by Martin Sauter) There were ~3 billion GSM users in 2010. GSM Voice

More information

The Cellular Concept. History of Communication. Frequency Planning. Coverage & Capacity

The Cellular Concept. History of Communication. Frequency Planning. Coverage & Capacity The Cellular Concept History of Communication Frequency Planning Coverage & Capacity Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering Before GSM: Mobile Telephony Mile stones

More information

3.1. Historical Overview. Citizens` Band Radio Cordless Telephones Improved Mobile Telephone Service (IMTS)

3.1. Historical Overview. Citizens` Band Radio Cordless Telephones Improved Mobile Telephone Service (IMTS) III. Cellular Radio Historical Overview Introduction to the Advanced Mobile Phone System (AMPS) AMPS Control System Security and Privacy Cellular Telephone Specifications and Operation 3.1. Historical

More information

Global System for Mobile

Global System for Mobile Week 15 Global System for Mobile GSM task and intention Services offered by GSM GSM architecture GSM Radio System Channels in GSM Example of GSM call Signal Processing in GSM Page 1 Global System for Mobile

More information

SUMMER 15 EXAMINATION

SUMMER 15 EXAMINATION SUMMER 15 EXAMINATION Subject Code: 17657 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

Lecturer: Srwa Mohammad

Lecturer: Srwa Mohammad Aga private institute for computer science Lecturer: Srwa Mohammad What is GSM? GSM: Global System for Mobile Communications *Evolution of Cellular Networks 1G 2G 2.5G 3G 4G ---------- -----------------------------------------------

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 14 Cellular Wireless Networks Eighth Edition by William Stallings Cellular Wireless Networks key technology for mobiles, wireless nets etc developed to increase

More information

GSM FREQUENCY PLANNING

GSM FREQUENCY PLANNING GSM FREQUENCY PLANNING PROJECT NUMBER: PRJ070 BY NAME: MUTONGA JACKSON WAMBUA REG NO.: F17/2098/2004 SUPERVISOR: DR. CYRUS WEKESA EXAMINER: DR. MAURICE MANG OLI Introduction GSM is a cellular mobile network

More information

1. Classify the mobile radio transmission systems. Simplex & Duplex. 2. State example for a half duplex system. Push to talk and release to listen.

1. Classify the mobile radio transmission systems. Simplex & Duplex. 2. State example for a half duplex system. Push to talk and release to listen. 1. Classify the mobile radio transmission systems. Simplex & Duplex. 2. State example for a half duplex system. Push to talk and release to listen. 3. State example for a Simplex system. Pager. 4. State

More information

Section A : example questions

Section A : example questions 2G1723 GSM Network and Services The exam will consist of two sections: section A (20p) and section B (8p). Section A consist of 20 multiple-choice questions (1p each), where exactly one answer is correct.

More information

SLIDE #2.1. MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012. ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala

SLIDE #2.1. MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012. ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala Mobile Cellular Systems SLIDE #2.1 MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012 ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala Email-alakroy.nerist@gmail.com What we will learn in this

More information

CS 218 Fall 2003 October 23, 2003

CS 218 Fall 2003 October 23, 2003 CS 218 Fall 2003 October 23, 2003 Cellular Wireless Networks AMPS (Analog) D-AMPS (TDMA) GSM CDMA Reference: Tanenbaum Chpt 2 (pg 153-169) Cellular Wireless Network Evolution First Generation: Analog AMPS:

More information

Hard Handoff : hard handoff is the process in which the cell connection is disconnected from the previous cell before it is made with the new one.

Hard Handoff : hard handoff is the process in which the cell connection is disconnected from the previous cell before it is made with the new one. 1. What are different categories of antenna? 1. Wire Antennas - Short Dipole Antenna 2. Microstrip Antennas - Rectangular Microstrip (Patch) Antennas 3.Reflector Antennas - Corner Reflector 4.Travelling

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 9: Multiple Access, GSM, and IS-95

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 9: Multiple Access, GSM, and IS-95 ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 9: Multiple Access, GSM, and IS-95 Outline: Two other important issues related to multiple access space division with smart

More information

Telephone network. Jouni Karvo, Raimo Kantola, Timo Kiravuo

Telephone network. Jouni Karvo, Raimo Kantola, Timo Kiravuo Telephone network Jouni Karvo, Raimo Kantola, Timo Kiravuo Background World's largest machine; extends to all countries Huge economic and social importance Specialized in voice transmission Other applications

More information

SUBJECT WIRELESS NETWORKS. SESSION 3 Getting to Know Wireless Networks and Technology SESSION 3

SUBJECT WIRELESS NETWORKS. SESSION 3 Getting to Know Wireless Networks and Technology SESSION 3 SUBJECT WIRELESS NETWORKS SESSION 3 Getting to Know Wireless Networks and Technology SESSION 3 Case study Getting to Know Wireless Networks and Technology By Lachu Aravamudhan, Stefano Faccin, Risto Mononen,

More information

Page 1. What is a Survey? : Wireless Networks Lecture 8: Cellular Networks. Deliverables. Surveys. Cell splitting.

Page 1. What is a Survey? : Wireless Networks Lecture 8: Cellular Networks. Deliverables. Surveys. Cell splitting. What is a Survey? 18-759: Wireless Networks Lecture 8: Cellular Networks Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009

More information

Chapter 1 Introduction to Mobile Computing (16 M)

Chapter 1 Introduction to Mobile Computing (16 M) Chapter 1 Introduction to Mobile Computing (16 M) 1.1 Introduction to Mobile Computing- Mobile Computing Functions, Mobile Computing Devices, Mobile Computing Architecture, Evolution of Wireless Technology.

More information

CPET 565/499 Mobile Computing Systems. Mobile Wireless Networking Infrastructure & Technologies

CPET 565/499 Mobile Computing Systems. Mobile Wireless Networking Infrastructure & Technologies CPET 565/499 Mobile Computing Systems Lecture 2 Mobile Networking Communication Infrastructures and Technologies Fall 202 A Specialty Course for Purdue University s M.S. in Technology Graduate Program

More information

Chapter 10. Cellular Networks

Chapter 10. Cellular Networks Chapter 10. Cellular Networks 10.1 Introduction 10.2 Regulation and Standardization 10.3 The Cellular Concept 10.4 Cellular Architecture 10.4.1 Base Station Subsystem (BSS) 10.4.2 Network Subsystem (NS)

More information

UNIT II MAC, TELE COMMUNICATION AND SATELLITE SYSTEMS

UNIT II MAC, TELE COMMUNICATION AND SATELLITE SYSTEMS UNIT II MAC, TELE COMMUNICATION AND SATELLITE SYSTEMS Medium access Control Techniques- SDMA-TDMA-FDMA- CDMA- Comparison. Tele communication systems- GSM-DECT and TETRA. Satellite Systems- Routing, Localization

More information

CS 621 Mobile Computing

CS 621 Mobile Computing Lecture 11 CS 621 Mobile Computing Location Management for Mobile Cellular Systems Zubin Bhuyan, Department of CSE, Tezpur University http://www.tezu.ernet.in/~zubin Several slides and images in this presentation

More information

Level 6 Graduate Diploma in Engineering Wireless and mobile communications

Level 6 Graduate Diploma in Engineering Wireless and mobile communications 9210-119 Level 6 Graduate Diploma in Engineering Wireless and mobile communications Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil,

More information

Wireless WANS and MANS. Chapter 3

Wireless WANS and MANS. Chapter 3 Wireless WANS and MANS Chapter 3 Cellular Network Concept Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of

More information

Ammar Abu-Hudrouss Islamic University Gaza

Ammar Abu-Hudrouss Islamic University Gaza Wireless Communications n Ammar Abu-Hudrouss Islamic University Gaza ١ Course Syllabus References 1. A. Molisch,, Wiely IEEE, 2nd Edition, 2011. 2. Rappaport, p : Principles and Practice, Prentice Hall

More information

Introduction to Wireless and Mobile Networking. Hung-Yu Wei g National Taiwan University

Introduction to Wireless and Mobile Networking. Hung-Yu Wei g National Taiwan University Introduction to Wireless and Mobile Networking Lecture 3: Multiplexing, Multiple Access, and Frequency Reuse Hung-Yu Wei g National Taiwan University Multiplexing/Multiple Access Multiplexing Multiplexing

More information

A Glimps at Cellular Mobile Radio Communications. Dr. Erhan A. İnce

A Glimps at Cellular Mobile Radio Communications. Dr. Erhan A. İnce A Glimps at Cellular Mobile Radio Communications Dr. Erhan A. İnce 28.03.2012 CELLULAR Cellular refers to communications systems that divide a geographic region into sections, called cells. The purpose

More information

Communication Switching Techniques

Communication Switching Techniques Communication Switching Techniques UNIT 5 P.M.Arun Kumar, Assistant Professor, Department of IT, Sri Krishna College of Engineering and Technology, Coimbatore. PRINCIPLES OF CELLULAR NETWORKS TOPICS TO

More information

Access Methods and Spectral Efficiency

Access Methods and Spectral Efficiency Access Methods and Spectral Efficiency Yousef Dama An-Najah National University Mobile Communications Access methods SDMA/FDMA/TDMA SDMA (Space Division Multiple Access) segment space into sectors, use

More information

GSM System for Mobile

GSM System for Mobile GSM System for Mobile GSM History In the mid 1980 s, most of Europe didn t have a cellular network. They weren t committed to analog. After many years of research, GSM was proposed around 1990. Covered

More information

Mobile Radio Systems (Wireless Communications)

Mobile Radio Systems (Wireless Communications) Mobile Radio Systems (Wireless Communications) Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Lab, TU Graz Lecture 1 WS2015/16 (6 October 2016) Key Topics of this Lecture

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - 2013 CHAPTER 10 Cellular Wireless Network

More information

Multiple Access Techniques for Wireless Communications

Multiple Access Techniques for Wireless Communications Multiple Access Techniques for Wireless Communications Contents 1. Frequency Division Multiple Access (FDMA) 2. Time Division Multiple Access (TDMA) 3. Code Division Multiple Access (CDMA) 4. Space Division

More information

IS-95 /CdmaOne Standard. By Mrs.M.R.Kuveskar.

IS-95 /CdmaOne Standard. By Mrs.M.R.Kuveskar. IS-95 /CdmaOne Standard By Mrs.M.R.Kuveskar. CDMA Classification of CDMA Systems CDMA SYSTEMS CDMA one CDMA 2000 IS95 IS95B JSTD 008 Narrow Band Wide Band CDMA Multiple Access in CDMA: Each user is assigned

More information

Modeling and Dimensioning of Mobile Networks: from GSM to LTE. Maciej Stasiak, Mariusz Głąbowski Arkadiusz Wiśniewski, Piotr Zwierzykowski

Modeling and Dimensioning of Mobile Networks: from GSM to LTE. Maciej Stasiak, Mariusz Głąbowski Arkadiusz Wiśniewski, Piotr Zwierzykowski Modeling and Dimensioning of Mobile Networks: from GSM to LTE Maciej Stasiak, Mariusz Głąbowski Arkadiusz Wiśniewski, Piotr Zwierzykowski Modeling and Dimensioning of Mobile Networks: from GSM to LTE GSM

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 3: Cellular Fundamentals

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 3: Cellular Fundamentals ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 3: Cellular Fundamentals Chapter 3 - The Cellular Concept - System Design Fundamentals I. Introduction Goals of a Cellular System

More information

RADIO SYSTEMS ETIN15. Lecture no: GSM and WCDMA. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Lecture no: GSM and WCDMA. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 11 GSM and WCDMA Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 1 Contents (Brief) history of mobile telephony Global System for

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (8 th Week) Cellular Wireless Network 8.Outline Principles of Cellular Networks Cellular Network Generations LTE-Advanced

More information

GSM and WCDMA RADIO SYSTEMS ETIN15. Lecture no: Ove Edfors, Department of Electrical and Information Technology

GSM and WCDMA RADIO SYSTEMS ETIN15. Lecture no: Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 11 GSM and WCDMA Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2015-05-12 Ove Edfors - ETIN15 1 Contents (Brief) history of mobile

More information

MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012

MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012 Location Management for Mobile Cellular Systems MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012 ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala Email-alakroy.nerist@gmail.com Cellular System

More information

Personal Communication System

Personal Communication System Personal Communication System Differences Between Cellular Systems and PCS IS-136 (TDMA) PCS GSM i-mode mobile communication IS-95 CDMA PCS Comparison of Modulation Schemes Data Communication with PCS

More information