Design and Analysis of Full Adder using Different Logic Techniques

Size: px
Start display at page:

Download "Design and Analysis of Full Adder using Different Logic Techniques"

Transcription

1 Design and Analysis of Full Adder using Different Logic Techniques B.Yesvanthukumar, V.Sushil Kirubakaran Scholar, ME VLSI Design Birla Institute of Technology and Science - [BITS] Goa Campus, South Goa ABSTRACT Nowadays, the key role for all the functional units of microprocessor and DSP processors is the Adders. In the emerging trend in the Nano technology, it has been very essential to improve approaches proficiently decrease the range and power consumption. They are the coreconstituents in digital strategies which are not only used for addition but also used for multiplication and division processes. Simultaneously, high speed calculation has turn intosignificantquantity of any digital claimsdue its power consumption. In VLSI technology, Power dissipation is an aggregating concern. Many different logic circuits have been established to encounter these power necessities. In this paper, Power dissipation can be reduced by using different logic circuits. The delay taking place and power deliberations along with the transistor computation have been considered and it has been found that in different circuits, power and delay time is better. Keywords:Adders, power consumption, logic circuits, DSP processors. 1. INTRODUCTION Adders are the most significant logic modules used in the strategy of digital VLSI circuits. The logical Addition is the basic arithmetic operation in the processing systems. It practices the basis for nearly all calculationssuch as multiplying, counting and sifting. In addition to carrying out the responsibilities of addition which is its basic function, the precedes the source for many difficult circuits like the multipliers, subtractors, RAMs, report calculations and much more. The promptrise in the number of transistors on chips has allowed anintensegrowth in the enactment of computing systems. There are two types of s: Half Adder and Full Adder. The half is the modestkind of which is proficient of carrying out the unpretentious type of addition logic while producing a carry. It precedes two inputs and makes two outputs Sum and Carry. The Full Adder is the complex type of addition circuit. It is a combinational logic unit that implements all the calculations. There are definiteissues that can merely slow down the growth of small complex IC chips. These features are intentionprice, design efficiency and IC fabrication technology. The aggregating demand for High Speed VLSI can be acquired at design levels such as architectural, circuit and designlevel. This paper agrees in the study of most broadly used which is full. The full is a humble, practical digital circuit constructed from two logic gates. The logic gates used for the strategy of the full are the XOR, AND and OR gates. A full can be raised using two half s. For A, B and Cin, where A and B are operands to be added, and Cin is the carry that is the bit carried forward form the minimumsubstantial bit of last intention. In CMOS expertise, even if we plan high speed full, power dissipation is the main concern taken into account. It is one of the precariousaspects which is of two types and is classified into dynamic power and static power. Dynamic power dissipation comes into depiction when the circuit is functioning and static power dissipation is reflectedonly when the circuit is inactive. Fig.1: Full ISSN: Page 29

2 Table.1: Truth table of full A number of logic techniques have been suggestedfor highlighting the energy repossessionsource. Two different techniques used in this proposed system are Cascade voltage switch logic (CVSL) and adiabatic logic. CVSL is a type of logic circuit whereby both true and complement of the same inputs are essential. It has two stowage nodes for each gate in its place of one;bring about in higher easiness of pulses than CMOS. In adiabatic circuits power dissipation is considerably less than that of CMOS circuits. Therefore, adiabatic circuits are capableaspirant for low-power circuits which can be activated in the frequency range in which signals are numericallytreated. 2. CASCADE VOLTAGE SWITCH LOGIC Cascade Voltage Switch Logic is a type of circuit whereby mutual true and complement of its inputs are essential. Two complementary NMOS switch configurations are created and then associated to a pair of cross-coupled pull-up PMOS transistors. The pulsed CVSL circuit is two domino gates functioning on true and complement inputs. The CVSL has two stowage nodes for each gate in its place of one, ensuing in higher acceptance of SET pulses than CMOS. Static and clocked CVSL test circuits are fictitiousemploying two complementary NMOS switch arrangements are created and then associated to a pair of cross-coupled pull-up PMOS transistors. The basic design of the CVSL is as shown in figure 2. Fig.2a: Basic CVSL Circuit with single input Fig.2b: Basic CVSL Circuit with two inputs In the above figure pull down transistors are the dual of each other and the P pull up strategies are annoyed combined to the latch output. The pull down network f tools the logic as in a static CMOS gate while uses reversed inputs provide for transistors prescribed in the counterpart. The true input is smeared to right pull-down leg below and complement input is smeared to left leg of the N pull down network. The elementaryfunctioning principle is as described below: Intended forcertain input configuration, one of the pull down networks will be ON and the other one is in OFF. The pull down network that is ON will pull that output low. This low output turns ON the pmos transistor to pull the opposite output high. When the contrary output increases, the other pmos transistor turns OFF so no static power dissipation happens 3. ADIABATIC LOGIC The bases of dissipation in a CMOS-based adiabatic circuit can be endorsed to either adiabatic ISSN: Page 30

3 or non-adiabatic deposits. Though it is potential to decrease the adiabatic residues by aggregating the ramp-up time T, the non-adiabatic damages are not certainlyorganized, and be determined by the device considerations. The term adiabatic changing is used to reduce energy loss during alleging and quitting. It is used to describe the thermodynamics process in which no alteration of energy occurs between the system and the outsidesurroundings. As a result of the use of a time fluctuating voltage source, the rate of the swappingchangeover in adiabatic circuit is reduced. The energy degenerated in a complete charge-discharge clock cycle, comprising the mean non-adiabatic losses, is given by the following equation: where R and C take the meanings defined previously and V dd is the voltage of the hold phase Adiabatic logicbased full s has been suggested and then this can be associated with the ECRL and the EEAL based full s. The gratitude can be appraised for the reprocessingof the powerinside the circuit to evade the power dissipation in the all level circuits. The reprocessed thermal drive can be accepted for the assessment of the adiabatic logics from the energy competent logics. 3.1 EEAL (ENERGY EFFICIENT ADIABATIC LOGIC) The EEAL logic circuits comprises of the pmoscombination and the Distributed Concurrent Versions System network. Each phase of the transistor and the network could be pairing to practice the gated and the s such as sum and the carry block. The regulated power supply could be specified into the full s for the energy reclamation of the signal from the inputs. The out a and the out b is the output which might be coupling from the input loading for the buffer and the inverters. Fig.3: Schematic representation of a CMOS implementation of an adiabatic logic function The main leakage current component in a MOSFET is due to the sub-threshold leakage current I leakage given by: where I 0 is a function of the transistor size and parameters; V t is the thermal voltage and V DS is the source-drain voltage which is assumed to perfectly follow the power clock. Fig 4: EEAL logic based Inverter Circuit An adiabatic period is subservient degree approach to cut back power dissipation within the digital logic at value of slower speed of operation. It allows the energy storage on the circuit capacitance to urge recovered rather than degenerated as heat. It affords the charge on the output with full strike and it cares the load capacitance with the constant agreement that is absolutelytemporary of the signal. 3.2 EFFICIENT CHARGE RECOVERY LOGIC (ECRL) Efficient Charge Recovery Logic is a type of adiabatic logic and it uses PMOS transistors. It has ISSN: Page 31

4 the structure which is closely matching with the Cascade Voltage Switch Logic with differential sign. An AC power offers PWR is working for ECRL gates, as a result on improve and reprocess the furnished energy. Each out and I out square amountproduced in order that the capability clock generator will everlastingly drive a enduring load capacitance irregular of the input. Full production swing is acquired as a result of the cross-coupled PMOS transistors in each pre-charge and improvesstages. That is ECRL continuouslydrivestrust on the output with a full swing. Nevertheless, because the voltage on the running clock slants to Vtp, the PMOS electronic transistor gets rotated off. Fig.6: Schematic diagram of CVSL based full Fig 5: ECRL logic based Inverter Circuit The ECRL design area unit functioned during a pipelining style with the four stagesdelivers clocks. Formerly the output is straightlyassociated to the input of subsequent stage; unbiased onepart is enough for a logic price to broadcast. On the other hand, once the yield of a gate is fed back to the input, the provision clocks should be in portion. A latch is one in all the best circumstances that have a feedback path. A major drawback of this circuit is that the presence of the coupling effects, as a result of 2 outputs area unit associated by the PMOS latch and also the two balancing outputs will inhibit one another. Fig.7: Schematic diagram of adiabatic based full 4. SIMULATION RESULTS The suggested and the improved circuits are considered and confirmed by using the TANNER EDA tools. The circuit approach could be shared with the difference forms of the all level observation for the transistor level application. Fig 8: Schematic diagram of EEAL based full ISSN: Page 32

5 s, compared with many intermittently distributedrecognitions. In the prospect, some effort is completed for the planning of high speed low power full s, allowing for adiabatic logic structure and run new recognitions for the essential logic blocks. REFERENCES [1] R. Singh, R. Mehra, Low power TG full design using CMOS Nano technology, 2nd IEEE International Conference on Parallel Distributed and Grid Computing, Vol. 2, pp , Dec [2] Hiroshi Hatano, Single Event Effects on Static and Clocked Cascade Voltage Switch Logic (CVSL) Circuits, IEEE Transactions on Nuclear Science, Vol. 56, Issue. 4, pp , Aug Fig 9: Schematic diagram of ECRL based full [3] DaeWoon Kang, Yong Bin Kim, Design of Enhanced Differential Cascade Voltage Switch Logic (EDCVSL) Circuits for High fan In Gate, IEEE, pp , [4] K. Roy, S. Mukhopadhyay and H. Mahmoodi-Meimand, A leakage current mechanism and leakage reduction techniques in deep sub micrometer CMOS circuits, Proc. IEEE, vol.91, no.2, pp ,Feb [5] S. Kim, C.H. Ziesler, and M.C. Papaefthymiou, Chargerecovery computing on silicon, IEEE Trans. Computers, vol.54, no.6, pp , June [6] M.J. Marjonen, and M. Aberg, A single clocked adiabatic static logic a proposal for digital low power applications, J. VLSI Signal Processing, vol.27, no.27, pp , Feb Fig.10: Waveform of the different logic circuits of full CONCLUSION In this proposed system, we have aimed to design and simulate different logic circuit methods of full such as cascade voltage switch logic and adiabatic logic circuits. The simulation result demonstrates that power consumption of the suggested design is significantly less than that of previously proposed techniques. From this exploration it is perfect that the recommended design is very power efficient system in low power VLSI system. The elegance of high speed low power full cells mainly based upon Subordinate in numerous logic methods has been assumed and which effects in great development on concerns of power delay metric for the intended [7] A. Sharma, R. Mehra, Area and Power efficient CMOS Adder design by hybridizing PTL and GDI technique, International Journal of Computer Applications, Vol. 6, Issue 5, pp [8] Pradeep Kumar, Existing Full Adders and Their Comparison on The Basis of Simulation Result And to design an improved LPFA (Low Power Full Adder), International Journal of Engineering Research and Applications, Vol. 2, Issue 6, pp , Nov-Dec [9] Y. Takahashi, Y. Fukuta, T. Sekine and M. Yokoyama, 2PADCL: Two phase drive adiabatic dynamic CMOS logic, Proc. IEEE APCCAS, pp: , Dec [10] N. Anuar, Y. Takahashi and T. Sekine, Two phase clocked adiabatic static CMOS logic and its logic J. Semiconductor Technology and Science, vol. 10, no. 1, pp. 1 10, Mar [11] VandanaChoudhary, Rajesh Mehra, 2- Bit Comparator Using Different Logic Style of Full Adder, International Journal of Soft Computing and Engineering (IJSCE), Vol. 3, Issue 2, pp , May ISSN: Page 33

6 [12] Hiroshi Hatano, SET Immune Spaceborne CVSL and C2VSL Circuits, Journal of Electrical and Control Engineering, Vol. 3, Issue 5, pp , [13] Abutaleb, M. "A new static differential design style for hybrid SET CMOS logic circuits", Journal of Computational Electronics, [14] C. Siyong, et al, Analysis and design of an efficient irreversible energy recovery logic in 0.18μm CMOS, IEEE Trans. Circuits and Syst.,vol.55, no. 9, pp , Oct [15] Magdy A. Bayoumi. "Feedback-Switch Logic (FSL): A High-Speed Low-Power Differential Dynamic-Like Static CMOS Circuit Family", 9th International Symposium on Quality Electronic Design, March [16]. Priyadarshini.V, Power-Area trade-off for Different CMOS Design Technologies, Int.J.Computer Technology & Applications, Vol 3, Issue 4, pp , july- August [17] R. Zimmermann and W. Fichtner, Low-power logic styles: CMOS versus pass transistor logic, IEEE J. Solid- State Circuit, vol. 32, pp , July [18] A. Blotti And R. Saletti, Ultralow- Power Adiabatic Circuit Semi-Custom Design, IEEE Transactions on VLSI Systems, vol. 12, no. 11, pp , November [19] A. Blotti, S. Pascoli, and R. Saletti, Sample Model for Positive Feedback Adiabatic Logic Power Consumption Estimation, Electronics Letters, Vol. 36, No. 2, pp , Jan [20] D. Radhakrishnan, Low-voltage low-power CMOS full, Proc.Inst. Elect.Engg. Circuits Devices Systems, vol. 148, no. 1, Feb.2001, pp [21] C.H. Chang, J. Gu, M. Zhang, A review of 0.18um full performances for tree structure arithmetic circuits, IEEE Trans. Very Large Scale Integration (VLSI) Syst. 13 (6), June [22] A. M. Shams, T. K. Darwish, and M. A. Bayoumi, Performance Analysis of low-power 1-bit CMOS full cells, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 1, pp , Feb [23] T. Indermauerand M. Horowitz, Evaluation of Charge Recovery Circuits and Adiabatic Switching for Low Power Design Technical Digest IEEE Symposium Low Power Electronics, San Diego, pp , October [24] S. Goel, Ashok kumar and M. A. Bayouni, Design of Robust, Energy- Efficient Full Adder for Deep- Submicrometer Design Using Hybrid- CMOS Logic Style, IEEE Trans. Very Large Scale Integr (VLSI) Syst., vol. 14, no. 12, pp , Dec [25] C.Hu, Future CMOS Scaling and Reliability Proceedings IEEE, Vol. 81, No.05, pp , February ISSN: Page 34

DESIGN OF EXTENDED 4-BIT FULL ADDER CIRCUIT USING HYBRID-CMOS LOGIC

DESIGN OF EXTENDED 4-BIT FULL ADDER CIRCUIT USING HYBRID-CMOS LOGIC DESIGN OF EXTENDED 4-BIT FULL ADDER CIRCUIT USING HYBRID-CMOS LOGIC 1 S.Varalakshmi, 2 M. Rajmohan, M.Tech, 3 P. Pandiaraj, M.Tech 1 M.Tech Department of ECE, 2, 3 Asst.Professor, Department of ECE, 1,

More information

Design and Analysis of CMOS based Low Power Carry Select Full Adder

Design and Analysis of CMOS based Low Power Carry Select Full Adder Design and Analysis of CMOS based Low Power Carry Select Full Adder Mayank Sharma 1, Himanshu Prakash Rajput 2 1 Department of Electronics & Communication Engineering Hindustan College of Science & Technology,

More information

Adiabatic Logic Circuits for Low Power, High Speed Applications

Adiabatic Logic Circuits for Low Power, High Speed Applications IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 10 April 2017 ISSN (online): 2349-784X Adiabatic Logic Circuits for Low Power, High Speed Applications Satyendra Kumar Ram

More information

Investigation on Performance of high speed CMOS Full adder Circuits

Investigation on Performance of high speed CMOS Full adder Circuits ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Investigation on Performance of high speed CMOS Full adder Circuits 1 KATTUPALLI

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 5.71 International Journal of Advance Engineering and Research Development Volume 5, Issue 05, May -2018 e-issn (O): 2348-4470 p-issn (P): 2348-6406 COMPARATIVE

More information

Design and Analysis of Energy Efficient MOS Digital Library Cell Based on Charge Recovery Logic

Design and Analysis of Energy Efficient MOS Digital Library Cell Based on Charge Recovery Logic ISSN (e): 2250 3005 Volume, 08 Issue, 9 Sepetember 2018 International Journal of Computational Engineering Research (IJCER) Design and Analysis of Energy Efficient MOS Digital Library Cell Based on Charge

More information

Performance Analysis of Different Adiabatic Logic Families

Performance Analysis of Different Adiabatic Logic Families Performance Analysis of Different Adiabatic Logic Families 1 Anitha.K, 2 Dr.Meena Srinivasan 1 PG Scholar, 2 Associate Professor Electronics and Communication Engineering Government College of Technology,

More information

Design of Low Power Energy Efficient CMOS Circuits with Adiabatic Logic

Design of Low Power Energy Efficient CMOS Circuits with Adiabatic Logic Design of Low Power Energy Efficient CMOS Circuits with Adiabatic Logic Aneesha John 1, Charishma 2 PG student, Department of ECE, NMAMIT, Nitte, Karnataka, India 1 Assistant Professor, Department of ECE,

More information

A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates

A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates Anil Kumar 1 Kuldeep Singh 2 Student Assistant Professor Department of Electronics and Communication Engineering Guru Jambheshwar

More information

Performance Analysis of High Speed CMOS Full Adder Circuits For Embedded System

Performance Analysis of High Speed CMOS Full Adder Circuits For Embedded System ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Performance Analysis of High Speed CMOS Full Adder Circuits For Embedded System

More information

Implementation of Efficient 5:3 & 7:3 Compressors for High Speed and Low-Power Operations

Implementation of Efficient 5:3 & 7:3 Compressors for High Speed and Low-Power Operations Volume-7, Issue-3, May-June 2017 International Journal of Engineering and Management Research Page Number: 42-47 Implementation of Efficient 5:3 & 7:3 Compressors for High Speed and Low-Power Operations

More information

DESIGN OF PARALLEL MULTIPLIERS USING HIGH SPEED ADDER

DESIGN OF PARALLEL MULTIPLIERS USING HIGH SPEED ADDER DESIGN OF PARALLEL MULTIPLIERS USING HIGH SPEED ADDER Mr. M. Prakash Mr. S. Karthick Ms. C Suba PG Scholar, Department of ECE, BannariAmman Institute of Technology, Sathyamangalam, T.N, India 1, 3 Assistant

More information

Low-Power 4 4-Bit Array Two-Phase Clocked Adiabatic Static CMOS Logic Multiplier

Low-Power 4 4-Bit Array Two-Phase Clocked Adiabatic Static CMOS Logic Multiplier Low-Power 4 4-Bit Array Two-Phase Clocked Adiabatic Static CMOS Logic Multiplier Nazrul Anuar Graduate School of Engineering Gifu University, - Yanagido Gifu-shi 5 93, Japan Email: n384@edu.gifu-u.ac.jp

More information

Analysis of Different Full Adder Designs with Power using CMOS 130nm Technology

Analysis of Different Full Adder Designs with Power using CMOS 130nm Technology Analysis of Different Full Adder Designs with Power using CMOS 130nm Technology J. Kavitha 1, J. Satya Sai 2, G. Gowthami 3, K.Gopi 4, G.Shainy 5, K.Manvitha 6 1, 2, 3, 4, 5, St. Ann s College of Engineering

More information

Design and Analysis of Multiplexer in Different Low Power Techniques

Design and Analysis of Multiplexer in Different Low Power Techniques Design and Analysis of Multiplexer in Different Low Power Techniques S Prashanth 1, Prashant K Shah 2 M.Tech Student, Department of ECE, SVNIT, Surat, India 1 Associate Professor, Department of ECE, SVNIT,

More information

Comparison of adiabatic and Conventional CMOS

Comparison of adiabatic and Conventional CMOS Comparison of adiabatic and Conventional CMOS Gurpreet Kaur M.Tech Scholar(ECE), Narinder Sharma HOD (EEE) Amritsar college of Engineering and Technology, Amritsar Abstract:-The Power dissipation in conventional

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1156 Novel Low Power Shrikant and M Pattar, High H V Ravish Speed Aradhya 8T Full Adder Abstract - Full adder

More information

Performance Comparison of High-Speed Adders Using 180nm Technology

Performance Comparison of High-Speed Adders Using 180nm Technology Steena Maria Thomas et al. 2016, Volume 4 Issue 2 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752 International Journal of Science, Engineering and Technology An Open Access Journal Performance Comparison

More information

Design and Implementation of Complex Multiplier Using Compressors

Design and Implementation of Complex Multiplier Using Compressors Design and Implementation of Complex Multiplier Using Compressors Abstract: In this paper, a low-power high speed Complex Multiplier using compressor circuit is proposed for fast digital arithmetic integrated

More information

Design & Analysis of Low Power Full Adder

Design & Analysis of Low Power Full Adder 1174 Design & Analysis of Low Power Full Adder Sana Fazal 1, Mohd Ahmer 2 1 Electronics & communication Engineering Integral University, Lucknow 2 Electronics & communication Engineering Integral University,

More information

PERFORMANANCE ANALYSIS OF A 1-BIT FULL ADDER USING 45nm TECHNOLOGY

PERFORMANANCE ANALYSIS OF A 1-BIT FULL ADDER USING 45nm TECHNOLOGY Research Manuscript Title PERFORMANANCE ANALYSIS OF A 1-BIT FULL ADDER USING 45nm TECHNOLOGY A.NIVETHA, M.Hemalatha, P.G.Scholar, Assistant Professor, M.E VLSI Design, Department of ECE Vivekanandha College

More information

International Journal Of Global Innovations -Vol.5, Issue.I Paper Id: SP-V5-I1-P04 ISSN Online:

International Journal Of Global Innovations -Vol.5, Issue.I Paper Id: SP-V5-I1-P04 ISSN Online: DESIGN AND ANALYSIS OF MULTIPLEXER AND DE- MULTIPLEXERIN DIFFERENT LOW POWER TECHNIQUES #1 KARANAMGOWTHAM, M.Tech Student, #2 AMIT PRAKASH, Associate Professor, Department Of ECE, ECED, NIT, JAMSHEDPUR,

More information

CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS

CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS 70 CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS A novel approach of full adder and multipliers circuits using Complementary Pass Transistor

More information

II. Previous Work. III. New 8T Adder Design

II. Previous Work. III. New 8T Adder Design ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: High Performance Circuit Level Design For Multiplier Arun Kumar

More information

Full Adder Circuits using Static Cmos Logic Style: A Review

Full Adder Circuits using Static Cmos Logic Style: A Review Full Adder Circuits using Static Cmos Logic Style: A Review Sugandha Chauhan M.E. Scholar Department of Electronics and Communication Chandigarh University Gharuan,Punjab,India Tripti Sharma Professor

More information

LOW POWER NOVEL HYBRID ADDERS FOR DATAPATH CIRCUITS IN DSP PROCESSOR

LOW POWER NOVEL HYBRID ADDERS FOR DATAPATH CIRCUITS IN DSP PROCESSOR LOW POWER NOVEL HYBRID ADDERS FOR DATAPATH CIRCUITS IN DSP PROCESSOR B. Sathiyabama 1, Research Scholar, Sathyabama University, Chennai, India, mathumithasurya@gmail.com Abstract Dr. S. Malarkkan 2, Principal,

More information

Comparative Study on CMOS Full Adder Circuits

Comparative Study on CMOS Full Adder Circuits Comparative Study on CMOS Full Adder Circuits Priyanka Rathore and Bhavna Jharia Abstract The Presented paper focuses on the comparison of seven full adders. The comparison is based on the power consumption

More information

Implementation of Carry Select Adder using CMOS Full Adder

Implementation of Carry Select Adder using CMOS Full Adder Implementation of Carry Select Adder using CMOS Full Adder Smitashree.Mohapatra Assistant professor,ece department MVSR Engineering College Nadergul,Hyderabad-510501 R. VaibhavKumar PG Scholar, ECE department(es&vlsid)

More information

Design Analysis of 1-bit Comparator using 45nm Technology

Design Analysis of 1-bit Comparator using 45nm Technology Design Analysis of 1-bit Comparator using 45nm Technology Pardeep Sharma 1, Rajesh Mehra 2 1,2 Department of Electronics and Communication Engineering, National Institute for Technical Teachers Training

More information

A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION

A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION Mr. Snehal Kumbhalkar 1, Mr. Sanjay Tembhurne 2 Department of Electronics and Communication Engineering GHRAET, Nagpur, Maharashtra,

More information

Design of Low Power High Speed Hybrid Full Adder

Design of Low Power High Speed Hybrid Full Adder IJECT Vo l. 6, Is s u e 4, Oc t - De c 2015 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Design of Low Power High Speed Hybrid Full Adder 1 P. Kiran Kumar, 2 P. Srikanth 1,2 Dept. of ECE, MVGR College

More information

Low Power &High Speed Domino XOR Cell

Low Power &High Speed Domino XOR Cell Low Power &High Speed Domino XOR Cell Payal Soni Electronics and Communication Department, FET- Mody University Lakshmangarh, Dist.-Sikar, India E-mail: payal.soni3091@gmail.com Abstract Shiwani Singh

More information

A design of 16-bit adiabatic Microprocessor core

A design of 16-bit adiabatic Microprocessor core 194 A design of 16-bit adiabatic Microprocessor core Youngjoon Shin, Hanseung Lee, Yong Moon, and Chanho Lee Abstract A 16-bit adiabatic low-power Microprocessor core is designed. The processor consists

More information

Comparative Analysis of Adiabatic Logic Techniques

Comparative Analysis of Adiabatic Logic Techniques Comparative Analysis of Adiabatic Logic Techniques Bhakti Patel Student, Department of Electronics and Telecommunication, Mumbai University Vile Parle (west), Mumbai, India ABSTRACT Power Consumption being

More information

Design of Energy Efficient Arithmetic Circuits Using Charge Recovery Adiabatic Logic

Design of Energy Efficient Arithmetic Circuits Using Charge Recovery Adiabatic Logic Design of Energy Efficient Arithmetic Circuits Using Charge Recovery Adiabatic ogic B. Dilli Kumar 1, M. Bharathi 2 1 M. Tech (VSI), Department of ECE, Sree Vidyanikethan Engineering College, Tirupati,

More information

Design of New Full Swing Low-Power and High- Performance Full Adder for Low-Voltage Designs

Design of New Full Swing Low-Power and High- Performance Full Adder for Low-Voltage Designs International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 2, No., 201, pp. 29-. ISSN 2-9 International Academic Journal of Science and Engineering

More information

Pardeep Kumar, Susmita Mishra, Amrita Singh

Pardeep Kumar, Susmita Mishra, Amrita Singh Study of Existing Full Adders and To Design a LPFA (Low Power Full Adder) Pardeep Kumar, Susmita Mishra, Amrita Singh 1 Department of ECE, B.M.S.E.C, Muktsar, 2,3 Asstt. Professor, B.M.S.E.C, Muktsar Abstract

More information

High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells

High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells Reza Faghih Mirzaee, Mohammad Hossein Moaiyeri, Keivan Navi Abstract In this paper we present two novel 1-bit full adder cells in dynamic logic

More information

Power-Area trade-off for Different CMOS Design Technologies

Power-Area trade-off for Different CMOS Design Technologies Power-Area trade-off for Different CMOS Design Technologies Priyadarshini.V Department of ECE Sri Vishnu Engineering College for Women, Bhimavaram dpriya69@gmail.com Prof.G.R.L.V.N.Srinivasa Raju Head

More information

Low Power Parallel Prefix Adder Design Using Two Phase Adiabatic Logic

Low Power Parallel Prefix Adder Design Using Two Phase Adiabatic Logic Journal of Electrical and Electronic Engineering 2015; 3(6): 181-186 Published online December 7, 2015 (http://www.sciencepublishinggroup.com/j/jeee) doi: 10.11648/j.jeee.20150306.11 ISSN: 2329-1613 (Print);

More information

Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique

Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique Ch. Mohammad Arif 1, J. Syamuel John 2 M. Tech student, Department of Electronics Engineering, VR Siddhartha Engineering College,

More information

Comparative Analysis of Low Power Adiabatic Logic Circuits in DSM Technology

Comparative Analysis of Low Power Adiabatic Logic Circuits in DSM Technology Comparative Analysis of Low Power Adiabatic Logic Circuits in DSM Technology Shaefali Dixit #1, Ashish Raghuwanshi #2, # PG Student [VLSI], Dept. of ECE, IES college of Eng. Bhopal, RGPV Bhopal, M.P. dia

More information

Design a Low Power CNTFET-Based Full Adder Using Majority Not Function

Design a Low Power CNTFET-Based Full Adder Using Majority Not Function Design a Low Power CNTFET-Based Full Adder Using Majority Not Function Seyedehsomayeh Hatefinasab * Department of Electrical and Computer Engineering, Payame Noor University, Sari, Iran. *Corresponding

More information

SEMI ADIABATIC ECRL AND PFAL FULL ADDER

SEMI ADIABATIC ECRL AND PFAL FULL ADDER SEMI ADIABATIC ECRL AND PFAL FULL ADDER Subhanshi Agarwal and Manoj Sharma Electronics and Communication Engineering Department Bharati Vidyapeeth s College of Engineering New Delhi, India ABSTRACT Market

More information

Impact of Logic and Circuit Implementation on Full Adder Performance in 50-NM Technologies

Impact of Logic and Circuit Implementation on Full Adder Performance in 50-NM Technologies Impact of Logic and Circuit Implementation on Full Adder Performance in 50-NM Technologies Mahesh Yerragudi 1, Immanuel Phopakura 2 1 PG STUDENT, AVR & SVR Engineering College & Technology, Nandyal, AP,

More information

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) Abstract NEW HIGH PERFORMANCE 4 BIT PARALLEL ADDER USING DOMINO LOGIC Department Of Electronics and Communication Engineering UG Scholar, SNS College of Engineering Bhuvaneswari.N [1], Hemalatha.V [2],

More information

A Low-Power High-speed Pipelined Accumulator Design Using CMOS Logic for DSP Applications

A Low-Power High-speed Pipelined Accumulator Design Using CMOS Logic for DSP Applications International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume. 1, Issue 5, September 2014, PP 30-42 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2190 Biquad Infinite Impulse Response Filter Using High Efficiency Charge Recovery Logic K.Surya 1, K.Chinnusamy

More information

Design And Implementation Of Arithmetic Logic Unit Using Modified Quasi Static Energy Recovery Adiabatic Logic

Design And Implementation Of Arithmetic Logic Unit Using Modified Quasi Static Energy Recovery Adiabatic Logic IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 7, Issue 3, Ver. I (May. - June. 2017), PP 27-34 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Design And Implementation Of

More information

Implementation of High Performance Carry Save Adder Using Domino Logic

Implementation of High Performance Carry Save Adder Using Domino Logic Page 136 Implementation of High Performance Carry Save Adder Using Domino Logic T.Jayasimha 1, Daka Lakshmi 2, M.Gokula Lakshmi 3, S.Kiruthiga 4 and K.Kaviya 5 1 Assistant Professor, Department of ECE,

More information

Design of GDI Based Power Efficient Combinational Circuits and Comparison with Other Logic Styles

Design of GDI Based Power Efficient Combinational Circuits and Comparison with Other Logic Styles Design of GDI Based Power Efficient Combinational Circuits and Comparison with Other Logic Styles Silpa T S, Athira V R Abstract In the modern era, power dissipation has become a major and vital constraint

More information

Low Power Adiabatic Logic Design

Low Power Adiabatic Logic Design IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 1, Ver. III (Jan.-Feb. 2017), PP 28-34 www.iosrjournals.org Low Power Adiabatic

More information

Energy Efficient Design of Logic Circuits Using Adiabatic Process

Energy Efficient Design of Logic Circuits Using Adiabatic Process Energy Efficient Design of Logic Circuits Using Adiabatic Process E. Chitra 1,N. Hemavathi 2, Vinod Ganesan 3 1 Dept. of ECE,SRM University, Chennai, India, chitra.e@ktr.srmuniv.ac.in 2 Dept. of ECE, SRM

More information

Design of Multiplier using Low Power CMOS Technology

Design of Multiplier using Low Power CMOS Technology Page 203 Design of Multiplier using Low Power CMOS Technology G.Nathiya 1 and M.Balasubramani 2 1 PG Student, Department of ECE, Vivekanandha College of Engineering for Women, India. Email: nathiya.mani94@gmail.com

More information

Low power high speed hybrid CMOS Full Adder By using sub-micron technology

Low power high speed hybrid CMOS Full Adder By using sub-micron technology Low power high speed hybrid CMOS Full Adder By using sub-micron technology Ch.Naveen Kumar 1 Assistant professor,ece department GURUNANAK institutions technical campus Hyderabad-501506 A.V. Rameshwar Rao

More information

Design and Analysis of CMOS Cell Structures using Adiabatic Logic

Design and Analysis of CMOS Cell Structures using Adiabatic Logic Design and Analysis of CMOS Cell Structures using Adiabatic Logic Monika Sharma 1 1 M.Tech. (Scholar),Mewar University, Gangrar, Chittorgarh, Rajasthan (India) Abstract: This paper deals with two types

More information

DESIGN OF CARRY SELECT ADDER WITH REDUCED AREA AND POWER

DESIGN OF CARRY SELECT ADDER WITH REDUCED AREA AND POWER DESIGN OF CARRY SELECT ADDER WITH REDUCED AREA AND POWER S.Srinandhini 1, C.A.Sathiyamoorthy 2 PG scholar, Arunai College Of Engineering, Thiruvannamalaii 1, Head of dept, Dept of ECE,Arunai College Of

More information

Design and Analysis of Asynchronous 16*16 Adiabatic Vedic Multiplier Using ECRL and EEAL Logic

Design and Analysis of Asynchronous 16*16 Adiabatic Vedic Multiplier Using ECRL and EEAL Logic Design and Analysis of Asynchronous 16*16 Adiabatic Vedic Multiplier Using ECRL and EEAL Logic C. S. Harmya Sreeja 1, N. Sri Krishna Yadav 2 1, 2 Department of ECE, Sree Vidyanikethan Engineering College,

More information

DESIGN OF ADIABATIC LOGIC BASED COMPARATOR FOR LOW POWER AND HIGH SPEED APPLICATIONS

DESIGN OF ADIABATIC LOGIC BASED COMPARATOR FOR LOW POWER AND HIGH SPEED APPLICATIONS DOI: 10.21917/ijme.2017.064 DESIGN OF ADIABATIC LOGIC FOR LOW POWER AND HIGH SPEED APPLICATIONS T.S. Arun Samuel 1, S. Darwin 2 and N. Arumugam 3 1,3 Department of Electronics and Communication Engineering,

More information

Design and Analysis of Energy Recovery Logic for Low Power Circuit Design

Design and Analysis of Energy Recovery Logic for Low Power Circuit Design National onference on Advances in Engineering and Technology RESEARH ARTILE OPEN AESS Design and Analysis of Energy Recovery Logic for Low Power ircuit Design Munish Mittal*, Anil Khatak** *(Department

More information

A Novel Hybrid Full Adder using 13 Transistors

A Novel Hybrid Full Adder using 13 Transistors A Novel Hybrid Full Adder using 13 Transistors Lee Shing Jie and Siti Hawa binti Ruslan Department of Electrical and Electronic Engineering, Faculty of Electric & Electronic Engineering Universiti Tun

More information

The Circuits Design using Dual-Rail Clocked Energy Efficient Adiabatic Logic

The Circuits Design using Dual-Rail Clocked Energy Efficient Adiabatic Logic Vol., Issue.3, May-June 01 pp-113-119 ISSN: 49-6645 The Circuits Design using Dual-Rail Clocked Energy Efficient Adiabatic Logic Gayatri, Manoj Kumar,Prof. B. P. Singh Electronics and Communication Department,

More information

PERFORMANCE ANALYSIS OF ADIABATIC TECHNIQUES USING FULL ADDER FOR EFFICIENT POWER DISSIPATION

PERFORMANCE ANALYSIS OF ADIABATIC TECHNIQUES USING FULL ADDER FOR EFFICIENT POWER DISSIPATION DOI: 10.21917/ijme.2018.0090 PERFORMANCE ANALYSIS OF ADIABATIC TECHNIQUES USING FULL ADDER FOR EFFICIENT POWER DISSIPATION C. Venkatesh, A. Mohanapriya and R. Sudha Anandhi Department of Electronics and

More information

Power Efficient Arithmetic Logic Unit

Power Efficient Arithmetic Logic Unit Power Efficient Arithmetic Logic Unit Silpa T S, Athira V R Abstract In the modern era, power dissipation has become a major and vital constraint in electronic industry. Many techniques were already introduced

More information

Implementation and Performance Analysis of a Vedic Multiplier Using Tanner EDA Tool

Implementation and Performance Analysis of a Vedic Multiplier Using Tanner EDA Tool IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 5, 2013 ISSN (online): 2321-0613 Implementation and Performance Analysis of a Vedic Multiplier Using Tanner EDA Tool Dheeraj

More information

Wide Fan-In Gates for Combinational Circuits Using CCD

Wide Fan-In Gates for Combinational Circuits Using CCD Wide Fan-In Gates for Combinational Circuits Using CCD Mekala.S Post Graduate Scholar, Nandha Engineering College, Erode, Tamil Nadu, India Abstract: A new domino circuit is proposed with low leakage and

More information

Design of Robust and power Efficient 8-Bit Ripple Carry Adder using Different Logic Styles

Design of Robust and power Efficient 8-Bit Ripple Carry Adder using Different Logic Styles Design of Robust and power Efficient 8-Bit Ripple Carry Adder using Different Logic Styles Mangayarkkarasi M 1, Joseph Gladwin S 2 1 Assistant Professor, 2 Associate Professor 12 Department of ECE 1 Sri

More information

An energy efficient full adder cell for low voltage

An energy efficient full adder cell for low voltage An energy efficient full adder cell for low voltage Keivan Navi 1a), Mehrdad Maeen 2, and Omid Hashemipour 1 1 Faculty of Electrical and Computer Engineering of Shahid Beheshti University, GC, Tehran,

More information

Design of Low Power Carry Look-Ahead Adder Using Single Phase Clocked Quasi-Static Adiabatic Logic

Design of Low Power Carry Look-Ahead Adder Using Single Phase Clocked Quasi-Static Adiabatic Logic IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 4, Ver. III (Jul-Aug. 2014), PP 01-08 e-issn: 2319 4200, p-issn No. : 2319 4197 Design of Low Power Carry Look-Ahead Adder Using Single

More information

Design and Analysis of Multiplexer using ADIABATIC Logic

Design and Analysis of Multiplexer using ADIABATIC Logic Design and Analysis of Multiplexer using ADIABATIC Logic Mopada Durga Prasad 1, Boggarapu Satish Kumar 2 M.Tech Student, Department of ECE, Pydah College of Engineering and Technology, Vizag, India 1 Assistant

More information

Design of Adders with Less number of Transistor

Design of Adders with Less number of Transistor Design of Adders with Less number of Transistor Mohammed Azeem Gafoor 1 and Dr. A R Abdul Rajak 2 1 Master of Engineering(Microelectronics), Birla Institute of Technology and Science Pilani, Dubai Campus,

More information

A Literature Survey on Low PDP Adder Circuits

A Literature Survey on Low PDP Adder Circuits Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 12, December 2015,

More information

Design of Modified Shannon Based Full Adder Cell Using PTL Logic for Low Power Applications

Design of Modified Shannon Based Full Adder Cell Using PTL Logic for Low Power Applications Design of Modified Shannon Based Full Adder Cell Using PTL Logic for Low Power Applications K.Purnima #1, S.AdiLakshmi #2, M.Sahithi #3, A.Jhansi Rani #4,J.Poornima #5 #1 M.Tech student, Department of

More information

Design of Multiplier Using CMOS Technology

Design of Multiplier Using CMOS Technology Design of Multiplier Using CMOS Technology 1 G. Nathiya, 2 M. Balasubaramani 1 PG student, Department of ECE, Vivekanandha College of engineering for women, Tiruchengode 2 AP/ /ECE student, Department

More information

Performance Analysis of Energy Efficient and Charge Recovery Adiabatic Techniques for Low Power Design

Performance Analysis of Energy Efficient and Charge Recovery Adiabatic Techniques for Low Power Design IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 6 (June. 2013), V1 PP 14-21 Performance Analysis of Energy Efficient and Charge Recovery Adiabatic Techniques for

More information

Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family

Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL., NO., MARCH, Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family Nazrul Anuar, Yasuhiro Takahashi, and Toshikazu Sekine Abstract This

More information

PERFORMANCE ANALYSIS OF A LOW-POWER HIGH-SPEED HYBRID 1- BIT FULL ADDER CIRCUIT USING CMOS TECHNOLOGIES USING CADANCE

PERFORMANCE ANALYSIS OF A LOW-POWER HIGH-SPEED HYBRID 1- BIT FULL ADDER CIRCUIT USING CMOS TECHNOLOGIES USING CADANCE PERFORMANCE ANALYSIS OF A LOW-POWER HIGH-SPEED HYBRID 1- BIT FULL ADDER CIRCUIT USING CMOS TECHNOLOGIES USING CADANCE Megha R 1, Vishwanath B R 2 1 Mtech, Department of ECE, Rajeev Institute of Technology,

More information

High Performance Low-Power Signed Multiplier

High Performance Low-Power Signed Multiplier High Performance Low-Power Signed Multiplier Amir R. Attarha Mehrdad Nourani VLSI Circuits & Systems Laboratory Department of Electrical and Computer Engineering University of Tehran, IRAN Email: attarha@khorshid.ece.ut.ac.ir

More information

the cascading of two stages in CMOS domino logic[7,8]. The operating period of a cell when its input clock and output are low is called the precharge

the cascading of two stages in CMOS domino logic[7,8]. The operating period of a cell when its input clock and output are low is called the precharge 1.5v,.18u Area Efficient 32 Bit Adder using 4T XOR and Modified Manchester Carry Chain Ajith Ravindran FACTS ELCi Electronics and Communication Engineering Saintgits College of Engineering, Kottayam Kerala,

More information

CHAPTER 6 GDI BASED LOW POWER FULL ADDER CELL FOR DSP DATA PATH BLOCKS

CHAPTER 6 GDI BASED LOW POWER FULL ADDER CELL FOR DSP DATA PATH BLOCKS 87 CHAPTER 6 GDI BASED LOW POWER FULL ADDER CELL FOR DSP DATA PATH BLOCKS 6.1 INTRODUCTION In this approach, the four types of full adders conventional, 16T, 14T and 10T have been analyzed in terms of

More information

POWER DELAY PRODUCT AND AREA REDUCTION OF FULL ADDERS USING SYSTEMATIC CELL DESIGN METHODOLOGY

POWER DELAY PRODUCT AND AREA REDUCTION OF FULL ADDERS USING SYSTEMATIC CELL DESIGN METHODOLOGY This work by IJARBEST is licensed under Creative Commons Attribution 4.0 International License. Available at https://www.ijarbest.com ISSN (ONLINE): 2395-695X POWER DELAY PRODUCT AND AREA REDUCTION OF

More information

Enhancement of Design Quality for an 8-bit ALU

Enhancement of Design Quality for an 8-bit ALU ABHIYANTRIKI An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol. 3, No. 5 (May, 2016) http://www.aijet.in/ eissn: 2394-627X Enhancement of Design Quality for an

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 12, DECEMBER 2006 1309 Design of Robust, Energy-Efficient Full Adders for Deep-Submicrometer Design Using Hybrid-CMOS Logic

More information

Implementation of Low Power Inverter using Adiabatic Logic

Implementation of Low Power Inverter using Adiabatic Logic Implementation of Low Power Inverter using Adiabatic Logic Pragati Upadhyay 1, Vishal Moyal 2 M.E. [VLSI Design], Dept. of ECE, SSGI SSTC (FET), Bhilai, Chhattisgarh, India 1 Associate Professor, Dept.

More information

ADIABATIC LOGIC FOR LOW POWER DIGITAL DESIGN

ADIABATIC LOGIC FOR LOW POWER DIGITAL DESIGN ADIABATIC LOGIC FOR LOW POWER DIGITAL DESIGN Mr. Sunil Jadhav 1, Prof. Sachin Borse 2 1 Student (M.E. Digital Signal Processing), Late G. N. Sapkal College of Engineering, Nashik,jsunile@gmail.com 2 Professor

More information

Adiabatic Logic Circuits: A Retrospect

Adiabatic Logic Circuits: A Retrospect MIT International Journal of Electronics and Communication Engineering, Vol. 3, No. 2, August 2013, pp. 108 114 108 Adiabatic Logic Circuits: A Retrospect Deepti Shinghal Department of E & C Engg., M.I.T.

More information

COMPREHENSIVE ANALYSIS OF ENHANCED CARRY-LOOK AHEAD ADDER USING DIFFERENT LOGIC STYLES

COMPREHENSIVE ANALYSIS OF ENHANCED CARRY-LOOK AHEAD ADDER USING DIFFERENT LOGIC STYLES COMPREHENSIVE ANALYSIS OF ENHANCED CARRY-LOOK AHEAD ADDER USING DIFFERENT LOGIC STYLES PSowmya #1, Pia Sarah George #2, Samyuktha T #3, Nikita Grover #4, Mrs Manurathi *1 # BTech,Electronics and Communication,Karunya

More information

[Singh*, 5(3): March, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785

[Singh*, 5(3): March, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY COMPARISON OF GDI BASED D FLIP FLOP CIRCUITS USING 90NM AND 180NM TECHNOLOGY Gurwinder Singh*, Ramanjeet Singh ECE Department,

More information

& POWER REDUCTION IN FULL ADDER USING NEW HYBRID LOGIC V.

& POWER REDUCTION IN FULL ADDER USING NEW HYBRID LOGIC V. POWER REDUCTION IN FULL ADDER USING NEW HYBRID LOGIC V. Kayathri*, C. Kumar**, P. Mari Muthu*** & N. Naveen Kumar**** Department of Electronics and Communication Engineering, RVS College of Engineering

More information

Comparison of High Speed & Low Power Techniques GDI & McCMOS in Full Adder Design

Comparison of High Speed & Low Power Techniques GDI & McCMOS in Full Adder Design International Conference on Multidisciplinary Research & Practice P a g e 625 Comparison of High Speed & Low Power Techniques & in Full Adder Design Shikha Sharma 1, ECE, Geetanjali Institute of Technical

More information

2-BIT COMPARATOR WITH 8-TRANSISTOR 1-BIT FULL ADDER WITH CAPACITOR

2-BIT COMPARATOR WITH 8-TRANSISTOR 1-BIT FULL ADDER WITH CAPACITOR 2-BIT COMPARATOR WITH 8-TRANSISTOR 1-BIT FULL ADDER WITH CAPACITOR C.CHANDAN KUMAR M.Tech-VLSI, Department of ECE, Sree vidyanikethan Engineering college A.Rangampet, Tirupati, India chennachandu123@gmail.com

More information

A Novel Approach for High Speed and Low Power 4-Bit Multiplier

A Novel Approach for High Speed and Low Power 4-Bit Multiplier IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 2319 4200, ISBN No. : 2319 4197 Volume 1, Issue 3 (Nov. - Dec. 2012), PP 13-26 A Novel Approach for High Speed and Low Power 4-Bit Multiplier

More information

Unique Journal of Engineering and Advanced Sciences Available online: Research Article

Unique Journal of Engineering and Advanced Sciences Available online:   Research Article ISSN 2348-375X Unique Journal of Engineering and Advanced Sciences Available online: www.ujconline.net Research Article WIDE FAN-IN GATES FOR COMBINATIONAL CIRCUITS USING CCD Mekala S 1 *, Meenakanimozhi

More information

ISSN:

ISSN: 343 Comparison of different design techniques of XOR & AND gate using EDA simulation tool RAZIA SULTANA 1, * JAGANNATH SAMANTA 1 M.TECH-STUDENT, ECE, Haldia Institute of Technology, Haldia, INDIA ECE,

More information

Design of Low power and Area Efficient 8-bit ALU using GDI Full Adder and Multiplexer

Design of Low power and Area Efficient 8-bit ALU using GDI Full Adder and Multiplexer Design of Low power and Area Efficient 8-bit ALU using GDI Full Adder and Multiplexer Mr. Y.Satish Kumar M.tech Student, Siddhartha Institute of Technology & Sciences. Mr. G.Srinivas, M.Tech Associate

More information

Minimization of 34T Full Subtractor Parameters Using MTCMOS Technique

Minimization of 34T Full Subtractor Parameters Using MTCMOS Technique Minimization of 34T Full Subtractor Parameters Using MTCMOS Technique Mohammad Mudassir 1, Vishwas Mishra 2 and Amit Kumar 3 1 Research Scholar, M.Tech RF and Microwave, SITE, SVSU, Meerut (UP) INDIA,

More information

LOW POWER-AREA DESIGN OF FULL ADDER USING SELF RESETTING LOGIC WITH GDI TECHNIQUE

LOW POWER-AREA DESIGN OF FULL ADDER USING SELF RESETTING LOGIC WITH GDI TECHNIQUE LOW POWER-AREA DESIGN OF FULL ADDER USING SELF RESETTING LOGIC WITH GDI TECHNIQUE ABSTRACT Simran Khokha 1 and K.Rahul Reddy 2 1 ARSD College, Department of Electronics Science, University Of Delhi, New

More information

Implementation of 1-bit Full Adder using Gate Difuision Input (GDI) cell

Implementation of 1-bit Full Adder using Gate Difuision Input (GDI) cell International Journal of Electronics and Computer Science Engineering 333 Available Online at www.ijecse.org ISSN: 2277-1956 Implementation of 1-bit Full Adder using Gate Difuision Input (GDI) cell Arun

More information

A New High Speed - Low Power 12 Transistor Full Adder Design with GDI Technique

A New High Speed - Low Power 12 Transistor Full Adder Design with GDI Technique International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 1 A New High Speed - Low Power 12 Transistor Full Design with GDI Technique Shahid Jaman, Nahian Chowdhury, Aasim

More information

CHAPTER - IV. Design and analysis of hybrid CMOS Full adder and PPM adder

CHAPTER - IV. Design and analysis of hybrid CMOS Full adder and PPM adder CHAPTER - IV Design and analysis of hybrid CMOS Full adder and PPM adder Design and analysis of hybrid CMOS Full adder and PPM adder 63 CHAPTER IV DESIGN AND ANALYSIS OF HYBRID CMOS FULL ADDER AND PPM

More information