UNDERSTANDING POWER FACTOR

Size: px
Start display at page:

Download "UNDERSTANDING POWER FACTOR"

Transcription

1 ALICATION NOTE UNDERTANDING OWER FACTOR by L. Wuidart 1. INTRODUCTION The majority of electronics designers do not worry about ower Factor (F); F is something that you learnt one day at school in your electrotechnics course as being the cos οf ϕ, the phase angle between the voltage and current waveforms. However, this conventional definition is only valid when considering ideal sinusoidal signals for both current and voltage waveforms, and in reality most off-line power supplies draw a nonsinusoidal current. Many off-line systems will typically have a front end section consisting of a rectifier bridge and an input filter capacitor, which act as a peak detector - see figure 1. A current flows to charge the capacitor only when the instantaneous AC voltage exceeds the voltage of the capacitor. A single phase off-line supply draws a current pulse during a small fraction of the half-cycle duration. Between those current peaks, the load draws the energy stored in the input capacitor. The phase lag ϕ and also the harmonic content of the pulsed current waveform produce additional RM currents, affecting the real power available from the mains. o ower Factor is much more than cos ϕ! The.F. value measures how much the mains efficiency is affected by both the phase lag ϕ and the harmonic content of the input current. In this context, the European tandard EN only defines the limit of current harmonics in mains supplied equipment. AN523/1093 1/5

2 Figure 1: Full-Wave Rectifier I mains LOAD V DC V DC V mains V mains I mains T/2 T t 2. THEORETICAL MEANING The ower Factor is defined by:.f. = = REAL OWER AARENT OWER 2.1 Ideal sinusoidal signals For ideal sinusoidal voltage and current waveforms, if there is a phase difference ϕ between the voltage and current waveforms, the total apparent power can be modelled as being composed of two components: one in phase with the input voltage, and the other 90 out of phase (in quadrature) with it - see figure 2. Then by definition,.f. = = CO ϕ Figure 2: ower vectors of ideal sinusoidal signals ϕ = V RM. I RM CO ϕ: In-hase or Real ower Q = V RM. I RM IN ϕ: Reactive or Quadrative ower = V RM. I RM : Total Apparent ower Q 2.2 Non-ideal sinusoidal current Assuming that the mains voltage is an ideal sinusoidal voltage waveform, its RM value is: V RM V peak = 2 If the current has been distorted in some way (for example as in figure 1) into a periodic non-sinusoidal waveform, applying a Fourier transform gives: I RM(total) = I 0 + I 2 1RM + I 2 2RM I 2 nrm where I 0 is the DC component of the current, I 1RM the fundamental of the RM current (that is the component at the frequency of the voltage input) and I 2RM... I nrm are the harmonics created by the distortion. For a pure AC signal, there is no DC component and so I 0 = 0. The fundamental of the RM current can be modelled as in section 2.1 above as an inphase component I 1RM and a quadrature component I 1RMQ, and so the RM current can be expressed as: I RM(total) = I 0 + I 2 1RM + I 2 1RM Q + Σ I 2 nrm Then, the Real ower is given by the RM voltage multiplied by the in-phase current: = V RM. I 1RM n=2 2/5

3 As ϕ 1 is the displacement angle between the input voltage and the in-phase component of the fundamental current: so I 1RM = I 1RM CO ϕ 1 = V RM. I RM CO ϕ 1 As the total apparent power is given by: = V RM. I RM total the ower Factor can be calculated as :.F. = CO = I 1 RM. 1 I RM (total) If the phase angle between I 1RM and I RM(total) is defined as θ: CO θ = I 1 RM I RM (total) θ is linked to the harmonic content of the current; as the harmonic content of I RM(total) approaches zero, θ approaches 0 and cos θ approaches ummary Finally then, the ower Factor can be expressed as:.f. = CO θ. CO ϕ 1 and the representation of the power vectors becomes that shown in figure 3. ϕ 1 is the conventional displacement angle (phase lag) between the voltage and the fundamental component of the current, while θ is the distortion angle caused by the harmonic content of the current. Both the reactive power, Q, and the distortion power, D, produce extra RM currents, giving additional losses and reducing the efficiency of the mains supply network. Figure 3: ower vectors with non-sinusoidal signals. ϕ1 θ 1 D Q = Real ower = V RM. I RM. CO ϕ Q = Reactive ower = V RM. I RM. IN ϕ 1 = Apparent Fundamental ower = V RM. I 1RM D = Distortion ower = V RM. Σ I 2 nrm n=2 = TOTAL AARENT OWER =V RM. I RM (total) 3/5

4 Improving the ower Factor means reducing both elements: ϕ 1 0 means CO ϕ 1 1: reduction of the phase lag between I and V, θ 0 means CO θ 1: reduction of harmonic content of I. 3. RACTICAL IMLICATION OF OWER FACTOR 3.1 Benefits of reduced ower Factor Both the user and the electricity supply company can benefit from a reduction in ower Factor. Adding a FC also reduces the component costs in a downstream converter Benefits to the user At the minimum line voltage (85V AC ), a standard 115V AC wall socket should be able to deliver the nominal 15A to a common load. However, an M without a ower Factor Corrector (FC), which will typically have a ower Factor of 0.6, reduces the available current to around 9A. As an example, a single wall socket will supply four 280W computers equipped with FCs, but only two without Benefits to the distribution company Both the reactive power Q and the distortion power D give rise to extra RM currents, significantly reducing the efficiency of the mains supply network. This means that the copper distribution wires must be thicker than would otherwise be necessary. Delivering power at frequencies other than the line frequency (ie the distortion power D) also causes difficulties. The distortion disturbs the zero voltage crossing detection systems, and generates overcurrent in the neutral line and resonant overvoltages. In Europe, the standard EN and the international project IEC limit the harmonic content of the current of mains supplied equipment Reduction of component costs in the downstream converter For the same output power capability, a conventional converter using an input mains voltage doubler has primary RM current 1.8 times higher than one employing a FC regulator. Consequently, if a FC is used in a system using ower MOFET switches, the on-resistance (R D(ON) ) of the switches can be up to three times higher than in a system without FC, allowing significantly cheaper parts to be used. The size of the converter transformer can be reduced not only because the thickness of the windings is smaller, but also because of the regulation of the DC bulk voltage delivered by the FC pre-regulator. The FC provides an automatic mains selection on a wide range of voltages from 85V AC up to 265V AC. Compared to the conventional doubler front-end section the same hold-up time can be achieved with a bulk storage capacitor 6 times smaller. For example, to achieve a 10ms hold-up time, a 100W converter in doubler operation requires a series combination of two 440µF capacitors without a FC, but only a single 130µF with. 3.2 RFI filter However, the size and cost optimisation of the FC has to take the RFI filter into consideration. A FC circuit generates more high frequency interference to the mains than a conventional rectifier front-end - see figure 4. Thus the use of a FC means that additional filtering is required. For this reason, modulation techniques and mode of operation for the FC have to be carefully adapted to the requirements of the application. 4/5

5 Figure 4: M with (a) conventional rectifier front-end, and (b) FC front-end. maller EMI filter C i 220µF Larger EMI filter C i 0.1µF FC 4. CONCLUION For new designs, M designers will have to take into account the IEC standard. In practice, this will require the use of a FC on the front end of much mains supplied equipment. The additional cost of the FC is compensated by the significant reduction in the cost of components for the downstream converter. The FC also provides additional functions such as automatic mains voltage selection and constant output voltage. Information furnished is believed to be accurate and reliable. However, TMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TMicroelectronics. pecification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. TMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of TMicroelectronics. The T logo is a trademark of TMicroelectronics 1999 TMicroelectronics - rinted in Italy - All Rights Reserved TMicroelectronics GROU OF COMANIE Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - ingapore - pain - weden - witzerland - United Kingdom - U..A. 5/5

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) BYT 30P-1000 FAST RECOVERY RECTIFIER DIODE VERY HIGH REVERSE VOLTAGE CAPABILITY VERY LOW REVERSE RECOVERY TIME VERY LOW SWITCHING LOSSES LOW NOISE TURN-OFF SWITCHING SUITABLE APPLICATIONS FREE WHEELING

More information

DESIGN TIPS FOR L6561 POWER FACTOR CORRECTOR

DESIGN TIPS FOR L6561 POWER FACTOR CORRECTOR AN1214 APPLICATION NOTE DESIGN TIPS FOR L6561 POWER FACTOR CORRECTOR IN WIDE RANGE by Cliff Ortmeyer & Claudio Adragna This application note will describe some basic steps to optimize the design of the

More information

Value Unit I T(RMS) RMS on-state current A A Tj = 25 C I FSM current (Tj initial = 25 C)

Value Unit I T(RMS) RMS on-state current A A Tj = 25 C I FSM current (Tj initial = 25 C) MAIN FEATURES: DIODE / SCR MODULE Symbol Value Unit I T(RMS) 50-70-85 A V DRM /V RRM 800 and 1200 V I GT 50 and 100 ma DESCRIPTION Packaged in ISOTOP modules, the MDS Series is based on the half-bridge

More information

Symbol Parameter Value Unit. Maximum lead temperature for soldering during 10s at 5mm from case

Symbol Parameter Value Unit. Maximum lead temperature for soldering during 10s at 5mm from case BZW50-10,B/180,B TRANSIL TM FEATURES PEAK PULSE POWER : 5000 W (10/1000µs) STAND-OFF VOLTAGE RANGE : From 10V to 180V UNI AND BIDIRECTIONAL TYPES LOW CLAMPING FACTOR FAST RESPONSE TIME UL RECOGNIZED DESCRIPTION

More information

BZW06-5V8/376 BZW06-5V8B/376B

BZW06-5V8/376 BZW06-5V8B/376B BZW06-5V8/376 BZW06-5V8B/376B TRANSIL TM FEATURES PEAK PULSE POWER : 600 W (10/1000µs) STAND-OFF VOLTAGE RANGE : From 5.8V to 376 V UNI AND BIDIRECTIONAL TYPES LOW CLAMPING FACTOR FAST RESPONSE TIME UL

More information

UM0920 User manual. 4 W non-isolated, wide input-voltage range SMPS demonstration board based on the VIPer16. Introduction

UM0920 User manual. 4 W non-isolated, wide input-voltage range SMPS demonstration board based on the VIPer16. Introduction User manual 4 W non-isolated, wide input-voltage range SMPS demonstration board based on the VIPer16 Introduction The purpose of this document is to provide information for the STEVAL-ISA071V2 switched

More information

TDA7231A 1.6W AUDIO AMPLIFIER OPERATING VOLTAGE 1.8 TO 15 V LOW QUIESCENT CURRENT HIGH POWER CAPABILITY LOW CROSSOVER DISTORTION SOFT CLIPPING

TDA7231A 1.6W AUDIO AMPLIFIER OPERATING VOLTAGE 1.8 TO 15 V LOW QUIESCENT CURRENT HIGH POWER CAPABILITY LOW CROSSOVER DISTORTION SOFT CLIPPING 1.6 AUDIO AMPLIFIER OPERATING VOLTAGE 1.8 TO 15 V LO QUIESCENT CURRENT. HIGH POER CAPABILITY LO CROSSOVER DISTORTION SOFT CLIPPING DESCRIPTION The is a monolithic integrated circuit in 4 + 4 lead minidip

More information

NE556 SA556 - SE556 GENERAL PURPOSE DUAL BIPOLAR TIMERS

NE556 SA556 - SE556 GENERAL PURPOSE DUAL BIPOLAR TIMERS NE556 SA556 - SE556 GENERAL PURPOSE DUAL BIPOLAR TIMERS LOW TURN OFF TIME MAXIMUM OPERATING FREQUENCY GREATER THAN 500kHz TIMING FROM MICROSECONDS TO HOURS OPERATES IN BOTH ASTABLE AND MONOSTABLE MODES

More information

DC LINE TERMINATION ACT DCT V-

DC LINE TERMINATION ACT DCT V- L3845 TRUNK INTERFACE ON CHIP POLARITY GUARD MEETS DC LINE CHARACTERISTICS OF EITHER CCITT AND EIA RS 464 SPECS PULSE FUNCTION HIGH AC IMPEDANCE OFF HOOK-STATUS DETECTION OUTPUT LOW EXTERNAL COMPONENT

More information

ESDA6V1U1 TRANSIL ARRAY FOR ESD PROTECTION. Application Specific Discretes A.S.D.

ESDA6V1U1 TRANSIL ARRAY FOR ESD PROTECTION. Application Specific Discretes A.S.D. Application Specific Discretes A.S.D. ESDA6V1U1 TRANSIL ARRAY FOR ESD PROTECTION APPLICATIONS Where transient overvoltage protection in ESD sensitive equipment is required, such as : COMPUTERS PRINTERS

More information

LM135 LM235 - LM335,A

LM135 LM235 - LM335,A LM135 LM235 - LM335,A PRECISION TEMPERATURE SENSORS DIRECTLY CALIBRATED IN K 1 C INITIAL ACCURACY OPERATES FROM 450µA TO 5mA LESS THAN 1Ω DYNAMIC IMPEDANCE DESCRIPTION The LM135, LM235, LM335 are precision

More information

LM217L LM317L LOW CURRENT 1.2 TO 37V ADJUSTABLE VOLTAGE REGULATOR

LM217L LM317L LOW CURRENT 1.2 TO 37V ADJUSTABLE VOLTAGE REGULATOR LM217L LM317L LOW CURRENT 1.2 TO 37V ADJUSTABLE VOLTAGE REGULATOR OUTPUT VOLTAGE RANGE: 1.2 TO 37V OUTPUT CURRENT IN EXCESS OF 100 ma LINE REGULATION TYP. 0.01% LOAD REGULATION TYP. 0.1% THERMAL OVERLOAD

More information

AN2961 Application note

AN2961 Application note Application note STEVAL-ILL026V1 non-isolated 3 W offline LED driver based on the VIPER22A-E Introduction This application note describes the functioning of the STEVAL-ILL026V1 non-isolated 3 W offline

More information

TPP OVERVOLTAGE and OVERCURRENT PROTECTION for TELECOM LINE. Application Specific Discretes A.S.D.

TPP OVERVOLTAGE and OVERCURRENT PROTECTION for TELECOM LINE. Application Specific Discretes A.S.D. Application Specific Discretes A.S.D. OVERVOLTAGE and OVERCURRENT PROTECTION for TELECOM LINE FEATURES UNIDIRECTIONAL FUNCTION PROGRAMMABLE BREAKDOWN VOLTAGE UP TO 250 V PROGRAMMABLE CURRENT LIMITATION

More information

AN1476 APPLICATION NOTE

AN1476 APPLICATION NOTE AN1476 APPLICATION NOTE LOW-COST POWER SUPPLY FOR HOME APPLIANCES INTRODUCTION In most non-battery applications, the power to the microcontroller is supplied by using a stepdown transformer, which is then

More information

AN601 APPLICATION NOTE NEW HIGH VOLTAGE ULTRA-FAST DIODES: THE TURBOSWITCH TM A and B SERIES

AN601 APPLICATION NOTE NEW HIGH VOLTAGE ULTRA-FAST DIODES: THE TURBOSWITCH TM A and B SERIES AN601 APPLICATION NOTE NEW HIGH VOLTAGE ULTRA-FAST DIODES: THE TURBOSWITCH TM A and B SERIES INTRODUCTION In today s power converter, the commutation speed of the transistor and the operating frequencies

More information

74V1T07CTR SINGLE BUFFER (OPEN DRAIN)

74V1T07CTR SINGLE BUFFER (OPEN DRAIN) SINGLE BUFFER (OPEN DRAIN) HIGH SPEED: t PD = 4.3ns (TYP.) at V CC = 5V LOW POWER DISSIPATION: I CC = 1µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS: V IH = 2V (MIN), V IL = 0.8V (MAX) POWER DOWN PROTECTION

More information

LM101A-LM201A LM301A SINGLE OPERATIONAL AMPLIFIERS

LM101A-LM201A LM301A SINGLE OPERATIONAL AMPLIFIERS LM1A-LM201A LM301A SINGLE OPERATIONAL AMPLIFIERS LM1A LM201A LM301A INPUT OFFSET VOLTAGE 0.7mV 2mV INPUT BIAS CURRENT 25nA 70nA INPUT OFFSET CURRENT 1.5nA 2nA SLEW RATE AS INVERSINGV/µs V/µs AMPLIFIER

More information

t p = 10 ms T j initial = T amb

t p = 10 ms T j initial = T amb P6KE TRANSIL FEATURES Peak pulse power: 600 W (/0 µs ) Stand-off voltage range 6.8 to 440V Unidirectional and Bidirectional types Low clamping factor Fast response time UL recognized DESCRIPTION Transil

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) HEX INVERTER (SINGLE STATE) HIGH SPEED: t PD = 5ns (TYP.) at V CC = 6V LOW POWER DISSIPATION: I CC = 1µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 10% V CC (MIN.) SYMMETRICAL OUTPUT IMPEDANCE:

More information

AN2625 Application note High AC input voltage limiting circuit Introduction

AN2625 Application note High AC input voltage limiting circuit Introduction Application note High AC input voltage limiting circuit Introduction The requirements on the switched mode power supply applications regarding the input AC voltage range are constantly increasing: for

More information

UA748 PRECISION SINGLE OPERATIONAL AMPLIFIER

UA748 PRECISION SINGLE OPERATIONAL AMPLIFIER PRECISION SINGLE OPERATIONAL AMPLIFIER INPUT OFFSET VOLTAGE : 3mV max. OVER TEMPERATURE FREQUENCY COMPENSATION WITH A SINGLE 30pF CAPACITOR (C1) OPERATION FROM ±5V to ±15V LOW POWER CONSUMPTION : 50mW

More information

AN1007 APPLICATION NOTE L BASED SWITCHER REPLACES MAG AMPS IN SILVER BOXES

AN1007 APPLICATION NOTE L BASED SWITCHER REPLACES MAG AMPS IN SILVER BOXES AN1007 APPLICATION NOTE L6561 - BASED SWITCHER REPLACES MAG AMPS IN SILVER BOXES by Claudio Adragna Mag amps (a contraction of "Magnetic Amplifier") are widely used in multi-output switching power supplies

More information

BU941ZP BU941ZPFI HIGH VOLTAGE IGNITION COIL DRIVER NPN POWER DARLINGTON TRANSISTORS. Figure 1: Package

BU941ZP BU941ZPFI HIGH VOLTAGE IGNITION COIL DRIVER NPN POWER DARLINGTON TRANSISTORS. Figure 1: Package BU941ZP BU941ZPFI HIGH VOLTAGE IGNITION COIL DRIVER NPN POWER DARLINGTON TRANSISTORS n n n n VERY RUGGED BIPOLAR TECHNOLOGY BUILT IN CLAMPING ZENER HIGH OPERATING JUNCTION TEMPERATURE FULLY INSULATED PACKAGE

More information

AN2123 Application Note

AN2123 Application Note Application Note 1 Introduction Advanced IGBT Driver Principles of operation and application by Jean-François GARNIER & Anthony BOIMOND The is an advanced IGBT driver with integrated control and protection

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LM150/LM250 LM350 THREE-TERMINAL 3 A ADJUSTABLE VOLTAGE REGULATORS GUARANTEED

More information

74AC10B TRIPLE 3-INPUT NAND GATE

74AC10B TRIPLE 3-INPUT NAND GATE TRIPLE 3-INPUT NAND GATE HIGH SPEED: t PD = 4ns (TYP.) at V CC = 5V LOW POWER DISSIPATION: I CC = 2µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28 % V CC (MIN.) 50Ω TRANSMISSION LINE DRIVING

More information

74AC00B QUAD 2-INPUT NAND GATE

74AC00B QUAD 2-INPUT NAND GATE QUAD 2-INPUT NAND GATE HIGH SPEED: t PD = 4ns (TYP.) at V CC = 5V LOW POWER DISSIPATION: I CC = 2µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28 % V CC (MIN.) 50Ω TRANSMISSION LINE DRIVING

More information

AN2002 APPLICATION NOTE

AN2002 APPLICATION NOTE AN00 APPLICATION NOTE Using the Demoboard for the TD50 Advanced IGBT Driver Introduction TD50 is an advanced IGBT/MOSFET driver with integrated control and protection functions. Principles of operation

More information

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS LOW POWER CONSUMPTION WIDE COMMON-MODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT OUTPUT SHORT-CIRCUIT

More information

74ACT00B QUAD 2-INPUT NAND GATE

74ACT00B QUAD 2-INPUT NAND GATE QUAD 2-INPUT NAND GATE HIGH SPEED: t PD = 4.5ns (TYP.) at V CC = 5V LOW POWER DISSIPATION: I CC = 2µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS V IH = 2V (MIN.), V IL = 0.8V (MAX.) 50Ω TRANSMISSION

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) HEX INVERTER (OPEN DRAIN) HIGH SPEED: t PD = 10ns (TYP.) at V CC = 6V LOW POWER DISSIPATION: I CC = 1µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28 % V CC (MIN.) WIDE OPERATING VOLTAGE RANGE:

More information

M74HC51TTR DUAL 2 WIDE 2 INPUT AND/OR INVERT GATE

M74HC51TTR DUAL 2 WIDE 2 INPUT AND/OR INVERT GATE DUAL 2 WIDE 2 INPUT AND/OR INVERT GATE HIGH SPEED: t PD = 11ns (TYP.) at V CC = 6V LOW POWER DISSIPATION: I CC = 1µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28 % V CC (MIN.) SYMMETRICAL

More information

AN2333 Application note

AN2333 Application note Application note White LED power supply for large display backlight Introduction This application note is dedicated to the STLD40D, it's a boost converter that operates from 3.0 V to 5.5 V dc and can provide

More information

LF151 LF251 - LF351 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIER

LF151 LF251 - LF351 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIER LF151 LF251 - LF351 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIER INTERNALLY ADJUSTABLE INPUT OFFSET VOLTAGE LOW POWER CONSUMPTION WIDE COMMON-MODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW

More information

M74HC10TTR TRIPLE 3-INPUT NAND GATE

M74HC10TTR TRIPLE 3-INPUT NAND GATE TRIPLE 3-INPUT NAND GATE HIGH SPEED: t PD = 8ns (TYP.) at V CC = 6V LOW POWER DISSIPATION: I CC = 1µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28 % V CC (MIN.) SYMMETRICAL OUTPUT IMPEDANCE:

More information

LM134 LM234 - LM334 THREE TERMINAL ADJUSTABLE CURRENT SOURCES

LM134 LM234 - LM334 THREE TERMINAL ADJUSTABLE CURRENT SOURCES LM134 LM234 - LM334 THREE TERMINAL ADJUSTABLE CURRENT SOURCES OPERATES FROM 1V TO 40V 0.02%/V CURRENT REGULATION PROGRAMMABLE FROM 1µA TO 10mA ±3% INITIAL ACCURACY DESCRIPTION The LM134/LM234/LM334 are

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) QUAD 2-INPUT NAND GATE HIGH SPEED: t PD = 8ns (TYP.) at V CC = 6V LOW POWER DISSIPATION: I CC = 1µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28 % V CC (MIN.) SYMMETRICAL OUTPUT IMPEDANCE:

More information

L A POWER SWITCHING REGULATOR

L A POWER SWITCHING REGULATOR 1.5A POWER SWITCHING REGULATOR 1.5A OUTPUT CURRENT 5.1V TO 40V OUTPUT VOLTAGE RANGE PRECISE (± 2%) ON-CHIP REFERENCE HIGH SWITCHING FREQUENCY VERY HIGH EFFICIENCY (UP TO 90%) VERY FEW EXTERNAL COMPONENTS

More information

Fundamentals of AC Power Measurements

Fundamentals of AC Power Measurements Fundamentals of AC Power Measurements Application Note Power analysis involves some measurements, terms and calculations that may be new and possibly confusing to engineers and technicians who are new

More information

TL081 TL081A - TL081B

TL081 TL081A - TL081B TL081 TL081A - TL081B GENERAL PURPOSE J-FET SINGLE OPERATIONAL AMPLIFIERS WIDE COMMON-MODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT OUTPUT SHORT-CIRCUIT PROTECTION

More information

AN1258 Application note

AN1258 Application note AN58 Application note VIPer0-E standby application demonstration board Introduction This general flyback circuit can be used to produce any output voltage in primary or secondary mode regulation and is

More information

STPS20120D POWER SCHOTTKY RECTIFIER. Table 1: Main Product Characteristics I F(AV) 20 A V RRM. 120 V T j (max) 175 C V F (typ) 0.

STPS20120D POWER SCHOTTKY RECTIFIER. Table 1: Main Product Characteristics I F(AV) 20 A V RRM. 120 V T j (max) 175 C V F (typ) 0. STPS22D POWER SCHOTTKY RECTIFIER Table : Main Product Characteristics I F(AV) 2 A V RRM 2 V T j (max) 75 C V F (typ).54 V FEATURES AND BENEFITS High junction temperature capability Avalanche rated Low

More information

M74HCT02TTR QUAD 2-INPUT NOR GATE

M74HCT02TTR QUAD 2-INPUT NOR GATE QUAD 2-INPUT NOR GATE HIGH SPEED: t PD = 15 ns (TYP.) at V CC = 4.5V LOW POWER DISSIPATION: I CC = 1µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS : V IH = 2V (MIN.) V IL = 0.8V (MAX) BALANCED PROPAGATION

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) QUAD 2 INPUT NAND GATE PROPAGATION DELAY TIME t PD = 60ns (Typ.) at V DD = 10V BUFFERED INPUTS AND OUTPUTS STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS QUIESCENT CURRENT SPECIFIED UP TO 20V 5V, 10V

More information

STTH3003CW HIGH FREQUENCY SECONDARY RECTIFIER MAJOR PRODUCT CHARACTERISTICS. 2 x 15 A 300 V Tj (max) 175 C

STTH3003CW HIGH FREQUENCY SECONDARY RECTIFIER MAJOR PRODUCT CHARACTERISTICS. 2 x 15 A 300 V Tj (max) 175 C STTH33CW HIGH FREQUENCY SECONDARY RECTIFIER MAJOR PRODUCT CHARACTERISTICS IF(AV) x 15 A VRRM 3 V Tj (max) 175 C VF (max) 1 V trr (max) ns FEATURES AND BENEFITS COMBINES HIGHEST RECOVERY AND REVERSE VOLTAGE

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) SINGLE 2-INPUT NOR GATE HIGH SPEED: t PD = 3.6ns (TYP.) at V CC =5V LOW POWER DISSIPATION: I CC =1µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH =V NIL = 28% V CC (MIN.) POWER DOWN PROTECTION ON INPUTS

More information

ADJUSTABLE AND +3.3 V DUAL VOLTAGE REGULATOR WITH DISABLE AND RESET FUNCTIONS RESET DELAY CAPACITOR. September /12

ADJUSTABLE AND +3.3 V DUAL VOLTAGE REGULATOR WITH DISABLE AND RESET FUNCTIONS RESET DELAY CAPACITOR. September /12 STV810AD ADJUSTABLE AND +. V DUAL VOLTAGE REGULATOR WITH DISABLE AND FUNCTIONS FEATURES Input Voltage Range: 5 V to 18 V Output Currents up to 750 ma Fixed Precision Output 1 Voltage:. V ±2% Adjustable

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) TDA7263 12 +12W STEREO AMPLIFIER WITH MUTING WIDE SUPPLY VOLTAGE RANGE HIGH OUTPUT POWER 12+12W @ VS=28V, RL = 8Ω, THD=10% MUTE FACILITY (POP FREE) WITH LOW CONSUMPTION AC SHORT CIRCUIT PROTECTION THERMAL

More information

STX93003 HIGH VOLTAGE FAST-SWITCHING PNP POWER TRANSISTOR

STX93003 HIGH VOLTAGE FAST-SWITCHING PNP POWER TRANSISTOR STX93003 HIGH VOLTAGE FAST-SWITCHING PNP POWER TRANSISTOR ST93003 SILICON IN TO-92 PACKAGE MEDIUM VOLTAGE CAPABILITY LOW SPREAD OF DYNAMIC PARAMETERS MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION VERY

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) QUAD 2-INPUT NAND GATE HIGH SPEED: t PD = 12ns (TYP.) at V CC = 4.5V LOW POWER DISSIPATION: I CC = 1µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS : V IH = 2V (MIN.) V IL = 0.8V (MAX) BALANCED PROPAGATION

More information

T2550H-600T 25A TRIACS MAIN FEATURES:

T2550H-600T 25A TRIACS MAIN FEATURES: SNUBBERLESS HIGH TEMPERATURE 25A TRIACS MAIN FEATURES: Symbol Value Unit I T(RMS) 25 A V DRM /V RRM 600 V I GT (Q1 ) 50 ma DESCRIPTION Specifically designed for use in high temperature environment (found

More information

UNIVERSAL MOTOR CONTROL EVALUATION BOARD

UNIVERSAL MOTOR CONTROL EVALUATION BOARD UNIVERSAL MOTOR CONTROL EVALUATION BOARD USER MANUAL 1 INTRODUCTION 1.1 TARGET APPLICATION The UMC01EVAL Evaluation Board is designed for a very low-cost phase control system based on the 8-bit ST62T00C

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) SINGLE INVERTER (OPEN DRAIN) HIGH SPEED: t PD = 3.7ns (TYP.) at V CC =5V LOW POWER DISSIPATION: I CC =1µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH =V NIL = 28% V CC (MIN.) POWER DOWN PROTECTION ON

More information

74V1G00CTR SINGLE 2-INPUT NAND GATE

74V1G00CTR SINGLE 2-INPUT NAND GATE SINGLE 2-INPUT NAND GATE HIGH SPEED: t PD = 3.7ns (TYP.) at V CC =5V LOW POWER DISSIPATION: I CC =1µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH =V NIL = 28% V CC (MIN.) POWER DOWN PROTECTION ON INPUTS

More information

ST2111FX HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR. Features. Applications. Internal Schematic Diagram. Description.

ST2111FX HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR. Features. Applications. Internal Schematic Diagram. Description. HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR Features NEW SERIES, ENHANCED PERFORMANCE FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING HIGH VOLTAGE CAPABILITY (1500V) HIGH SWITCHING SPEED

More information

M74HC4049TTR HEX BUFFER/CONVERTER (INVERTER)

M74HC4049TTR HEX BUFFER/CONVERTER (INVERTER) HEX BUFFER/CONVERTER (INVERTER) HIGH SPEED: t PD = 8ns (TYP.) at V CC =6V LOW POWER DISSIPATION: I CC = 1µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28 % V CC (MIN.) SYMMETRICAL OUTPUT IMPEDANCE:

More information

TDA W MONO CLASS-D AMPLIFIER 18W OUTPUT POWER:

TDA W MONO CLASS-D AMPLIFIER 18W OUTPUT POWER: TDA481 18 MONO CLASS-D AMPLIFIER 18 OUTPUT POER: RL = 8Ω/4Ω; THD = 10% HIGH EFFICIENCY IDE SUPPLY VOLTAGE RANGE (UP TO ±25V) SPLIT SUPPLY OVERVOLTAGE PROTECTION ST-BY AND MUTE FEATURES SHORT CIRCUIT PROTECTION

More information

L272 DUAL POWER OPERATIONAL AMPLIFIERS

L272 DUAL POWER OPERATIONAL AMPLIFIERS L272 DUAL POWER OPERATIONAL AMPLIFIERS OUTPUT CURRENT TO 1 A OPERATES AT LOW VOLTAGES SINGLE OR SPLIT SUPPLY LARGE COMMON-MODE AND DIFFEREN- TIAL MODE RANGE. GROUND COMPATIBLE INPUTS LOW SATURATION VOLTAGE

More information

HCF4050B HEX BUFFER/CONVERTER (NON INVERTING)

HCF4050B HEX BUFFER/CONVERTER (NON INVERTING) HEX BUFFER/CONVERTER (NON INVERTING) PROPAGATION DELAY TIME : t PD = 40ns (TYP.) at V DD = 10V C L = 50pF HIGH TO LOW LEVEL LOGIC CONVERSION HIGH "SINK" AND "SOURCE" CURRENT CAPABILITY QUIESCENT CURRENT

More information

MJD122-1 / MJD122T4 MJD127-1 / MJD127T4 COMPLEMENTARY POWER DARLINGTON TRANSISTORS

MJD122-1 / MJD122T4 MJD127-1 / MJD127T4 COMPLEMENTARY POWER DARLINGTON TRANSISTORS MJD122-1 / MJD122T4 MJD127-1 / MJD127T4 COMPLEMENTARY POWER DARLINGTON TRANSISTORS Ordering Code Marking Package Shipment MJD122T4 MJD122-1 MJD127T4 MJD127-1 MJD122 MJD122 MJD127 MJD127 TO-252 (DPAK) TO-251

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) L4904A DUAL 5V REGULATOR WITH RESET OUTPUT CURRENTS : I01 = 50mA I02 = 100mA FIXED PRECISION OUTPUT VOLTAGE 5V ± 2 % RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE RESET FUNCTION EXTERNALLY

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) LOW-NOISE VERTICAL DEFLECTION SYSTEM FEATURES SUMMARY COMPLETE VERTICAL DEFLECTION SYSTEM LOW NOISE SUITABLE FOR HIGH DEFINITION MONITORS ESD PROTECTED DESCRIPTION The TDA75P is a monolithic integrated

More information

TDA0161. Proximity Detectors. Features. Description. Block Diagram. 10mA Output Current Oscillator Frequency 10MHz Supply Voltage +4 to +35V

TDA0161. Proximity Detectors. Features. Description. Block Diagram. 10mA Output Current Oscillator Frequency 10MHz Supply Voltage +4 to +35V Proximity Detectors Features 10mA Output Current Oscillator Frequency 10MHz Supply Voltage +4 to +35V Description These monolithic integrated circuits are designed for metallic body detection by sensing

More information

BYT30G-400 HIGH EFFICIENCY FAST RECOVERY DIODES MAIN PRODUCT CHARACTERISTICS IF(AV) VRRM 30 A 400 V 1.4 V

BYT30G-400 HIGH EFFICIENCY FAST RECOVERY DIODES MAIN PRODUCT CHARACTERISTICS IF(AV) VRRM 30 A 400 V 1.4 V BY3G-4 HIGH EFFICIENCY FAS RECOVERY DIODES MAIN PRODUC CHARACERISICS IF(AV) VRRM trr VF 3 A 4 V 5 ns 1.4 V 1 & 3 4 4 FEAURES AND BENEFIS VERY LOW REVERSE RECOVERY IME VERY LOW SWICHING LOSSES LOW NOISE

More information

74V1T126CTR SINGLE BUS BUFFER (3-STATE)

74V1T126CTR SINGLE BUS BUFFER (3-STATE) SINGLE BUS BUFFER (3-STATE) HIGH SPEED: t PD = 3.6ns (TYP.) at V CC = 5V LOW POWER DISSIPATION: I CC = 1µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS: V IH = 2V (MIN), V IL = 0.8V (MAX) POWER DOWN

More information

AN2447 Application note

AN2447 Application note Application note Quasi-resonant flyback converter for low cost set-top box application Introduction This application note describes how to implement a complete solution for a 17 W switch mode power supply

More information

STEVAL-ISA005V1. 1.8W buck topology power supply evaluation board with VIPer12AS. Features. Description. ST Components

STEVAL-ISA005V1. 1.8W buck topology power supply evaluation board with VIPer12AS. Features. Description. ST Components Features Switch mode general purpose power supply Input: 85 to 264Vac @ 50/60Hz Output: 15V, 100mA @ 50/60Hz Output power (pick): 1.6W Second output through linear regulator: 5V / 60 or 20mA Description

More information

74V1T00CTR SINGLE 2-INPUT NAND GATE

74V1T00CTR SINGLE 2-INPUT NAND GATE SINGLE 2-INPUT NAND GATE HIGH SPEED: t PD = 5.0ns (TYP.) at V CC =5V LOW POWER DISSIPATION: I CC =1µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS: V IH =2V(MIN),V IL =0.8V(MAX) POWER DOWN PROTECTION

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) SINGLE 2-INPUT NAND GATE HIGH SPEED: t PD = 5.0ns (TYP.) at V CC =5V LOW POWER DISSIPATION: I CC =1µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS: V IH =2V(MIN),V IL =0.8V(MAX) POWER DOWN PROTECTION

More information

Table 3: Absolute Ratings (limiting values) Symbol Parameter Value Unit V RRM Repetitive peak reverse voltage 40 V I F(RMS) RMS forward voltage 7 A

Table 3: Absolute Ratings (limiting values) Symbol Parameter Value Unit V RRM Repetitive peak reverse voltage 40 V I F(RMS) RMS forward voltage 7 A SPS4 POWER SCHOKY RECIFIER able : Main Product Characteristics I F(AV) A V RRM 4 V j (max) 5 C V F (max).5 V FEAURES AND BENEFIS Very small conduction losses Negligible switching losses Low forward voltage

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) TRIPLE 3-INPUT NOR GATE HIGH SPEED: t PD = 4.1 ns (TYP.) at V CC = 5V LOW POWER DISSIPATION: I CC = 2 µa (MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28% V CC (MIN.) POWER DOWN PROTECTION ON

More information

TDA7241B 20W BRIDGE AMPLIFIER FOR CAR RADIO

TDA7241B 20W BRIDGE AMPLIFIER FOR CAR RADIO TDA7241B 20W BRIDGE AMPLIFIER FOR CAR RADIO VERY LOW STAND-BY CURRENT GAIN = 32dB OUTPUT PROTECTED AGAINST SHORT CIRCUITS TO GROUND AND ACROSS LOAD COMPACT HEPTAWATT PACKAGE DUMP TRANSIENT THERMAL SHUTDOWN

More information

LDRxxyy VERY LOW DROP DUAL VOLTAGE REGULATOR

LDRxxyy VERY LOW DROP DUAL VOLTAGE REGULATOR VERY LOW DROP DUAL VOLTAGE REGULATOR OUTPUT CURRENT 1 UP TO 500mA OUTPUT CURRENT 2 UP TO 1.0A LOW DROPOUT VOLTAGE 1 (0.3V @ I O =500mA) LOW DROPOUT VOLTAGE 2 (0.4V @ I O =1A) VERY LOW SUPPLY CURRENT (TYP.50µA

More information

HCF4040B RIPPLE-CARRY BINARY COUNTER/DIVIDERS 12 STAGE

HCF4040B RIPPLE-CARRY BINARY COUNTER/DIVIDERS 12 STAGE RIPPLE-CARRY BINARY COUNTER/DIVIDERS 12 STAGE MEDIUM SPEED OPERATION : t PD = 80ns (TYP.) at V DD = 10V FULLY STATIC OPERATION COMMON RESET BUFFERED INPUTS AND OUTPUTS STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) BUL138FP HIGH OLTAGE FAST-SWITCHING NPN POWER TRANSISTOR STMicroelectronics PREFERRED SALESTYPE NPN TRANSISTOR HIGH OLTAGE CAPABILITY LOW SPREAD OF DYNAMIC PARAMETERS MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE

More information

HCF4585B 4-BIT MAGNITUDE COMPARATOR

HCF4585B 4-BIT MAGNITUDE COMPARATOR 4-BIT MAGNITUDE COMPARATOR EXPANSION TO 8, 12, 16...4 N BITS BY CASCADING UNIT MEDIUM SPEED OPERATION : COMPARES TWO 4-BIT WORDS IN 180ns (Typ.) at 10V STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS QUIESCENT

More information

HCF4041UB QUAD TRUE/COMPLEMENT BUFFER

HCF4041UB QUAD TRUE/COMPLEMENT BUFFER QUAD TRUE/COMPLEMENT BUFFER BALANCED SINK AND SOURCE CURRENT: APPROXIMATELY 4 TIMES STANDARD "B" DRIVE EQUALIZED DELAY TO TRUE AND COMPLEMENT OUTPUTS QUIESCENT CURRENT SPECIFIED UP TO 20V STANDARDIZED

More information

LCP1511D PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR FOR SLIC PROTECTION. Application Specific Discretes A.S.D. TIP TIP GATE GND GND RING FEATURES SO-8

LCP1511D PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR FOR SLIC PROTECTION. Application Specific Discretes A.S.D. TIP TIP GATE GND GND RING FEATURES SO-8 Application Specific Discretes A.S.D. LCP111D PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR FOR SLIC PROTECTION FEATURES n DUAL PROGRAMMABLE TRANSIENT SUP- PRESSOR. n WIDE NEGATIVE FI VOLTAGE RANGE : V MGL

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) ST8812FP HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR Features HIGH VOLTAGE CAPABILITY VERY HIGH SWITCHING SPEED TIGHT hfe CONTROL LARGE R.B.S.O.A. FULLY INSULATED PACKAGE U.L. COMPLIANT FOR EASY MOUNTING

More information

74AC257B QUAD 2 CHANNEL MULTIPLEXER (3-STATE)

74AC257B QUAD 2 CHANNEL MULTIPLEXER (3-STATE) QUAD 2 CHANNEL MULTIPLEXER (3-STATE) HIGH SPEED: t PD = 4.5ns (TYP.) at V CC = 5V LOW POWER DISSIPATION: I CC = 4µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28 % V CC (MIN.) 50Ω TRANSMISSION

More information

TL074 TL074A - TL074B

TL074 TL074A - TL074B A B LOW NOISE JFET QUAD OPERATIONAL AMPLIFIERS WIDE COMMONMODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT LOW NOISE e n = 15nV/ Hz (typ) OUTPUT SHORTCIRCUIT PROTECTION

More information

PULSE CONTROLLED INVERTER

PULSE CONTROLLED INVERTER APPLICATION NOTE PULSE CONTROLLED INVERTER by J. M. Bourgeois ABSTRACT With the development of insulated gate transistors, interfacing digital control with a power inverter is becoming easier and less

More information

AN1756 Application note

AN1756 Application note Application note Choosing a DALI implementation strategy with ST7DALIF2 Introduction This application note describes how to choose a DALI (Digital Addressable Lighting Interface) implementation strategy

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) BU208A BU508A/BU508AFI HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTORS STMicroelectronics PREFERRED SALESTYPES HIGH VOLTAGE CAPABILITY (> 1500 V) FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING

More information

TEB1033 TEF1033-TEC1033

TEB1033 TEF1033-TEC1033 TEB1033 TEF1033-TEC1033 PRECISION DUAL OPERATIONAL AMPLIFIERS VERY LOW INPUT OFFSET VOLTAGE : 1mV max. LOW DISTORTION RATIO LOW NOISE VERY LOW SUPPLY CURRENT LOW INPUT OFFSET CURRENT LARGE COMMON-MODE

More information

TDA W MONO CLASS-D AMPLIFIER 1 FEATURES 2 DESCRIPTION. Figure 1. Package 25W OUTPUT POWER:

TDA W MONO CLASS-D AMPLIFIER 1 FEATURES 2 DESCRIPTION. Figure 1. Package 25W OUTPUT POWER: 25 MONO CLASS-D AMPLIFIER 1 FEATURES 25 OUTPUT POER: RL = 8Ω/4Ω; THD = 10% HIGH EFFICIENCY IDE SUPPLY VOLTAGE RANGE (UP TO ±25V) SPLIT SUPPLY OVERVOLTAGEPROTECTION ST-BY AND MUTE FEATURES SHORT CIRCUIT

More information

74VHC20 DUAL 4-INPUT NAND GATE

74VHC20 DUAL 4-INPUT NAND GATE DUAL 4-INPUT NAND GATE HIGH SPEED: t PD = 3.3 ns (TYP.) at V CC = 5V LOW POWER DISSIPATION: I CC = 2 µa (MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28% V CC (MIN.) POWER DOWN PROTECTION ON

More information

AN2239 APPLICATION NOTE

AN2239 APPLICATION NOTE AN2239 APPLICATION NOTE Maximizing Synchronous Buck Converter Efficiency with Standard STripFETs with Integrated Schottky Diodes Introduction This document explains the history, improvements, and performance

More information

L A POWER SWITCHING REGULATOR

L A POWER SWITCHING REGULATOR L4960 2.5A POWER SWITCHING REGULATOR 2.5A OUTPUT CURRENT 5.1V TO 40V OPUTPUT VOLTAGE RANGE PRECISE (± 2%) ON-CHIP REFERENCE HIGH SWITCHING FREQUENCY VERY HIGH EFFICIENCY (UP TO 90%) VERY FEW EXTERNAL COMPONENTS

More information

THBTxxx11D TRIPOLAR OVERVOLTAGE PROTECTION FOR TELECOM LINE. Application Specific Discretes A.S.D. 8 TIP 7 GND 6 GND 5 RING GND 3 RING FEATURES

THBTxxx11D TRIPOLAR OVERVOLTAGE PROTECTION FOR TELECOM LINE. Application Specific Discretes A.S.D. 8 TIP 7 GND 6 GND 5 RING GND 3 RING FEATURES Application Specific Discretes A.S.D. THBTxxx11D TRIPOLAR OEROLTAGE PROTECTION FOR TELECOM LINE FEATURES n BIDIRECTIONAL CROWBAR PROTECTION BETWEEN TIP AND, AND AND BETWEEN TIP AND. n PEAK PULSE CURRENT

More information

AN2837 Application note

AN2837 Application note Application note Positive to negative buck-boost converter using ST1S03 asynchronous switching regulator Abstract The ST1S03 is a 1.5 A, 1.5 MHz adjustable step-down switching regulator housed in a DFN6

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) QUAD 2 CHANNEL MULTIPLEXER HIGH SPEED: t PD = 10ns (TYP.) at V CC = 6V LOW POWER DISSIPATION: I CC = 4µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28 % V CC (MIN.) SYMMETRICAL OUTPUT IMPEDANCE:

More information

HCF4010B HEX BUFFER/CONVERTER (NON INVERTING)

HCF4010B HEX BUFFER/CONVERTER (NON INVERTING) HEX BUFFER/CONVERTER (NON INVERTING) PROPAGATION DELAY TIME t PD = 40ns (TYP.) at V DD = 10V C L = 50pF HIGH TO LOW LEVEL LOGIC CONVERSION MULTIPLEXER: 1 TO 6 OR 6 TO 1 HIGH "SINK" AND "SOURCE" CURRENT

More information

AN APPLICATION NOTE

AN APPLICATION NOTE AN1539 - APPLICATION NOTE VIPower: LOW COST UNIVERSAL INPUT SMPS FOR DIGITAL SET-TOP BOX BASED ON VIPer50 F. Gennaro ABSTRACT In this paper the design of a low cost power supply for digital Set Top Box

More information

BU941Z/BU941ZP BU941ZPFI

BU941Z/BU941ZP BU941ZPFI BU941Z/BU941ZP BU941ZPFI HIGH VOLTAGE IGNITION COIL DRIVER NPN POWER DARLINGTON TRANSISTOR VERY RUGGED BIPOLAR TECHNOLOGY BUILT IN CLAMPING ZENER HIGH OPERATING JUNCTION TEMPERATURE WIDE RANGE OF PACKAGES

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) SINGLE 2-INPUT NAND GATE 5V TOLERANT INPUTS HIGH SPEED: t PD = 4.7ns (MAX.) at V CC =3V LOW POWER DISSIPATION: I CC =1µA (MAX.)atT A =25 C POWER DOWN PROTECTION ON INPUTS AND OUTPUTS SYMMETRICAL OUTPUT

More information

ESDALC6V1W5. Quad TRANSIL array for data protection. Main applications. Features. Description. Benefits SOT323-5L. Order codes

ESDALC6V1W5. Quad TRANSIL array for data protection. Main applications. Features. Description. Benefits SOT323-5L. Order codes Quad TRANSIL array for data protection Main applications Where transient overvoltage protection in ESD sensitive equipment is required, such as : Computers Printers Communication systems Cellular phones

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) PN2222A ABSOLUTE MAXIMUM RATINGS SMALL SIGNAL NPN TRANSISTOR PRELIMINARY DATA Ordering Code Marking Package / Shipment PN2222A PN2222A TO-92 / Bulk PN2222A-AP PN2222A TO-92 / Ammopack SILICON EPITAXIAL

More information

74LVQ11TTR TRIPLE 3-INPUT AND GATE

74LVQ11TTR TRIPLE 3-INPUT AND GATE TRIPLE 3-INPUT AND GATE HIGH SPEED: t PD = 4.7ns (TYP.) at V CC = 3.3 V COMPATIBLE WITH TTL OUTPUTS LOW POWER DISSIPATION: I CC = 2µA (MAX.) at T A =25 C LOW NOISE: V OLP = 0.3V (TYP.) at V CC = 3.3V 75Ω

More information