Power Transfer Distribution Factor Estimate Using DC Load Flow Method

Size: px
Start display at page:

Download "Power Transfer Distribution Factor Estimate Using DC Load Flow Method"

Transcription

1 Power Transfer Distribution Factor Estimate Using DC Load Flow Method Ravi Kumar, S. C. Gupta & Baseem Khan MANIT Bhopal ravi143.96@rediffmail.com, scg.nit.09@gmail.com, baseem.khan04@gmail.com Abstract - In this paper, a DC load flow based approach has been proposed for single-transaction case using power transfer sensitivity and succeptance matrices and we seen the effect of one transaction to the other transaction. This method can be implemented for any number of transactions simultaneously. Available Transfer Capability (ATC) is a measure of the transfer capability remaining in the physical transmission network for further commercial activity over and above already committed uses. DC load flow based approach is fast computation which used to worldwide for on line implementation. Many authors have planned the ATC calculation based on DC load flow approach, though, the procedure for multi-transaction cases occurring simultaneously remains unattended using DC load flow approach The results have been determined for intact as well single transaction case. The proposed method has been applied for IEEE 6 bus system. Keywords - Available transfer capability, DC loads flow, power transfer distribution factors, single-transactions. I. INTRODUCTION In a restructure system, the information about the transfer capability will help the energy marketers in reserving the transmission services. For secure and economic supply of power, long distance bulk power transfers are vital, but the power transfer capability of a power system is limited. To operate the power system safely and to gain the advantages of bulk power transfers, computations of transport capability is essential. Transfer capability plays a very important role in liberalized electricity market [1]. All the transmission lines are utilized significantly below their physical limits due to various constraints. By rising the transfer capability the economic value of the transmission lines can be improved and also there will be an increase in overall efficiency as more energy trading can take place between the competing regions operating with different price structure. These terms, which include First Contingency Total Transfer Capability (FCTTC) and First Contingency Incremental Transfer Capability (FCITC) as defined in NERC s May 1995 Transmission Transfer Capability [2] reference document, are still applicable measures in an open transmission access environment. FERC s term Available Transmission Capacity and its definition and relationship to the industry s terminology need to be further clarified. There are three main issues in transmission management: congestion; transmission tariffs; and transmission losses [3]. The power system should be planned and operated such that these power transfers are within the limits of the system transfer Capability. So much sources available for Available Transfer Capability Definitions and Determination [4]. The electric power industries, all over the world, have been varying to a new deregulated environment due to many forces to create competitive electricity markets [5].Transfer capability of a power system is defined as the maximum power that can be transferred from one area to another area. In open access transmission system, the transmission network owners are required to provide unbundled services to support power transactions and to maintain reliable operation of the networks. In a liberalized electricity markets, to implement the open access policy North American Energy Reliability Council (NERC) in conjunction With Federal Energy Regulatory Commission (FERC) defined the term available transfer capability (ATC) to be posted in open access same time information system (OASIS) to inform all the energy market participants of the power system. The two major challenges that make the task of ATC calculation of a nonlinear power system more challenging are computing speed and accuracy due to static and dynamic security constraints. Based on the literature survey for DC load based approaches, authors have determined ATC for single transaction cases; however, simultaneous or multi-transactions cases have not been accounted for ATC determination. Since in a 155

2 multi-lateral market environment, multi-transactions cannot be avoided for ATC determination as it will not give accurate signal to the ISO for its quantification and reservation for commercial activity. In this paper, PTDFs based approach using DC load flow has been implemented for ATC determination in case of multitransaction environment. The results have also been obtained for single transactions. The methodology has been implemented using power flow sensitivity and succeptance matrix based on DC load flow. The results have been obtained for IEEE 6 bus system. The report is the response to NERC s Strategic Initiative on ATC and defines ATC and related terms [6].The introduction of St. Clair curves were one of the first attempts to contain thermal, voltage, and stability constraints into a single transmission line loading limitation [7]. II. METHODOLOGY FOR ATC DETERMINATION IN CASE OF MULTI-TRANSACTIONS A. Dc load flow model Following are the assumptions while DC model is in employment instead of AC model [8]- Voltage magnitudes are constant, Only angles of the complex bus voltage vary, The variation in angle is small, Transmission lines are lossless, These assumptions create a mode that is a reasonable first approximation for the real power system, which is just slightly nonlinear in normal steady state operation. The model has recompense for speed of computation, and as well has some useful properties like linearity and superposition. With these assumptions, power flow over transmission lines connecting bus i a and bus j a is given as: Where, Xlc, md =line inductive reactance in per unit Ølc = phase angle at bus lc Ømd = phase angle at bus md (1) The total power flowing into the bus ia, Pia, is the algebraic sum of generation and load at the bus and is called a bus power insertion, thus This can be articulated in matrix form as: Where, the elements of the susceptance matrix BX are functions of line reactances. One node is assigned as a location node by making its angle zero and deleting corresponding row and column in matrix. Thus, (3) (4) The dimension of obtained is. Let us augment it by adding zero columns and row corresponding to reference bus. The angles in equation (3) can be found out as (5) Thus, power flow over line lmd can be found out using equation (1). B. Power Transfer Distribution Factor (PTDF) From the power transfer point of view, a operation is a specific amount of power that is injected into the system at one bus by a generator and drawn at another bus by a load. The coefficient of linear association between the amount of a transaction and flow on a line is represented by PTDF. It is too called sensitivity because it relates the amount of one change transaction amount to another change line power flow. PTDF is the fraction of amount of a transaction from of one bus to another that flows over a transmission line. PTDF lcmd, iaja is the fraction of a transaction from bus ia to bus ja that flows over a transmission line connecting buses lc and md. C. Calculation of PTDF Using DC Model (6) Suppose these exists only one transaction in the system. Allow the transaction be of 1 MW from bus i a to bus j a. Then, the corresponding entries in equation (7) will be: P ia = 1and P ja = -1. All other entries will be zero. From equation (5), we get (2) 156

3 Similarly, (7) In Multi-transactions/ Simultaneous Transactions the more than one seller buses are able to flow the power to more than one buyer buses means the power flows simultaneously seller buses to buyer buses and vice-versa. A. 6-Bus Test System Thus, (8) Ø l = X lcia X lcja (9) Ø md = X mdia X mdja (10) Using equations (9), (10), (1), the PTDF can be calculated as (11) Xlc, md = Reactance of transmission line connecting buses lc and md. X lcia = Entry l c th row and i a th column of the bus reactance matrix X. III. RESULT AND DISCUSSION The results have been determined for IEEE RTS 6 bus system. The results include PTDF calculations for intact system in case of all transactions. Based on the y- bus PTDF have been calculated for all transaction cases. The transactions are chosen are: Bilateral transactions T1: transaction between seller bus 1 to buyer bus 2. T2: transaction between seller bus 3 to buyer bus 5. T3: transaction between seller bus 4to buyer bus 5. T4: transaction between seller bus 5 to buyer bus 6. T5: transaction between seller bus 1 to buyer bus 4. T5: transaction between seller bus 1 to buyer bus 5. T7: transaction between seller bus 2 to buyer bus 3. T8: transaction between seller bus 2 to buyer bus 4. T9: transaction between seller bus 2 to buyer bus 5. T10: transaction between seller bus 2to buyer bus 6. T11: transaction between seller bus 3 to buyer bus 6. TABLE-I Bus data for 6-bus system Bus Type Vm Pd Qd Pg Qg Qmn Qmx In the bus data table the type column is represented by the bus type means here 1 is represented by slack bus, 2 is represented by p-v bus and 3 is represented by p-q bus. TABLE-II Line data for 6-bus system From bus To bus Rp.u. Xp.u. Bp.u. Tap

4 TABLE-III X-matrix for 6- bus system The X- matrix is obtained by when the element of the susceptance matrix are the function of line reactances. One node is assigned as a reference node by making its angle zero and deleting corresponding row and column in [Bx] matrix and then takes the inverse of that matrix. Lines TABLE-IV PTDF for line for different transactions PTDF (P.U.) T1 T2 T3 T We have determined the PTDF for different transaction of the lines. First we are determined the PTDF for transactiont1 at lines 1-2,1-4,1-5,2-3,2-4,2-5,2-6,3-5,3-6,4-5 and 5-6. In this way we have seen that the PTDF values varied from positive to negative. The same procedure is done for transactions T2, T3 and T4. When the transaction T1 is applied then we see the effect of transaction T1 on the lines with respect to buses. Fig.1 : PTDFs for transaction T1 The PTDF values for transaction T1 is shown in the negative value of PTDF with respect to line 2-5 and the line 1-2. Fig.2 : PTDFs for transaction T2 The PTDF values for transaction T2 is shown in the negative value of PTDF with respect to line 2-3 and the line 3-6. Fig.3 : PTDFs for transaction T3 158

5 The PTDF values for transaction T3 is shown in the negative value of PTDF with respect to line 2-4 and the line 1-2. The PTDF values for transaction T1 is shown in the negative value of PTDF with respect to line 2-5 and the line 5-6. Fig.4 : PTDFs for transaction T4 IV. CONCLUSION The methodology for PTDF determination has been suggested for simultaneous/ multi-transactions based on DC load flow approach. Results are shown in tabular form and graphical form. Active Power flows changes their patterns for different transactions. Calculation of PTDF by DC load flow is simple and it is less time consuming because this method is non iterative method. The PTDF obtained varies with simultaneous transaction case as well as multi-transaction case compared to the other transactions. V. REFERENCES [1] C. A. Cañizares, and F. L. Alvarado, Point of Collapse and Continuation Methods for AC/DC Systems, IEEE Trans. on Power Systems, vol. 8, no. 1, Feb. 1993, pp [2] PW.Sauer, "First Contingency Incremental Transfer Capability. (FCITC)" and "First Contingency Total Transfer... Proceedings, 30th Annual Hawaii International Conference on System Sciences, Jan. 7-10, [3] R.D. Christie, B.F. Wollenberg and I. Wangstien, Transmission Management in the Deregulated Environment, Proc. of the IEEE, vol. 88, No. 2, Feb. 2000, pp [4] North American Electric Reliability Council (NERC), Available Transfer Capability Definitions and Determination, NERC Report, June [5] M. Ilic, Yong. T. Yoon, and A. Zobian, Available Transmission Capacity (ATC) and its Value under Open Access, IEEE Trans. On Power Systems, vol.12, no. 2, May 1997, pp [6] North American Electric Reliability Council (NERC), Available Transfer Capability Definitions and Determination, NERC Report, June [7] H. P. St. Clair, "Practical Concepts in Capability and Performance of Transmission Lines," AIEE Transactions, Vol. 72, Part III, December 1953, pp [8] National programme on technology enhanced learning (NPTEL), calculation of available transfer capability electrical _engineering restructure, lecture

Available Transfer Capability (ATC) EE 521 Analysis of Power Systems Chen-Ching Liu Washington State University

Available Transfer Capability (ATC) EE 521 Analysis of Power Systems Chen-Ching Liu Washington State University Available Transfer Capability (ATC) EE 521 Analysis of Power Systems Chen-Ching Liu Washington State University i Available Transfer Capability (ATC) ATC measures the residual transfer capability in the

More information

Optimal Allocation of TCSC Devices Using Genetic Algorithms

Optimal Allocation of TCSC Devices Using Genetic Algorithms Proceedings of the 14 th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 195. Optimal Allocation of TCSC Devices Using Genetic Algorithms

More information

Voltage Stability Analysis with Equal Load and Proportional Load Increment in a Multibus Power System

Voltage Stability Analysis with Equal Load and Proportional Load Increment in a Multibus Power System 2012 2nd International Conference on Power and Energy Systems (ICPES 2012) IPCSIT vol. 56 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V56.9 Voltage Stability Analysis with Equal Load

More information

FOUR TOTAL TRANSFER CAPABILITY. 4.1 Total transfer capability CHAPTER

FOUR TOTAL TRANSFER CAPABILITY. 4.1 Total transfer capability CHAPTER CHAPTER FOUR TOTAL TRANSFER CAPABILITY R structuring of power system aims at involving the private power producers in the system to supply power. The restructured electric power industry is characterized

More information

Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller

Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller Volume 1, Issue 2, October-December, 2013, pp. 25-33, IASTER 2013 www.iaster.com, Online: 2347-5439, Print: 2348-0025 Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller

More information

GENETIC ALGORITHM BASED CONGESTION MANAGEMENT BY USING OPTIMUM POWER FLOW TECHNIQUE TO INCORPORATE FACTS DEVICES IN DEREGULATED ENVIRONMENT

GENETIC ALGORITHM BASED CONGESTION MANAGEMENT BY USING OPTIMUM POWER FLOW TECHNIQUE TO INCORPORATE FACTS DEVICES IN DEREGULATED ENVIRONMENT GENETIC ALGORITHM BASED CONGESTION MANAGEMENT BY USING OPTIMUM POWER FLOW TECHNIQUE TO INCORPORATE FACTS DEVICES IN DEREGULATED ENVIRONMENT S.Vinod Kumar 1, J.Sreenivasulu 2, K.Vimala Kumar 3 PG Student,

More information

Merchant Transmission and the Reliability of the New York State Bulk Power System Part I: Thermal Transfer Limit Analysis

Merchant Transmission and the Reliability of the New York State Bulk Power System Part I: Thermal Transfer Limit Analysis 1 Merchant Transmission and the Reliability of the New York State Bulk Power System Part I: Thermal imit Analysis Mahmoud K. Elfayoumy 1, Member, IEEE, Ramon R. Tapia 2, Member, IEEE, and Roger Clayton

More information

CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE

CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE 53 CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE 4.1 INTRODUCTION Due to economic reasons arising out of deregulation and open market of electricity,

More information

Optimal Placement of Unified Power Flow Controller for Minimization of Power Transmission Line Losses

Optimal Placement of Unified Power Flow Controller for Minimization of Power Transmission Line Losses Optimal Placement of Unified Power Flow Controller for inimization of Power Transmission Line Losses Sreerama umar R., Ibrahim. Jomoah, and Abdullah Omar Bafail Abstract This paper proposes the application

More information

ANALYSIS OF REAL POWER ALLOCATION FOR DEREGULATED POWER SYSTEM MOHD SAUQI BIN SAMSUDIN

ANALYSIS OF REAL POWER ALLOCATION FOR DEREGULATED POWER SYSTEM MOHD SAUQI BIN SAMSUDIN ANALYSIS OF REAL POWER ALLOCATION FOR DEREGULATED POWER SYSTEM MOHD SAUQI BIN SAMSUDIN This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor of Electrical Engineering

More information

Neural Network Based Loading Margin Approximation for Static Voltage Stability in Power Systems

Neural Network Based Loading Margin Approximation for Static Voltage Stability in Power Systems Neural Network Based Loading Margin Approximation for Static Voltage Stability in Power Systems Arthit Sode-Yome, Member, IEEE, and Kwang Y. Lee, Fellow, IEEE Abstract Approximate loading margin methods

More information

REACTIVE POWER AND VOLTAGE CONTROL ISSUES IN ELECTRIC POWER SYSTEMS

REACTIVE POWER AND VOLTAGE CONTROL ISSUES IN ELECTRIC POWER SYSTEMS Chapter 2 REACTIVE POWER AND VOLTAGE CONTROL ISSUES IN ELECTRIC POWER SYSTEMS Peter W. Sauer University of Illinois at Urbana-Champaign sauer@ece.uiuc.edu Abstract This chapter was prepared primarily for

More information

Technical Challenges of Computing Available Transfer Capability (ATC) in Electric Power Systems

Technical Challenges of Computing Available Transfer Capability (ATC) in Electric Power Systems Technical Challenges of Computing Available Transfer Capability (ATC) in Electric Power Systems Peter W. Sauer Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

More information

Optimal Voltage Control using Singular Value Decomposition of Fast Decoupled Load Flow Jacobian

Optimal Voltage Control using Singular Value Decomposition of Fast Decoupled Load Flow Jacobian Optimal Voltage Control using Singular Value Decomposition of Fast Decoupled Load Flow Jacobian Talha Iqbal, Ali Dehghan Banadaki, Ali Feliachi Lane Department of Computer Science and Electrical Engineering

More information

PV CURVE APPROACH FOR VOLTAGE STABILITY ANALYSIS

PV CURVE APPROACH FOR VOLTAGE STABILITY ANALYSIS 373 PV CURVE APPROACH FOR VOLTAGE STABILITY ANALYSIS 1 Neha Parsai, 2 Prof. Alka Thakur 1 M. Tech. Student, 2 Assist. Professor, Department of Electrical Engineering SSSIST Shore, M.P. India ABSTRACT Voltage

More information

I. INTRODUCTION. Keywords:- FACTS, TCSC, TCPAR,UPFC,ORPD

I. INTRODUCTION. Keywords:- FACTS, TCSC, TCPAR,UPFC,ORPD International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 11, Issue 11 (November 2015), PP.13-18 Modelling Of Various Facts Devices for Optimal

More information

ATC ENHANCEMENT THROUGH OPTIMAL PLACEMENT OF TCSC USING WIPSO TECHNIQUE

ATC ENHANCEMENT THROUGH OPTIMAL PLACEMENT OF TCSC USING WIPSO TECHNIQUE ATC ENHANCEMENT THROUGH OPTIMAL PLACEMENT OF TCSC USING WIPSO TECHNIQUE R. Sripriya and R. Neela Department of Electrical Enneering, Annamalai University, India E-Mail: sripriyavineeth@gmail.com ABSTRACT

More information

Enhancement of Available Transfer Capability by the use of UPFC in Open Power Market

Enhancement of Available Transfer Capability by the use of UPFC in Open Power Market INDIAN INSTITUTE OF TECHNOLOGY KHARAGUR 7 DECEMBER 7-9 46 Enhancement of Available Transfer Capability by the use of UFC in Open ower Maret K.S.Verma Abstract- In deregulated power systems Available transfer

More information

A New VSC HVDC model with IEEE 5 bus system

A New VSC HVDC model with IEEE 5 bus system A New VSC HVDC model with IEEE 5 bus system M.Sujatha 1 1 PG Student, Department of EEE, JNTUA, Ananthapuramu, Andhra Pradesh, India. ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Identification of weak buses using Voltage Stability Indicator and its voltage profile improvement by using DSTATCOM in radial distribution systems

Identification of weak buses using Voltage Stability Indicator and its voltage profile improvement by using DSTATCOM in radial distribution systems IOSR Journal of Electrical And Electronics Engineering (IOSRJEEE) ISSN : 2278-1676 Volume 2, Issue 4 (Sep.-Oct. 2012), PP 17-23 Identification of weak buses using Voltage Stability Indicator and its voltage

More information

Power Quality Improvement of Large Power System Using a Conventional Method

Power Quality Improvement of Large Power System Using a Conventional Method Engineering, 2011, 3, 823-828 doi:10.4236/eng.2011.38100 Published Online August 2011 (http://www.scirp.org/journal/eng) Power Quality Improvement of arge Power System Using a Conventional Method azmus

More information

OPTIMAL PLACEMENT OF UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEMS USING PARTICLE SWARM OPTIMIZATION METHOD

OPTIMAL PLACEMENT OF UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEMS USING PARTICLE SWARM OPTIMIZATION METHOD OPTIMAL PLACEMENT OF UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEMS USING PARTICLE SWARM OPTIMIZATION METHOD M. Laxmidevi Ramanaiah and M. Damodar Reddy Department of E.E.E., S.V. University,

More information

[Thota*, 4(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Thota*, 4(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY GENETIC ALGORITHM BASED AVAILABLE TRANSFER CAPABILITY CALCULATIONS Thota Swathi*, K.Vimala Kumar M.Tech student, Department of

More information

Online Wide-Area Voltage Stability Monitoring and Control: RT-VSMAC Tool

Online Wide-Area Voltage Stability Monitoring and Control: RT-VSMAC Tool Online Wide-Area Voltage Stability Monitoring and Control: RT-VSMAC Tool A. Srivastava and S. Biswas The School of Electrical Engineering and Computer Science Smart Grid Demonstration and Research Investigation

More information

IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN: Volume 1, Issue 5 (July-Aug. 2012), PP

IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN: Volume 1, Issue 5 (July-Aug. 2012), PP IOSR Journal of Electrical Electronics Engineering (IOSRJEEE) ISSN: 2278-1676 Volume 1, Issue 5 (July-Aug. 2012), PP 16-25 Real Power Loss Voltage Stability Limit Optimization Incorporating through DE

More information

Optimal PMU Placement in Power System Considering the Measurement Redundancy

Optimal PMU Placement in Power System Considering the Measurement Redundancy Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 6 (2014), pp. 593-598 Research India Publications http://www.ripublication.com/aeee.htm Optimal PMU Placement in Power System

More information

Atiya naaz L.Sayyed 1, Pramod M. Gadge 2, Ruhi Uzma Sheikh 3 1 Assistant Professor, Department of Electrical Engineering,

Atiya naaz L.Sayyed 1, Pramod M. Gadge 2, Ruhi Uzma Sheikh 3 1 Assistant Professor, Department of Electrical Engineering, Contingency Analysis and Improvement of ower System Security by locating Series FACTS Devices TCSC and TCAR at Optimal Location Atiya naaz L.Sayyed 1, ramod M. Gadge 2, Ruhi Uzma Sheih 3 1 Assistant rofessor,

More information

Improvement of Voltage Stability Based on Static and Dynamic Criteria

Improvement of Voltage Stability Based on Static and Dynamic Criteria 16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 710 1 Improvement of Voltage Stability Based on Static and Dynamic Criteria M. V. Reddy, Student Member, IEEE, Yemula Pradeep, Student Member,

More information

A Novel Approach for Reducing Proximity to Voltage Instability of Multibus Power System with Line Outage Using Shunt Compensation and Modal Analysis

A Novel Approach for Reducing Proximity to Voltage Instability of Multibus Power System with Line Outage Using Shunt Compensation and Modal Analysis A Novel Approach for Reducing Proximity to Voltage Instability of Multibus Power System with Line Outage Using Shunt Compensation and Modal Analysis S.D.Naik Department of Electrical Engineering Shri Ramdeobaba

More information

Identifying Long Term Voltage Stability Caused by Distribution Systems vs Transmission Systems

Identifying Long Term Voltage Stability Caused by Distribution Systems vs Transmission Systems Identifying Long Term Voltage Stability Caused by Distribution Systems vs Transmission Systems Amarsagar Reddy Ramapuram M. Ankit Singhal Venkataramana Ajjarapu amar@iastate.edu ankit@iastate.edu vajjarapu@iastate.edu

More information

SuperOPF and Global-OPF : Design, Development, and Applications

SuperOPF and Global-OPF : Design, Development, and Applications SuperOPF and Global-OPF : Design, Development, and Applications Dr. Hsiao-Dong Chiang Professor, School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA School of electrical

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 950 Comparative Analysis of Transmission Fixed Cost Allocation Methods: Postage Stamp, Marginal Participation Factors

More information

Chapter 3: Resistive Network Analysis Instructor Notes

Chapter 3: Resistive Network Analysis Instructor Notes Chapter 3: Resistive Network Analysis Instructor Notes Chapter 3 presents the principal topics in the analysis of resistive (DC) circuits The presentation of node voltage and mesh current analysis is supported

More information

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press,  ISSN An expert system for teaching voltage control in power systems M. Negnevitsky & T. L. Le Department of Electrical & Electronic Engineering University of Tasmania GPO Box 252C Hobart, Tasmania 7001, Australia

More information

Enhancement of Power System Voltage Stability Using SVC and TCSC

Enhancement of Power System Voltage Stability Using SVC and TCSC International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1 Enhancement of Power System Voltage Stability Using SVC and TCSC Deepa Choudhary Department of electrical engineering

More information

1

1 Guidelines and Technical Basis Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive

More information

Industry Webinar. Reactive Power Planning. NERC System Analysis and Modeling Subcommittee (SAMS) March 2017

Industry Webinar. Reactive Power Planning. NERC System Analysis and Modeling Subcommittee (SAMS) March 2017 Industry Webinar Reactive Power Planning NERC System Analysis and Modeling Subcommittee (SAMS) March 2017 Webinar Topics Reliability Guideline on Reactive Power Planning Webinar Topics Fundamentals of

More information

2013 Grid of the Future Symposium. Effect of GIC and GIC Capability of EHV Power Transformers A Case Study on an AEP 765 kv Power Transformer Design

2013 Grid of the Future Symposium. Effect of GIC and GIC Capability of EHV Power Transformers A Case Study on an AEP 765 kv Power Transformer Design 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2013 Grid of the Future Symposium Effect of GIC and GIC Capability of EHV Power Transformers A Case Study on an AEP 765

More information

Optimal Location of Series FACTS Device using Loss Sensitivity Indices. 3.2 Development of Loss Sensitivity Indices

Optimal Location of Series FACTS Device using Loss Sensitivity Indices. 3.2 Development of Loss Sensitivity Indices Chapter 3 Optimal Location of Series FACTS Device using Loss Sensitivity Indices 3.1 Introduction The location and sizing of series FACTS devices constitute a major step in the application of FACTS devices.

More information

Optimal Positioning and Sizing of DG Units Using Differential Evolution Algorithm

Optimal Positioning and Sizing of DG Units Using Differential Evolution Algorithm Optimal Positioning and Sizing of DG Units Using Differential Evolution Algorithm Ravi 1, Himanshu Sangwan 2 Assistant Professor, Department of Electrical Engineering, D C R University of Science & Technology,

More information

State Estimation Advancements Enabled by Synchrophasor Technology

State Estimation Advancements Enabled by Synchrophasor Technology State Estimation Advancements Enabled by Synchrophasor Technology Contents Executive Summary... 2 State Estimation... 2 Legacy State Estimation Biases... 3 Synchrophasor Technology Enabling Enhanced State

More information

Effect of Topology Control on System Reliability: TVA Test Case

Effect of Topology Control on System Reliability: TVA Test Case 21, rue d Artois, F-758 PARIS CIGRE US National Committee http : //www.cigre.org 214 Grid of the Future Symposium Effect of Topology Control on System Reliability: TVA Test Case X. LI P. BALASUBRAMANIAN

More information

STATCOM ANALYSIS WITH CLOSED LOOP PID AND WITH OPEN LOOP ON POWER SYSTEM

STATCOM ANALYSIS WITH CLOSED LOOP PID AND WITH OPEN LOOP ON POWER SYSTEM STATCOM ANALYSIS WITH CLOSED LOOP PID AND WITH OPEN LOOP ON POWER SYSTEM 1 D.V.V.V.CH.MOULI, 2 K.DHANVANTHRI Member, IEEE Abstract: Static synchronous compensator (STATCOM) is used in power system for

More information

Transformer Thermal Impact Assessment White Paper TPL Transmission System Planned Performance for Geomagnetic Disturbance Events

Transformer Thermal Impact Assessment White Paper TPL Transmission System Planned Performance for Geomagnetic Disturbance Events Transformer Thermal Impact Assessment White Paper TPL-007-2 Transmission System Planned Performance for Geomagnetic Disturbance Events Background Proposed TPL 007 2 includes requirements for entities to

More information

Using Evolutionary Imperialist Competitive Algorithm (ICA) to Coordinate Overcurrent Relays

Using Evolutionary Imperialist Competitive Algorithm (ICA) to Coordinate Overcurrent Relays Using Evolutionary Imperialist Competitive Algorithm (ICA) to Coordinate Overcurrent Relays Farzad Razavi, Vahid Khorani, Ahsan Ghoncheh, Hesamoddin Abdollahi Azad University, Qazvin Branch Electrical

More information

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 4: (June 10, 2013) Page 1 of 75

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 4: (June 10, 2013) Page 1 of 75 PRC-025-1 Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive general discussion

More information

Placement of Multiple Svc on Nigerian Grid System for Steady State Operational Enhancement

Placement of Multiple Svc on Nigerian Grid System for Steady State Operational Enhancement American Journal of Engineering Research (AJER) e-issn: 20-0847 p-issn : 20-0936 Volume-6, Issue-1, pp-78-85 www.ajer.org Research Paper Open Access Placement of Multiple Svc on Nigerian Grid System for

More information

Evolutionary Programming Optimization Technique for Solving Reactive Power Planning in Power System

Evolutionary Programming Optimization Technique for Solving Reactive Power Planning in Power System Evolutionary Programg Optimization Technique for Solving Reactive Power Planning in Power System ISMAIL MUSIRIN, TITIK KHAWA ABDUL RAHMAN Faculty of Electrical Engineering MARA University of Technology

More information

Improving The Quality Of Energy Using Phase Shifting Transformer PST

Improving The Quality Of Energy Using Phase Shifting Transformer PST WSEAS TRANSACTIONS on POWER SYSTEMS Improving The Quality Of Energy Using Phase Shifting Transformer PST KHELFI ABDERREZAK Electrical Engineering Department Badji Mokhtar-Annaba University P.O. Box 12,

More information

Proceedings of the 2008 Winter Simulation Conference S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Proceedings of the 2008 Winter Simulation Conference S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. Proceedings of the 2008 Winter Simulation Conference S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. LINEAR MODELING AND SIMULATION OF LOW-VOLTAGE ELECTRIC SYSTEM FOR SINGLE-POINT

More information

Voltage Stability Assessment through a New Proposed Methodology

Voltage Stability Assessment through a New Proposed Methodology DOI: 1.14621/ce.21528 Voltage Stability Assessment through a New Proposed Methodology Marjela Qemali, Raimonda Bualoti, Marialis Celo Polytechnic University-Tirana, Electrical Engineering Faculty, Power

More information

Dynamic load model and its incorporation in MATLAB based Voltage Stability Toolbox

Dynamic load model and its incorporation in MATLAB based Voltage Stability Toolbox Dynamic load model and its incorporation in MATLAB based Voltage Stability Toolbox Sujit Lande, Prof.S.P.Ghanegaonkar, Dr. N. Gopalakrishnan, Dr.V.N.Pande Department of Electrical Engineering College Of

More information

Voltage Stability Assessment in Power Network Using Artificial Neural Network

Voltage Stability Assessment in Power Network Using Artificial Neural Network Voltage Stability Assessment in Power Network Using Artificial Neural Network Swetha G C 1, H.R.Sudarshana Reddy 2 PG Scholar, Dept. of E & E Engineering, University BDT College of Engineering, Davangere,

More information

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 5: (August 2, 2013) Page 1 of 76

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 5: (August 2, 2013) Page 1 of 76 PRC-025-1 Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive general discussion

More information

Available Transfer Capability Enhancement with FACTS Devices in the Deregulated Electricity Market

Available Transfer Capability Enhancement with FACTS Devices in the Deregulated Electricity Market 14 Journal of Electrical Engineering & Technology Vol. 6, No. 1, pp. 14~24, 2011 DOI: 10.5370/JEET.2011.6.1.014 Available Transfer Capability Enhancement with FACTS Devices in the Deregulated Electricity

More information

Level 6 Graduate Diploma in Engineering Electrical Energy Systems

Level 6 Graduate Diploma in Engineering Electrical Energy Systems 9210-114 Level 6 Graduate Diploma in Engineering Electrical Energy Systems Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler,

More information

DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM

DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM G.SUNDAR, S.RAMAREDDY Research Scholar, Bharath University Chenna Professor Jerusalam College of Engg. Chennai ABSTRACT This paper deals with simulation

More information

COURSE PLANNER Subject: POWER SYSTEM OPERATION AND CONTROL [ ]

COURSE PLANNER Subject: POWER SYSTEM OPERATION AND CONTROL [ ] COURSE PLANNER Subject: POWER SYSTEM OPERATION AND CONTROL [2180909] B.E. Forth Year Branch /Class Electrical 2013 Term: 16/2 (DEC-16 to APR-17) Faculty: PROF. J. I. JARIWALA PROF. T. M. PANCHAL PROF.

More information

TCPST (thyristor control phase shifting transformer) impact on power quality

TCPST (thyristor control phase shifting transformer) impact on power quality Sousse, Tunisie - 213 TCPST (thyristor control phase shifting transformer) impact on power quality A.KHELFI #1,T.MESBAH #2,A.DJELLAD #3 # Electrical Engineering Department Badji Mokhtar-Annaba University,

More information

SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER

SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER S. Tara Kalyani 1 and G. Tulasiram Das 1 1 Department of Electrical Engineering, Jawaharlal Nehru Technological University, Hyderabad,

More information

Modeling and Evaluation of Geomagnetic Storms in the Electric Power System

Modeling and Evaluation of Geomagnetic Storms in the Electric Power System 21, rue d Artois, F-75008 PARIS C4-306 CIGRE 2014 http : //www.cigre.org Modeling and Evaluation of Geomagnetic Storms in the Electric Power System K. PATIL Siemens Power Technologies International, Siemens

More information

Final ballot January BOT adoption February 2015

Final ballot January BOT adoption February 2015 Standard Development Timeline This section is maintained by the drafting team during the development of the standard and will be removed when the standard becomes effective. Development Steps Completed

More information

Locational Marginal Pricing in Restructured Electricity Market

Locational Marginal Pricing in Restructured Electricity Market Locational Marginal Pricing in Restructured Electricit Market *Bibhusmita Mohanta **Asima Sabat Centurion Universit of Technolog and management,bhubaneswar,india bibhusmita92@gmail.com,sabat.asima7@gmail.com

More information

Direct Harmonic Analysis of the Voltage Source Converter

Direct Harmonic Analysis of the Voltage Source Converter 1034 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 18, NO. 3, JULY 2003 Direct Harmonic Analysis of the Voltage Source Converter Peter W. Lehn, Member, IEEE Abstract An analytic technique is presented for

More information

AS the power distribution networks become more and more

AS the power distribution networks become more and more IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 1, FEBRUARY 2006 153 A Unified Three-Phase Transformer Model for Distribution Load Flow Calculations Peng Xiao, Student Member, IEEE, David C. Yu, Member,

More information

A Two Bus Equivalent Method for Determination of Steady State Voltage Stability Limit of a Power System

A Two Bus Equivalent Method for Determination of Steady State Voltage Stability Limit of a Power System A Two Bus Equivalent Method for Determination of Steady State Voltage Stability Limit of a Power System B. Venkata Ramana, K. V. S. R. Murthy, P.Upendra Kumar, V.Raja Kumar. Associate Professor, LIET,

More information

Classification of networks based on inherent structural characteristics

Classification of networks based on inherent structural characteristics Classification of networks based on inherent structural characteristics Tajudeen H. Sikiru, Adisa A. Jimoh, Yskandar Hamam, John T. Agee and Roger Ceschi Department of Electrical Engineering, Tshwane University

More information

Extended Transmission Line Loadability Curve by Including Voltage Stability Constrains

Extended Transmission Line Loadability Curve by Including Voltage Stability Constrains Extended Transmission Line Loadability Curve by Including oltage tability Constrains Jin Hao, Member, IEEE, and Wilsun Xu, Fellow, IEEE Abstract t. Clair curve provides a simple means for estimating power

More information

Particle Swarm Based Optimization of Power Losses in Network Using STATCOM

Particle Swarm Based Optimization of Power Losses in Network Using STATCOM International Conference on Renewable Energies and Power Quality (ICREPQ 14) Cordoba (Spain), 8 th to 10 th April, 2014 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-038 X, No.12, April

More information

Implications of Cyber Attacks on Distributed Power System Operations. J. ZHANG *, L. SANKAR, K. HEDMAN Arizona State University USA

Implications of Cyber Attacks on Distributed Power System Operations. J. ZHANG *, L. SANKAR, K. HEDMAN Arizona State University USA 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2014 Grid of the Future Symposium Implications of Cyber Attacs on Distributed Power System Operations SUMMARY J. ZHANG

More information

Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT

Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT Babar Noor 1, Muhammad Aamir Aman 1, Murad Ali 1, Sanaullah Ahmad 1, Fazal Wahab Karam. 2 Electrical

More information

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research International Journal of Engineering & Science Research POWER QUALITY IMPROVEMENT BY USING DSTATCOM DURING FAULT AND NONLINEAR CONDITIONS T. Srinivas* 1, V.Ramakrishna 2, Eedara Aswani Kumar 3 1 M-Tech

More information

Application of DE & PSO Algorithm For The Placement of FACTS Devices For Economic Operation of a Power System

Application of DE & PSO Algorithm For The Placement of FACTS Devices For Economic Operation of a Power System Application DE & PSO Algorithm For The Placement Devices For Economic Operation a Power System B. BHATTACHARYYA, VIKASH KUMAR GUPTA 2 Department Electrical Engineering, Indian School Mines, Dhanbad, Jharkhanbd

More information

Rajasthan Technical University, Kota

Rajasthan Technical University, Kota COURSE FILE POWER SYSTEM ENGINEERING Name Branch Session Semester : Dr. Dinesh Birla : Electrical Engineering : 2012-13, Odd Semester : B. Tech VII Semester Index: Course File Sr. No. 1 Students Detail

More information

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL * A. K. Sharma, ** R. A. Gupta, and *** Laxmi Srivastava * Department of Electrical Engineering,

More information

Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC)

Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC) Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2530-2536 ISSN: 2249-6645 Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC) B. M. Naveen Kumar Reddy 1, Mr. G. V. Rajashekar 2,

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 7 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 7 1 / 8 Invertible matrices Theorem. 1. An elementary matrix is invertible. 2.

More information

Transformer Thermal Impact Assessment White Paper TPL Transmission System Planned Performance for Geomagnetic Disturbance Events

Transformer Thermal Impact Assessment White Paper TPL Transmission System Planned Performance for Geomagnetic Disturbance Events Transformer Thermal Impact Assessment White Paper TPL-007-2 Transmission System Planned Performance for Geomagnetic Disturbance Events Background Proposed TPL-007-2 includes requirements for entities to

More information

Voltage Drop Compensation and Congestion Management by Optimal Placement of UPFC

Voltage Drop Compensation and Congestion Management by Optimal Placement of UPFC P P Assistant P International Journal of Automation and Power Engineering, 2012, 1: 29-36 - 29 - Published Online May 2012 www.ijape.org Voltage Drop Compensation and Congestion Management by Optimal Placement

More information

Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based Methods

Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based Methods Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based Methods Nitin Singh 1, Smarajit Ghosh 2, Krishna Murari 3 EIED, Thapar university, Patiala-147004, India Email-

More information

Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM

Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM M. Tavakoli Bina 1,*, N. Khodabakhshi 1 1 Faculty of Electrical Engineering, K. N. Toosi University of Technology, * Corresponding

More information

In Class Examples (ICE)

In Class Examples (ICE) In Class Examples (ICE) 1 1. A 3φ 765kV, 60Hz, 300km, completely transposed line has the following positive-sequence impedance and admittance: z = 0.0165 + j0.3306 = 0.3310 87.14 o Ω/km y = j4.67 410-6

More information

(Circuits Subject to Requirements R1 R5) Generator Owner with load-responsive phase protection systems as described in

(Circuits Subject to Requirements R1 R5) Generator Owner with load-responsive phase protection systems as described in A. Introduction 1. Title: Transmission Relay Loadability 2. Number: PRC-023-3 3. Purpose: Protective relay settings shall not limit transmission loadability; not interfere with system operators ability

More information

Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC)

Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC) Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC) Girish Kumar Prasad 1, Dr. Malaya S Dash 2 1M-Tech Scholar, Dept. of Electrical & Electronics Engineering, Technocrats

More information

ATTACHMENT Y STUDY REPORT

ATTACHMENT Y STUDY REPORT Dynegy Marketing and Trade, LLC Wood River Units 4 & 5: 473 MW Retirement: June 1, 2016 ATTACHMENT Y STUDY REPORT March 23, 2016 PUBLIC / REDACTED PUBLIC VERSION EXECUTIVE SUMMARY An Attachment Y notification

More information

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India e t International Journal on Emerging Technologies 4(1): 10-16(2013) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Control of Synchronous Generator Excitation and Rotor Angle Stability by

More information

Investigation of TCSC Impacts on Voltage Stability of Electric Power System

Investigation of TCSC Impacts on Voltage Stability of Electric Power System Research Journal of Applied Sciences, Engineering and Technology 3(12): 1409-1413, 2011 ISSN: 2040-7467 Maxwell Scientific Organization, 2011 Submitted: July 26, 2011 Accepted: September 09, 2011 Published:

More information

1. An Introduction to Transient Stability

1. An Introduction to Transient Stability University of Technology, Jamaica School of Engineering Electrical Power Systems 1. An Introduction to Transient Stability Aims To give an appreciation of the data required for transient stability studies

More information

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation Course ELEC0014 - Introduction to electric power and energy systems Additional exercises with answers December 2017 Exercise A1 Consider the system represented in the figure below. The four transmission

More information

Generalized Theory Of Electrical Machines

Generalized Theory Of Electrical Machines Essentials of Rotating Electrical Machines Generalized Theory Of Electrical Machines All electrical machines are variations on a common set of fundamental principles, which apply alike to dc and ac types,

More information

Var Control. Adding a transformer and transformer voltage regulation. engineers loadflow program. The control system engineers loadflow.

Var Control. Adding a transformer and transformer voltage regulation. engineers loadflow program. The control system engineers loadflow. November 2012 Adding a transformer and transformer voltage regulation to the control system engineers loadflow program The control system engineers loadflow program The loadflow program used by this website

More information

Optimal Voltage Regulators Placement in Radial Distribution System Using Fuzzy Logic

Optimal Voltage Regulators Placement in Radial Distribution System Using Fuzzy Logic Optimal Voltage Regulators Placement in Radial Distribution System Using Fuzzy Logic K.Sandhya 1, Dr.A.Jaya Laxmi 2, Dr.M.P.Soni 3 1 Research Scholar, Department of Electrical and Electronics Engineering,

More information

Standard PRC Coordination of Generating Unit or Plant Capabilities, Voltage Regulating Controls, and Protection

Standard PRC Coordination of Generating Unit or Plant Capabilities, Voltage Regulating Controls, and Protection A. Introduction 1. Title: Coordination of Generating Unit or Plant Capabilities, Voltage Regulating Controls, and Protection 2. Number: PRC-019-2 3. Purpose: To verify coordination of generating unit Facility

More information

ELEN 460 Computer Laboratory Exercise No: 2 Analysis and Operation of Three-Phase Power Systems

ELEN 460 Computer Laboratory Exercise No: 2 Analysis and Operation of Three-Phase Power Systems Objectives: ELEN 460 Computer Laboratory Exercise No: 2 nalysis and Operation of Three-Phase Power Systems 1. Learn the basics of using PowerWorld Simulator to model balanced three-phase systems. 2. Correct

More information

A Heuristic Approach to Reduce the Loss of Congested Distribution Line via FACTS Devices

A Heuristic Approach to Reduce the Loss of Congested Distribution Line via FACTS Devices A Heuristic Approach to Reduce the Loss of Congested Distribution Line via FACTS Devices H.IRANMANESH, M.RASHIDI-NEJAD Islamic Azad University, Branch Jiroft, Iran Shahid Bahonar University of Kerman,

More information

Composite Criteria based Network Contingency Ranking using Fuzzy Logic Approach

Composite Criteria based Network Contingency Ranking using Fuzzy Logic Approach INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR, DECEMBER -9, Composite Criteria based Network Contingency Ranking using Fuzzy Logic Approach K.Visakha D.Thukaram Lawrence Jenkins Abstract -- Electric power

More information

POWER FLOW SOLUTION METHODS FOR ILL- CONDITIONED SYSTEMS

POWER FLOW SOLUTION METHODS FOR ILL- CONDITIONED SYSTEMS 104 POWER FLOW SOLUTION METHODS FOR ILL- CONDITIONED SYSTEMS 5.1 INTRODUCTION: In the previous chapter power flow solution for well conditioned power systems using Newton-Raphson method is presented. The

More information

SELECTING THE BEST POINT OF CONNECTION FOR SHUNT ACTIVE FILTERS IN MULTI-BUS POWER DISTRIBUTION SYSTEMS

SELECTING THE BEST POINT OF CONNECTION FOR SHUNT ACTIVE FILTERS IN MULTI-BUS POWER DISTRIBUTION SYSTEMS SELECTING TE BEST POINT OF CONNECTION FOR SUNT ACTIVE FILTERS IN MULTI-BUS POWER DISTRIBUTION SYSTEMS Luis Morán T. () José Mahomar J. () Juan Dixon R. (2) () Dept. of Electrical Engineering (2) Dept.

More information

A Comprehensive Approach for Sub-Synchronous Resonance Screening Analysis Using Frequency scanning Technique

A Comprehensive Approach for Sub-Synchronous Resonance Screening Analysis Using Frequency scanning Technique A Comprehensive Approach Sub-Synchronous Resonance Screening Analysis Using Frequency scanning Technique Mahmoud Elfayoumy 1, Member, IEEE, and Carlos Grande Moran 2, Senior Member, IEEE Abstract: The

More information

CHAPTER-IV EXPERIMENTAL AND SIMULATION PROGRAM

CHAPTER-IV EXPERIMENTAL AND SIMULATION PROGRAM 49 CHAPTER-IV EXPERIMENTAL AND SIMULATION PROGRAM 4.0 INTRODUCTION This chapter covers in detail the experimental set up of proposed Z source Matrix (ZSMC) based UPFC and compares with a lab scale model

More information