CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE

Size: px
Start display at page:

Download "CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE"

Transcription

1 53 CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE 4.1 INTRODUCTION Due to economic reasons arising out of deregulation and open market of electricity, modern day power systems are being operated closer to their stability limits. Power system voltage stability is one of the challenging problems faced by the utilities. Online voltage stability monitoring is becoming an integral part of the modern day Energy Management Systems (EMS). There has been works reported in the literature on the use of analytical methods to monitor voltage stability of a power system on a real time basis. The methods are generally complex in nature and pose considerable computational burden on the EMS. An important issue with the use of analytical methods is the computational time, even with the state-of-the art processors. ANNs have gained widespread attention from researchers in recent years as a tool for online voltage stability assessment. Due to the non-linear nature of the voltage stability assessment problem, neural networks are better than conventional analytical methods for voltage stability monitoring. There are many works reported on online voltage stability monitoring in the literature, exploring the capability of the ANN to approximate the functional relationship between a voltage stability indicator and the measurable power

2 54 system parameters that affect the chosen voltage stability index. A major limitation of the use of ANN for online voltage stability monitoring arises due to the fact that the functional relationship itself gets changed from one topology to the other. A scheme for real-time assessment of voltage stability of a power system for single contingency using a single ANN is presented in this research work. A single Feed Forward Back Propagation Network (FFBPN) with minimal neurons is used to provide an estimate of the line stability index for various load conditions. Selected load variations are used as the input to the FFBPN and the available line stability factor is used as an indicator to the voltage stability of the system. The proposed scheme has the ability to get adaptive training when subjected to any new training pattern. The online voltage stability monitoring scheme is applied to the IEEE 14 bus and the IEEE 30 bus power system, and the test results are presented. 4.2 PROPOSED ANN STRUCTURE The development of tools for voltage stability assessment and control to help operators in control centers has attracted ever-increasing attention. Information such as voltage-weak buses/areas is becoming vitally important to voltage stabilization and control of modern power systems. As mentioned above, ANN has emerged as powerful tool in power system analysis. The scheme uses a feed forward network employing a back propagation learning algorithm. The network is made up of sets of nodes arranged in layers. The output of one layer is passed to the next layer through connection weights that control the gain of amplification. The input to a hidden layer or to the output layer is the sum of weighted outputs from the nodes of the previous layer.

3 55 The back propagation algorithm acquires its name from the fact that during learning, information is propagated back through the network to adjust the connection weights. Back propagation algorithm minimizes the mean squared error between the desired output and the output of the ANN using a gradient descent method of optimization. Training is achieved through the adjustment of weights to reduce the mean squared error while achieving a balance between the ability to recognize a pattern used for training and the ability to identify correctly an unknown pattern. Over training can result in good training error, but can result in poor error during testing. Back propagation neural network can sometimes converge to a local minimum during training. The chances of reaching a local minimum can be reduced by randomly presenting the input data using shuffle and deal techniques. Adaptive learning rates can shorten the training time. The most common learning rules in back propagation is the Delta rule. The rule is given in equation (4.1). ' W W 1*e*I 2*M (4.1) where, W - Old weights W - New weights e - Error M - Momentum I - Inputs 1, 2 - Learning coefficients

4 56 Back propagation neural networks require a large number of training epochs in order to converge below and acceptable error tolerance. However, this type of network is usually preferred for its reliability during testing Input Layer One of the key issues in such applications is that how to select limited variables, with salient features as the input information of the neural network, to represent the power system operating conditions in a large-scale power system. Theoretical studies and utility experiences all indicate that voltage collapse is mainly driven by heavy loading and / or by system contingencies. Comprehensive analysis of the behavior of power system variables under voltage instability indicate that the following two types of variables are important, and can be used as the input to the neural network: Voltage stability assessment requires identification of the collapse point based on load variation commonly employing a property such as singularly of the load flow Jacobian at the collapse point. Hence it can be considered as a mapping of the control variables to the state variables given in equation (4.2). P,V,,P,Q,q v,,q,and flows g g (4.2) d d c g The reactive generation reserve, flows on interface tie lines or major power carriers participating bus / branches contribute heavily to voltage collapse. Hence, we can consider this is a mapping of

5 57 max Qg Q g,criticalflows (Voltage stability margin) Fourteen features extracted from the base case power flow solutions for each contingency and from PV studies of the intact system are used as input to the neural networks. The data was normalized to take values between 0 and Hidden Layer The number of hidden layers and the number of nodes in each hidden layers are common concerns when dealing with ANNs. It can be argued that a three layered structure (1 input, 1 hidden, 1 output) can form arbitrary complex decision regions and can therefore separate populations of patterns which are intermeshed spatially in pattern space. In our study we use one hidden layer with 3, 5 and 7 hidden nodes Output Layer output node is used. In this study we assess the line voltage stability index. Hence one 4.3 SUITABILITY OF ANN FOR VOLTAGE STABILITY MONITORING Compared to the traditional methods, neural network modeling has the following advantages. ANN handles improperly specified form of independent and dependent variables. Also, it requires only a little prior knowledge of the physical background of the processes. It has the ability to make necessary data transformation. ANN has the ability to capture nonlinear pattern and the nonlinearity of relationship. The exact form of this relationship cannot be extracted from the ANN but rather is encapsulated in

6 58 the stored series of weights and connections between nodes. It has the ability to learn incrementally as new cases added into the model. ANNs do not require complicated programming, logical inference schemes, or the development of complex algorithms to build a successful model. The main advantage is that ANNs are able to model non-linear, dynamic and noisy data. The ability to generalize and its ability in fault tolerance give neural network a competitive edge in dealing with incomplete data and missing values. ANNs also have fault tolerance, meaning that when some of the neuron malfunctions, neural network can still produce approximately correct output. The advancement in computing also helps to make the neural network works faster on its parallel processing. With the adaptive system, neural network changes its structure based on the information that go through network during the learning phase. The standard multi-layer, feed-forward networks are capable of approximating any measurable function to any desired degree of accuracy. The disadvantages of artificial neural networks are: 1) the training neural network is computationally intensive; 2) no global method exists for determining when to stop training and thus overtraining is problematic; 3) sensitive to composition of the training data set; 4) sensitivity of training to initial network parameters; 5) black box models. The voltage stability index is evaluated under normal load conditions and step load varying conditions through ANN with high accuracy and in less time. The online monitoring of voltage stability is easily taken care off by the ANN, as the stability problem involved is non linear. For the IEEE 14 bus and IEEE 30 bus systems the training performance is converged at 11 epochs, 4 epochs, 7 epochs and 7 epochs

7 59 under load varying conditions and under single line contingency respectively. This is already shown in Figure 4.2, Figure 4.4, Figure 4.6 and Figure 4.8 respectively. As the number of epochs for convergence of error is less the training time is less and the question of over fitting does not arise. 4.4 RESULTS AND ANALYSIS The proposed ANN technique is tested with the standard IEEE 14 bus and IEEE 30 bus systems. The line stability index of all the lines for various load conditions and single line contingency with load variations are obtained through this ANN model. The first five severe lines are identified for the above two conditions. Also, the optimal location for the placement of TCSC is identified IEEE 14 Bus System - Analysis under Various Load Conditions Line stability index of each line for IEEE 14 bus system during load variation condition is analyzed through neural network model shown in Figure 4.1. A neural network is modeled for calculating the line stability index value of each line in system during load variations from 50% to 200%. Figure 4.2 shows the training performance of the proposed network. Figure 4.1 Neural network for calculating line stability index under load variations for IEEE 14 bus system Network Parameters: Network type - Feed-forward back propagation network

8 60 Training function Adaptive learning function Performance function - TRAINLM - LEARNGDM - MSE Number of layers - 2 Transfer function - PURELIN Number of datas generated Number of datas used for training Number of datas used for testing Figure 4.2 Training performance of ANN under load variations for IEEE 14 bus system From the results obtained through the ANN, the first five severe lines are identified. Compared with the other lines, the line 4-9 reaches the greatest line stability index during most of the various load condition. So, the line 4-9 is ranked as the most severe line in the system. Ranking of lines under load variation for IEEE 14 bus system is shown in Table 4.1.

9 61 Table 4.1 Ranking of first five severe lines under load variations for IEEE 14 bus system Rank of line Bus From To IEEE 14 Bus System - Analysis with TCSC In this work, TCSC having the reactance value of X c = 0.05 pu is installed on the severe lines one by one which are ranked in Table 4.1. The line stability index of all the lines in the system is calculated and their results are shown in Table 4.2. Table 4.2 Line stability index for each line of IEEE 14 bus system with TCSC Bus Line stability index with TCSC in line From To

10 62 Table 4.2 (Continued) Bus Line stability index with TCSC in line From To When compared with TCSC in other lines, the stability index values for more number of lines are found to have the least value with TCSC in line 7-8. It shows that the stability levels of more number of lines are improved after placing TCSC in line 7-8. So, line 7-8 is the most optimal placement for inserting TCSC IEEE 14 Bus System - Analysis under Single Line Contingency with Various Load Conditions Line stability index of each line for IEEE 14 bus system under single line contingency with load variations is analyzed through neural network model shown in Figure 4.3. A neural network is modeled for calculating the line stability index value of each line in system under single line contingency with load variation from 50% to 200% in steps of 10%. Figure 4.4 shows the training performance of the proposed network.

11 63 Figure 4.3 Neural network for calculating line stability index under single line contingency with load variations for IEEE 14 bus system Network Parameters: Network type - Feed-forward back propagation network Training function - TRAINLM Adaptive learning function - LEARNGDM Performance function - MSE Number of layers - 2 Transfer function - PURELIN Number of datas generated Number of datas used for training Number of datas used for testing - 32 Figure 4.4 Training performance of ANN for IEEE 14 bus system under single line contingency with load variations

12 64 From the results obtained through the ANN, the first five severe single line contingencies are identified. Compared with the other lines, the line 7-8 reaches the highest line stability index values during most of the various load condition with single line contingency condition. So, the line 7-8 is ranked as the most severe line contingency in the system. Ranking of lines under single line contingency with load variation for IEEE 14 bus system is shown in Table 4.3. Table 4.3 Ranking of single line contingency with load variations for IEEE 14 bus system Ranking of single line Bus contingency From To IEEE 30 Bus System - Analysis under Various Load Conditions Line stability index of each line for IEEE 30 bus system during load variation condition is analyzed through neural network model shown in Figure 4.5. The neural network is modeled for calculating the line stability index value of each line in the system during load variation from 50% to 200%. Figure 4.6 shows the training performance of the proposed ANN. Figure 4.5 Neural network for calculating line stability index under load variations for IEEE 30 bus system

13 65 Network parameters: Network type Training function Adaptive learning function - Feed-forward back propagation network - TRAINLM - LEARNGDM Performance function - MSE Number of layers - 2 Transfer function - PURELIN Number of datas generated Number of datas used for training Number of datas used for testing Figure 4.6 Training performance of ANN under load variations for IEEE 30 bus system From the results obtained through this neural network, the first five severe lines are identified. Compared with the other lines, the line 6-10

14 66 reaches the greatest line stability index during most of the various load condition. So, it is ranked as the most severe line in the system. Ranking of first five severe lines for IEEE 30 bus system with load variation is shown in Table 4.4. Table 4.4 Ranking of first five severe lines under load variations for IEEE 30 bus system Rank of line Bus From To IEEE 30 Bus System - Analysis with TCSC In this work, TCSC having the reactance value of X c = 0.05 pu is installed on the severe lines one by one which are ranked in Table 4.4. The line stability index of all lines in the system is calculated and their results are shown in Table 4.5. Table 4.5 Line stability index for each line of IEEE 30 bus system with TCSC Bus Line stability index with TCSC in line From To

15 67 Table 4.5 (Continued) Bus Line stability index with TCSC in line From To

16 68 Table 4.5 (Continued) Bus Line stability index with TCSC in line From To When compared with TCSC in other lines, the stability index values for more number of lines are found to have the least value with TCSC in line It shows that the stability levels of more number of lines are improved after placing TCSC in line So, line 6-10 is the most optimal placement for inserting TCSC IEEE 30 Bus System - Analysis under Single Line Contingency with Various Load Conditions Line stability index of each line for IEEE 30 bus system under single line contingency with load variations is analyzed through neural network model shown in Figure 4.7. The neural network is modeled for calculating the line stability index value of each line in the system for single

17 69 line contingency and with load variations from 50% to 200% in steps of 10%. Figure 4.8 shows the training performance of the proposed ANN. Figure 4.7 Neural network for calculating line stability index under single line contingency with load variations for IEEE 30 bus system Network Parameters: Network type - Feed-forward back propagation network Training function - TRAINLM Adaptive learning function - LEARNGDM Performance function - MSE Number of layers - 2 Transfer function - PURELIN Number of datas generated Number of datas used for training Number of datas used for testing - 66 Figure 4.8 Training performance of ANN for IEEE 30 bus system under single line contingency with load variations

18 70 From the results obtained through this neural network, the first five severe single line contingencies are identified. Compared with the other lines, the line 9-11 reaches the highest line stability index values during most of the various load with single line contingency. So, the line 9-11 is ranked as the most severe line contingency in the system. Ranking of lines under single line contingency with load variations for IEEE 30 bus system is shown in Table 4.6. Table 4.6 Ranking of single line contingency with load variations for IEEE 30 bus system Ranking of single line Bus contingency From To SUMMARY A study on the voltage stability for load variation and single line contingency with load variations has been presented in this chapter. The use of FFBPN with minimal number of neurons for voltage stability assessment and enhancement has been presented in this work. This proposed ANN identi es the severe lines and the information about the rank of lines with respect to the line voltage stability index for both conditions. The effectiveness of this method has been demonstrated on the IEEE 14 bus and IEEE 30 bus systems. The computation time is very small for ANN and it

19 71 gives high accurate values of the line voltage stability index. The test results under both conditions show that the method could be applied to practical systems to provide power system operators with useful information about voltage stability and its improvement. This method does not involve complex and sophisticated matrix computation. This method is able to identify the most stressed line. Based on the ranking of lines under load variations, this work has identified the optimal location of TCSC among the severe lines. It has been identi ed that TCSC can be placed optimally in line 7-8 for the IEEE 14 bus system. The line 6-10 is the most optimal line for placement of TCSC in the IEEE 30 bus system. Also, it is found that the voltage stability is improved by placing the TCSC at optimal location.

Voltage Stability Assessment in Power Network Using Artificial Neural Network

Voltage Stability Assessment in Power Network Using Artificial Neural Network Voltage Stability Assessment in Power Network Using Artificial Neural Network Swetha G C 1, H.R.Sudarshana Reddy 2 PG Scholar, Dept. of E & E Engineering, University BDT College of Engineering, Davangere,

More information

A Novel Approach for Reducing Proximity to Voltage Instability of Multibus Power System with Line Outage Using Shunt Compensation and Modal Analysis

A Novel Approach for Reducing Proximity to Voltage Instability of Multibus Power System with Line Outage Using Shunt Compensation and Modal Analysis A Novel Approach for Reducing Proximity to Voltage Instability of Multibus Power System with Line Outage Using Shunt Compensation and Modal Analysis S.D.Naik Department of Electrical Engineering Shri Ramdeobaba

More information

Transient stability Assessment using Artificial Neural Network Considering Fault Location

Transient stability Assessment using Artificial Neural Network Considering Fault Location Vol.6 No., 200 مجلد 6, العدد, 200 Proc. st International Conf. Energy, Power and Control Basrah University, Basrah, Iraq 0 Nov. to 2 Dec. 200 Transient stability Assessment using Artificial Neural Network

More information

CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF

CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF 95 CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF 6.1 INTRODUCTION An artificial neural network (ANN) is an information processing model that is inspired by biological nervous systems

More information

Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network

Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network International Journal of Smart Grid and Clean Energy Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network R P Hasabe *, A P Vaidya Electrical Engineering

More information

FOUR TOTAL TRANSFER CAPABILITY. 4.1 Total transfer capability CHAPTER

FOUR TOTAL TRANSFER CAPABILITY. 4.1 Total transfer capability CHAPTER CHAPTER FOUR TOTAL TRANSFER CAPABILITY R structuring of power system aims at involving the private power producers in the system to supply power. The restructured electric power industry is characterized

More information

CHAPTER 4 LINK ADAPTATION USING NEURAL NETWORK

CHAPTER 4 LINK ADAPTATION USING NEURAL NETWORK CHAPTER 4 LINK ADAPTATION USING NEURAL NETWORK 4.1 INTRODUCTION For accurate system level simulator performance, link level modeling and prediction [103] must be reliable and fast so as to improve the

More information

Estimating the Active Power Transfer Margin for Transient Voltage Stability

Estimating the Active Power Transfer Margin for Transient Voltage Stability 1 Estimating the Active Power Transfer Margin for Transient Voltage Stability J. Tong and K. Tomsovic Abstract-- On-line security analysis is one of the important functions for modern power system control

More information

AN IMPROVED NEURAL NETWORK-BASED DECODER SCHEME FOR SYSTEMATIC CONVOLUTIONAL CODE. A Thesis by. Andrew J. Zerngast

AN IMPROVED NEURAL NETWORK-BASED DECODER SCHEME FOR SYSTEMATIC CONVOLUTIONAL CODE. A Thesis by. Andrew J. Zerngast AN IMPROVED NEURAL NETWORK-BASED DECODER SCHEME FOR SYSTEMATIC CONVOLUTIONAL CODE A Thesis by Andrew J. Zerngast Bachelor of Science, Wichita State University, 2008 Submitted to the Department of Electrical

More information

Identification of weak buses using Voltage Stability Indicator and its voltage profile improvement by using DSTATCOM in radial distribution systems

Identification of weak buses using Voltage Stability Indicator and its voltage profile improvement by using DSTATCOM in radial distribution systems IOSR Journal of Electrical And Electronics Engineering (IOSRJEEE) ISSN : 2278-1676 Volume 2, Issue 4 (Sep.-Oct. 2012), PP 17-23 Identification of weak buses using Voltage Stability Indicator and its voltage

More information

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016 Artificial Neural Networks Artificial Intelligence Santa Clara, 2016 Simulate the functioning of the brain Can simulate actual neurons: Computational neuroscience Can introduce simplified neurons: Neural

More information

1 Introduction. w k x k (1.1)

1 Introduction. w k x k (1.1) Neural Smithing 1 Introduction Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The major

More information

Online Wide-Area Voltage Stability Monitoring and Control: RT-VSMAC Tool

Online Wide-Area Voltage Stability Monitoring and Control: RT-VSMAC Tool Online Wide-Area Voltage Stability Monitoring and Control: RT-VSMAC Tool A. Srivastava and S. Biswas The School of Electrical Engineering and Computer Science Smart Grid Demonstration and Research Investigation

More information

NNC for Power Electronics Converter Circuits: Design & Simulation

NNC for Power Electronics Converter Circuits: Design & Simulation NNC for Power Electronics Converter Circuits: Design & Simulation 1 Ms. Kashmira J. Rathi, 2 Dr. M. S. Ali Abstract: AI-based control techniques have been very popular since the beginning of the 90s. Usually,

More information

Shunt active filter algorithms for a three phase system fed to adjustable speed drive

Shunt active filter algorithms for a three phase system fed to adjustable speed drive Shunt active filter algorithms for a three phase system fed to adjustable speed drive Sujatha.CH(Assoc.prof) Department of Electrical and Electronic Engineering, Gudlavalleru Engineering College, Gudlavalleru,

More information

TRANSIENT STABILITY ENHANCEMENT OF POWER SYSTEM USING INTELLIGENT TECHNIQUE

TRANSIENT STABILITY ENHANCEMENT OF POWER SYSTEM USING INTELLIGENT TECHNIQUE TRANSIENT STABILITY ENHANCEMENT OF POWER SYSTEM USING INTELLIGENT TECHNIQUE K.Satyanarayana 1, Saheb Hussain MD 2, B.K.V.Prasad 3 1 Ph.D Scholar, EEE Department, Vignan University (A.P), India, ksatya.eee@gmail.com

More information

Optimal Allocation of TCSC Devices Using Genetic Algorithms

Optimal Allocation of TCSC Devices Using Genetic Algorithms Proceedings of the 14 th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 195. Optimal Allocation of TCSC Devices Using Genetic Algorithms

More information

Fast Prediction of Voltage Stability Index Based on Radial Basis Function Neural Network: Iraqi Super Grid Network, 400-kV

Fast Prediction of Voltage Stability Index Based on Radial Basis Function Neural Network: Iraqi Super Grid Network, 400-kV Fast Prediction of Voltage Stability Index Based on Radial Basis Function Neural Network: Iraqi Super Grid Network, 400-kV Omer H. Mehdi & Noor Izzri Department of Electrical and Electronic Engineering,

More information

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS 66 CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS INTRODUCTION The use of electronic controllers in the electric power supply system has become very common. These electronic

More information

NEURAL NETWORK BASED MAXIMUM POWER POINT TRACKING

NEURAL NETWORK BASED MAXIMUM POWER POINT TRACKING NEURAL NETWORK BASED MAXIMUM POWER POINT TRACKING 3.1 Introduction This chapter introduces concept of neural networks, it also deals with a novel approach to track the maximum power continuously from PV

More information

Artificial Neural Network Based Fault Locator for Single Line to Ground Fault in Double Circuit Transmission Line

Artificial Neural Network Based Fault Locator for Single Line to Ground Fault in Double Circuit Transmission Line DOI: 10.7763/IPEDR. 2014. V75. 11 Artificial Neural Network Based Fault Locator for Single Line to Ground Fault in Double Circuit Transmission Line Aravinda Surya. V 1, Ebha Koley 2 +, AnamikaYadav 3 and

More information

Current Harmonic Estimation in Power Transmission Lines Using Multi-layer Perceptron Learning Strategies

Current Harmonic Estimation in Power Transmission Lines Using Multi-layer Perceptron Learning Strategies Journal of Electrical Engineering 5 (27) 29-23 doi:.7265/2328-2223/27.5. D DAVID PUBLISHING Current Harmonic Estimation in Power Transmission Lines Using Multi-layer Patrice Wira and Thien Minh Nguyen

More information

Figure 1. Artificial Neural Network structure. B. Spiking Neural Networks Spiking Neural networks (SNNs) fall into the third generation of neural netw

Figure 1. Artificial Neural Network structure. B. Spiking Neural Networks Spiking Neural networks (SNNs) fall into the third generation of neural netw Review Analysis of Pattern Recognition by Neural Network Soni Chaturvedi A.A.Khurshid Meftah Boudjelal Electronics & Comm Engg Electronics & Comm Engg Dept. of Computer Science P.I.E.T, Nagpur RCOEM, Nagpur

More information

CHAPTER 6 ANFIS BASED NEURO-FUZZY CONTROLLER

CHAPTER 6 ANFIS BASED NEURO-FUZZY CONTROLLER 143 CHAPTER 6 ANFIS BASED NEURO-FUZZY CONTROLLER 6.1 INTRODUCTION The quality of generated electricity in power system is dependent on the system output, which has to be of constant frequency and must

More information

CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION

CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION 92 CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION 4.1 OVERVIEW OF PI CONTROLLER Proportional Integral (PI) controllers have been developed due to the unique

More information

FACE RECOGNITION USING NEURAL NETWORKS

FACE RECOGNITION USING NEURAL NETWORKS Int. J. Elec&Electr.Eng&Telecoms. 2014 Vinoda Yaragatti and Bhaskar B, 2014 Research Paper ISSN 2319 2518 www.ijeetc.com Vol. 3, No. 3, July 2014 2014 IJEETC. All Rights Reserved FACE RECOGNITION USING

More information

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL * A. K. Sharma, ** R. A. Gupta, and *** Laxmi Srivastava * Department of Electrical Engineering,

More information

Voltage Stability Analysis with Equal Load and Proportional Load Increment in a Multibus Power System

Voltage Stability Analysis with Equal Load and Proportional Load Increment in a Multibus Power System 2012 2nd International Conference on Power and Energy Systems (ICPES 2012) IPCSIT vol. 56 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V56.9 Voltage Stability Analysis with Equal Load

More information

Neural Network Classifier and Filtering for EEG Detection in Brain-Computer Interface Device

Neural Network Classifier and Filtering for EEG Detection in Brain-Computer Interface Device Neural Network Classifier and Filtering for EEG Detection in Brain-Computer Interface Device Mr. CHOI NANG SO Email: cnso@excite.com Prof. J GODFREY LUCAS Email: jglucas@optusnet.com.au SCHOOL OF MECHATRONICS,

More information

Optimal Positioning and Sizing of DG Units Using Differential Evolution Algorithm

Optimal Positioning and Sizing of DG Units Using Differential Evolution Algorithm Optimal Positioning and Sizing of DG Units Using Differential Evolution Algorithm Ravi 1, Himanshu Sangwan 2 Assistant Professor, Department of Electrical Engineering, D C R University of Science & Technology,

More information

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE POWER SYSTEM VOLTAGE STABILITY ANALYSIS AND ASSESSMENT USING ARTIFICIAL NEURAL NETWORK

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE POWER SYSTEM VOLTAGE STABILITY ANALYSIS AND ASSESSMENT USING ARTIFICIAL NEURAL NETWORK CALIFORNIA STATE UNIVERSITY, NORTHRIDGE POWER SYSTEM VOLTAGE STABILITY ANALYSIS AND ASSESSMENT USING ARTIFICIAL NEURAL NETWORK A graduate project submitted in partial fulfillment of the requirements For

More information

Application of Multi Layer Perceptron (MLP) for Shower Size Prediction

Application of Multi Layer Perceptron (MLP) for Shower Size Prediction Chapter 3 Application of Multi Layer Perceptron (MLP) for Shower Size Prediction 3.1 Basic considerations of the ANN Artificial Neural Network (ANN)s are non- parametric prediction tools that can be used

More information

PID Controller Design Based on Radial Basis Function Neural Networks for the Steam Generator Level Control

PID Controller Design Based on Radial Basis Function Neural Networks for the Steam Generator Level Control BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6 No 5 Special Issue on Application of Advanced Computing and Simulation in Information Systems Sofia 06 Print ISSN: 3-970;

More information

Fuzzy Approach to Critical Bus Ranking under Normal and Line Outage Contingencies

Fuzzy Approach to Critical Bus Ranking under Normal and Line Outage Contingencies Fuzzy Approach to Critical Bus Ranking under Normal and Line Outage Shobha Shankar *, Dr. T. Ananthapadmanabha ** * Research Scholar and Assistant Professor, Department of Electrical and Electronics Engineering,

More information

Identification of Critical Bus and Optimal Allocation of Facts Device

Identification of Critical Bus and Optimal Allocation of Facts Device Identification of Critical Bus and Optimal Allocation of Facts Device Dipali Kiratsata 1, Gaurav Gangil 2 M.Tech Scholar, Department of Electrical, Sobhasaria Group of Institutions Sikar, India Assistant

More information

Knowledge-Based Neural Network for Line Flow Contingency Selection and Ranking

Knowledge-Based Neural Network for Line Flow Contingency Selection and Ranking Knowledge-Based Neural Network for Line Flow Contingency Selection and Ranking Nitin Malik * and L. Srivastava ** * Institute of Technology & Management, Gurgaon, India ** Madhav Institute of Technology

More information

Artificial Neural Networks for ON Line Assessment of Voltage Stability using FVSI in Power Transmission Systems

Artificial Neural Networks for ON Line Assessment of Voltage Stability using FVSI in Power Transmission Systems IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 7, Issue 6 (Sep. - Oct. 2013), PP 52-58 Artificial Neural Networks for ON Line Assessment

More information

DIAGNOSIS OF STATOR FAULT IN ASYNCHRONOUS MACHINE USING SOFT COMPUTING METHODS

DIAGNOSIS OF STATOR FAULT IN ASYNCHRONOUS MACHINE USING SOFT COMPUTING METHODS DIAGNOSIS OF STATOR FAULT IN ASYNCHRONOUS MACHINE USING SOFT COMPUTING METHODS K. Vinoth Kumar 1, S. Suresh Kumar 2, A. Immanuel Selvakumar 1 and Vicky Jose 1 1 Department of EEE, School of Electrical

More information

Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert Transform Approach

Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert Transform Approach SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) volume 1 Issue 10 Dec 014 Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert

More information

Millimeter Wave RF Front End Design using Neuro-Genetic Algorithms

Millimeter Wave RF Front End Design using Neuro-Genetic Algorithms Millimeter Wave RF Front End Design using Neuro-Genetic Algorithms Rana J. Pratap, J.H. Lee, S. Pinel, G.S. May *, J. Laskar and E.M. Tentzeris Georgia Electronic Design Center Georgia Institute of Technology,

More information

Using of Artificial Neural Networks to Recognize the Noisy Accidents Patterns of Nuclear Research Reactors

Using of Artificial Neural Networks to Recognize the Noisy Accidents Patterns of Nuclear Research Reactors Int. J. Advanced Networking and Applications 1053 Using of Artificial Neural Networks to Recognize the Noisy Accidents Patterns of Nuclear Research Reactors Eng. Abdelfattah A. Ahmed Atomic Energy Authority,

More information

Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based Methods

Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based Methods Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based Methods Nitin Singh 1, Smarajit Ghosh 2, Krishna Murari 3 EIED, Thapar university, Patiala-147004, India Email-

More information

Composite Criteria based Network Contingency Ranking using Fuzzy Logic Approach

Composite Criteria based Network Contingency Ranking using Fuzzy Logic Approach INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR, DECEMBER -9, Composite Criteria based Network Contingency Ranking using Fuzzy Logic Approach K.Visakha D.Thukaram Lawrence Jenkins Abstract -- Electric power

More information

Prediction of Compaction Parameters of Soils using Artificial Neural Network

Prediction of Compaction Parameters of Soils using Artificial Neural Network Prediction of Compaction Parameters of Soils using Artificial Neural Network Jeeja Jayan, Dr.N.Sankar Mtech Scholar Kannur,Kerala,India jeejajyn@gmail.com Professor,NIT Calicut Calicut,India sankar@notc.ac.in

More information

Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT

Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT Babar Noor 1, Muhammad Aamir Aman 1, Murad Ali 1, Sanaullah Ahmad 1, Fazal Wahab Karam. 2 Electrical

More information

A Numerical Approach to Understanding Oscillator Neural Networks

A Numerical Approach to Understanding Oscillator Neural Networks A Numerical Approach to Understanding Oscillator Neural Networks Natalie Klein Mentored by Jon Wilkins Networks of coupled oscillators are a form of dynamical network originally inspired by various biological

More information

Neural Network Based Loading Margin Approximation for Static Voltage Stability in Power Systems

Neural Network Based Loading Margin Approximation for Static Voltage Stability in Power Systems Neural Network Based Loading Margin Approximation for Static Voltage Stability in Power Systems Arthit Sode-Yome, Member, IEEE, and Kwang Y. Lee, Fellow, IEEE Abstract Approximate loading margin methods

More information

Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller

Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller Volume 1, Issue 2, October-December, 2013, pp. 25-33, IASTER 2013 www.iaster.com, Online: 2347-5439, Print: 2348-0025 Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller

More information

Decision Tree Based Online Voltage Security Assessment Using PMU Measurements

Decision Tree Based Online Voltage Security Assessment Using PMU Measurements Decision Tree Based Online Voltage Security Assessment Using PMU Measurements Vijay Vittal Ira A. Fulton Chair Professor Arizona State University Seminar, January 27, 29 Project Team Ph.D. Student Ruisheng

More information

A Comparison of Particle Swarm Optimization and Gradient Descent in Training Wavelet Neural Network to Predict DGPS Corrections

A Comparison of Particle Swarm Optimization and Gradient Descent in Training Wavelet Neural Network to Predict DGPS Corrections Proceedings of the World Congress on Engineering and Computer Science 00 Vol I WCECS 00, October 0-, 00, San Francisco, USA A Comparison of Particle Swarm Optimization and Gradient Descent in Training

More information

Real-time Decentralized Voltage Stability Monitoring and Protection against Voltage Collapse

Real-time Decentralized Voltage Stability Monitoring and Protection against Voltage Collapse Real-time Decentralized Voltage Stability Monitoring and Protection against Voltage Collapse Costas Vournas National Technical University of Athens vournas@power.ece.ntua.gr 1 Outline Introduction to Voltage

More information

Stock Price Prediction Using Multilayer Perceptron Neural Network by Monitoring Frog Leaping Algorithm

Stock Price Prediction Using Multilayer Perceptron Neural Network by Monitoring Frog Leaping Algorithm Stock Price Prediction Using Multilayer Perceptron Neural Network by Monitoring Frog Leaping Algorithm Ahdieh Rahimi Garakani Department of Computer South Tehran Branch Islamic Azad University Tehran,

More information

PERFORMANCE PARAMETERS CONTROL OF WOUND ROTOR INDUCTION MOTOR USING ANN CONTROLLER

PERFORMANCE PARAMETERS CONTROL OF WOUND ROTOR INDUCTION MOTOR USING ANN CONTROLLER PERFORMANCE PARAMETERS CONTROL OF WOUND ROTOR INDUCTION MOTOR USING ANN CONTROLLER 1 A.MOHAMED IBRAHIM, 2 M.PREMKUMAR, 3 T.R.SUMITHIRA, 4 D.SATHISHKUMAR 1,2,4 Assistant professor in Department of Electrical

More information

NEURAL NETWORK DEMODULATOR FOR QUADRATURE AMPLITUDE MODULATION (QAM)

NEURAL NETWORK DEMODULATOR FOR QUADRATURE AMPLITUDE MODULATION (QAM) NEURAL NETWORK DEMODULATOR FOR QUADRATURE AMPLITUDE MODULATION (QAM) Ahmed Nasraden Milad M. Aziz M Rahmadwati Artificial neural network (ANN) is one of the most advanced technology fields, which allows

More information

Genetic Neural Networks - Based Strategy for Fast Voltage Control in Power Systems

Genetic Neural Networks - Based Strategy for Fast Voltage Control in Power Systems Genetic Neural Networks - Based Strategy for Fast Voltage Control in Power Systems M. S. Kandil, A. Elmitwally, Member, IEEE, and G. Elnaggar The authors are with the Electrical Eng. Dept., Mansoura university,

More information

Power Transfer Distribution Factor Estimate Using DC Load Flow Method

Power Transfer Distribution Factor Estimate Using DC Load Flow Method Power Transfer Distribution Factor Estimate Using DC Load Flow Method Ravi Kumar, S. C. Gupta & Baseem Khan MANIT Bhopal E-mail : ravi143.96@rediffmail.com, scg.nit.09@gmail.com, baseem.khan04@gmail.com

More information

Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter Based UPFC with ANN

Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter Based UPFC with ANN IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter

More information

Analysis Of Feed Point Coordinates Of A Coaxial Feed Rectangular Microstrip Antenna Using Mlpffbp Artificial Neural Network

Analysis Of Feed Point Coordinates Of A Coaxial Feed Rectangular Microstrip Antenna Using Mlpffbp Artificial Neural Network Analysis Of Feed Point Coordinates Of A Coaxial Feed Rectangular Microstrip Antenna Using Mlpffbp Artificial Neural Network V. V. Thakare 1 & P. K. Singhal 2 1 Deptt. of Electronics and Instrumentation,

More information

Publication P IEEE. Reprinted with permission.

Publication P IEEE. Reprinted with permission. P3 Publication P3 J. Martikainen and S. J. Ovaska function approximation by neural networks in the optimization of MGP-FIR filters in Proc. of the IEEE Mountain Workshop on Adaptive and Learning Systems

More information

Application Research on BP Neural Network PID Control of the Belt Conveyor

Application Research on BP Neural Network PID Control of the Belt Conveyor Application Research on BP Neural Network PID Control of the Belt Conveyor Pingyuan Xi 1, Yandong Song 2 1 School of Mechanical Engineering Huaihai Institute of Technology Lianyungang 222005, China 2 School

More information

A Novel Fuzzy Neural Network Based Distance Relaying Scheme

A Novel Fuzzy Neural Network Based Distance Relaying Scheme 902 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 15, NO. 3, JULY 2000 A Novel Fuzzy Neural Network Based Distance Relaying Scheme P. K. Dash, A. K. Pradhan, and G. Panda Abstract This paper presents a new

More information

Using Artificial Neural Networks to Estimate Rotor Angles and Speeds from Phasor Measurements

Using Artificial Neural Networks to Estimate Rotor Angles and Speeds from Phasor Measurements Using Artificial Neural Networks to Estimate Rotor Angles and Speeds from Phasor Measurements Alberto Del Angel, Student Member, IEEE, Mevludin Glavic, and Louis Wehenkel, Member, IEEE Abstract This paper

More information

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique International Journal of Computational Engineering Research Vol, 04 Issue, 4 Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique 1, Akhilesh Kumar, & 2,

More information

DRILLING RATE OF PENETRATION PREDICTION USING ARTIFICIAL NEURAL NETWORK: A CASE STUDY OF ONE OF IRANIAN SOUTHERN OIL FIELDS

DRILLING RATE OF PENETRATION PREDICTION USING ARTIFICIAL NEURAL NETWORK: A CASE STUDY OF ONE OF IRANIAN SOUTHERN OIL FIELDS 21 UDC 622.244.6.05:681.3.06. DRILLING RATE OF PENETRATION PREDICTION USING ARTIFICIAL NEURAL NETWORK: A CASE STUDY OF ONE OF IRANIAN SOUTHERN OIL FIELDS Mehran Monazami MSc Student, Ahwaz Faculty of Petroleum,

More information

Fault Detection in Double Circuit Transmission Lines Using ANN

Fault Detection in Double Circuit Transmission Lines Using ANN International Journal of Research in Advent Technology, Vol.3, No.8, August 25 E-ISSN: 232-9637 Fault Detection in Double Circuit Transmission Lines Using ANN Chhavi Gupta, Chetan Bhardwaj 2 U.T.U Dehradun,

More information

ISSN: [Jha* et al., 5(12): December, 2016] Impact Factor: 4.116

ISSN: [Jha* et al., 5(12): December, 2016] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY ANALYSIS OF DIRECTIVITY AND BANDWIDTH OF COAXIAL FEED SQUARE MICROSTRIP PATCH ANTENNA USING ARTIFICIAL NEURAL NETWORK Rohit Jha*,

More information

Controlling of Artificial Neural Network for Fault Diagnosis of Photovoltaic Array

Controlling of Artificial Neural Network for Fault Diagnosis of Photovoltaic Array 1 Controlling of Artificial Neural Network for Fault Diagnosis of Photovoltaic Array Syafaruddin, Non Member, IEEE, E. Karatepe, Member, IEEE, and T. Hiyama, Member, IEEE Abstract--High penetration of

More information

Chapter 2 Distributed Consensus Estimation of Wireless Sensor Networks

Chapter 2 Distributed Consensus Estimation of Wireless Sensor Networks Chapter 2 Distributed Consensus Estimation of Wireless Sensor Networks Recently, consensus based distributed estimation has attracted considerable attention from various fields to estimate deterministic

More information

Maximum Power Point Tracking of Photovoltaic Modules Comparison of Neuro-Fuzzy ANFIS and Artificial Network Controllers Performances

Maximum Power Point Tracking of Photovoltaic Modules Comparison of Neuro-Fuzzy ANFIS and Artificial Network Controllers Performances Maximum Power Point Tracking of Photovoltaic Modules Comparison of Neuro-Fuzzy ANFS and Artificial Network Controllers Performances Z. ONS, J. AYMEN, M. MOHAMED NEJB and C.AURELAN Abstract This paper makes

More information

Eur Ing Dr. Lei Zhang Faculty of Engineering and Applied Science University of Regina Canada

Eur Ing Dr. Lei Zhang Faculty of Engineering and Applied Science University of Regina Canada Eur Ing Dr. Lei Zhang Faculty of Engineering and Applied Science University of Regina Canada The Second International Conference on Neuroscience and Cognitive Brain Information BRAININFO 2017, July 22,

More information

ARTIFICIAL INTELLIGENCE IN POWER SYSTEMS

ARTIFICIAL INTELLIGENCE IN POWER SYSTEMS ARTIFICIAL INTELLIGENCE IN POWER SYSTEMS Prof.Somashekara Reddy 1, Kusuma S 2 1 Department of MCA, NHCE Bangalore, India 2 Kusuma S, Department of MCA, NHCE Bangalore, India Abstract: Artificial Intelligence

More information

AS the power distribution networks become more and more

AS the power distribution networks become more and more IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 1, FEBRUARY 2006 153 A Unified Three-Phase Transformer Model for Distribution Load Flow Calculations Peng Xiao, Student Member, IEEE, David C. Yu, Member,

More information

Florida State University Libraries

Florida State University Libraries Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2010 Predictive Harmonic Cancellation Using Neural Networks Brian Malinconico Follow this and additional

More information

Neural Labyrinth Robot Finding the Best Way in a Connectionist Fashion

Neural Labyrinth Robot Finding the Best Way in a Connectionist Fashion Neural Labyrinth Robot Finding the Best Way in a Connectionist Fashion Marvin Oliver Schneider 1, João Luís Garcia Rosa 1 1 Mestrado em Sistemas de Computação Pontifícia Universidade Católica de Campinas

More information

Analysis of Learning Paradigms and Prediction Accuracy using Artificial Neural Network Models

Analysis of Learning Paradigms and Prediction Accuracy using Artificial Neural Network Models Analysis of Learning Paradigms and Prediction Accuracy using Artificial Neural Network Models Poornashankar 1 and V.P. Pawar 2 Abstract: The proposed work is related to prediction of tumor growth through

More information

Use of PQV Surface as a Tool for Comparing the Effects of FACTS Devices on Static Voltage Stability Ali Zare, Ahad Kazemi

Use of PQV Surface as a Tool for Comparing the Effects of FACTS Devices on Static Voltage Stability Ali Zare, Ahad Kazemi Use of PQV Surface as a Tool for Comparing the Effects of FACTS Devices on Static Voltage Stability Ali Zare, Ahad Kazemi Abstract PV or QV curves are commonly used to determine static voltage stability

More information

POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM

POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM 1 VIJAY KUMAR SAHU, 2 ANIL P. VAIDYA 1,2 Pg Student, Professor E-mail: 1 vijay25051991@gmail.com, 2 anil.vaidya@walchandsangli.ac.in

More information

Using Evolutionary Imperialist Competitive Algorithm (ICA) to Coordinate Overcurrent Relays

Using Evolutionary Imperialist Competitive Algorithm (ICA) to Coordinate Overcurrent Relays Using Evolutionary Imperialist Competitive Algorithm (ICA) to Coordinate Overcurrent Relays Farzad Razavi, Vahid Khorani, Ahsan Ghoncheh, Hesamoddin Abdollahi Azad University, Qazvin Branch Electrical

More information

ARTIFICIAL NEURAL NETWORKS FOR INTELLIGENT REAL TIME POWER QUALITY MONITORING SYSTEM

ARTIFICIAL NEURAL NETWORKS FOR INTELLIGENT REAL TIME POWER QUALITY MONITORING SYSTEM ARTIFICIAL NEURAL NETWORKS FOR INTELLIGENT REAL TIME POWER QUALITY MONITORING SYSTEM Ajith Abraham and Baikunth Nath Gippsland School of Computing & Information Technology Monash University, Churchill

More information

Background Pixel Classification for Motion Detection in Video Image Sequences

Background Pixel Classification for Motion Detection in Video Image Sequences Background Pixel Classification for Motion Detection in Video Image Sequences P. Gil-Jiménez, S. Maldonado-Bascón, R. Gil-Pita, and H. Gómez-Moreno Dpto. de Teoría de la señal y Comunicaciones. Universidad

More information

PV CURVE APPROACH FOR VOLTAGE STABILITY ANALYSIS

PV CURVE APPROACH FOR VOLTAGE STABILITY ANALYSIS 373 PV CURVE APPROACH FOR VOLTAGE STABILITY ANALYSIS 1 Neha Parsai, 2 Prof. Alka Thakur 1 M. Tech. Student, 2 Assist. Professor, Department of Electrical Engineering SSSIST Shore, M.P. India ABSTRACT Voltage

More information

Adaptive Neural Network-based Synchronization Control for Dual-drive Servo System

Adaptive Neural Network-based Synchronization Control for Dual-drive Servo System Adaptive Neural Network-based Synchronization Control for Dual-drive Servo System Suprapto 1 1 Graduate School of Engineering Science & Technology, Doulio, Yunlin, Taiwan, R.O.C. e-mail: d10210035@yuntech.edu.tw

More information

ECE 692 Advanced Topics on Power System Stability 5 - Voltage Stability

ECE 692 Advanced Topics on Power System Stability 5 - Voltage Stability ECE 692 Advanced Topics on Power System Stability 5 - Voltage Stability Spring 2016 Instructor: Kai Sun 1 Content Basic concepts Voltage collapse and Saddle-node bifurcation P-V curve and V-Q curve Causes

More information

Inverse Dynamic Neuro-Controller for Superheater Steam Temperature Control of a Large-Scale Ultra-Supercritical (USC) Boiler Unit

Inverse Dynamic Neuro-Controller for Superheater Steam Temperature Control of a Large-Scale Ultra-Supercritical (USC) Boiler Unit Inverse Dynamic Neuro-Controller for Superheater Steam Temperature Control of a Large-Scale Ultra-Supercritical (USC) Boiler Unit Kwang Y. Lee*, Liangyu Ma**, Chang J. Boo+, Woo-Hee Jung++, and Sung-Ho

More information

SuperOPF and Global-OPF : Design, Development, and Applications

SuperOPF and Global-OPF : Design, Development, and Applications SuperOPF and Global-OPF : Design, Development, and Applications Dr. Hsiao-Dong Chiang Professor, School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA School of electrical

More information

A Fuzzy Logic Voltage Collapse Alarm System for Dynamic Loads. Zhang Xi. Master of Science in Electrical and Electronics Engineering

A Fuzzy Logic Voltage Collapse Alarm System for Dynamic Loads. Zhang Xi. Master of Science in Electrical and Electronics Engineering A Fuzzy Logic Voltage Collapse Alarm System for Dynamic Loads by Zhang Xi Master of Science in Electrical and Electronics Engineering 2012 Faculty of Science and Technology University of Macau A Fuzzy

More information

Neural Network based Digital Receiver for Radio Communications

Neural Network based Digital Receiver for Radio Communications Neural Network based Digital Receiver for Radio Communications G. LIODAKIS, D. ARVANITIS, and I.O. VARDIAMBASIS Microwave Communications & Electromagnetic Applications Laboratory, Department of Electronics,

More information

Use of Neural Networks in Testing Analog to Digital Converters

Use of Neural Networks in Testing Analog to Digital Converters Use of Neural s in Testing Analog to Digital Converters K. MOHAMMADI, S. J. SEYYED MAHDAVI Department of Electrical Engineering Iran University of Science and Technology Narmak, 6844, Tehran, Iran Abstract:

More information

PERFORMANCE ANALYSIS OF SRM DRIVE USING ANN BASED CONTROLLING OF 6/4 SWITCHED RELUCTANCE MOTOR

PERFORMANCE ANALYSIS OF SRM DRIVE USING ANN BASED CONTROLLING OF 6/4 SWITCHED RELUCTANCE MOTOR PERFORMANCE ANALYSIS OF SRM DRIVE USING ANN BASED CONTROLLING OF 6/4 SWITCHED RELUCTANCE MOTOR Vikas S. Wadnerkar * Dr. G. Tulasi Ram Das ** Dr. A.D.Rajkumar *** ABSTRACT This paper proposes and investigates

More information

Implementation of a Choquet Fuzzy Integral Based Controller on a Real Time System

Implementation of a Choquet Fuzzy Integral Based Controller on a Real Time System Implementation of a Choquet Fuzzy Integral Based Controller on a Real Time System SMRITI SRIVASTAVA ANKUR BANSAL DEEPAK CHOPRA GAURAV GOEL Abstract The paper discusses about the Choquet Fuzzy Integral

More information

Photovoltaic Systems Engineering

Photovoltaic Systems Engineering Photovoltaic Systems Engineering Ali Karimpour Assistant Professor Ferdowsi University of Mashhad Reference for this lecture: Trishan Esram and Patrick L. Chapman. Comparison of Photovoltaic Array Maximum

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 4, April -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Damping

More information

MAGNT Research Report (ISSN ) Vol.6(1). PP , Controlling Cost and Time of Construction Projects Using Neural Network

MAGNT Research Report (ISSN ) Vol.6(1). PP , Controlling Cost and Time of Construction Projects Using Neural Network Controlling Cost and Time of Construction Projects Using Neural Network Li Ping Lo Faculty of Computer Science and Engineering Beijing University China Abstract In order to achieve optimized management,

More information

NEURAL NETWORK BASED LOAD FREQUENCY CONTROL FOR RESTRUCTURING POWER INDUSTRY

NEURAL NETWORK BASED LOAD FREQUENCY CONTROL FOR RESTRUCTURING POWER INDUSTRY Nigerian Journal of Technology (NIJOTECH) Vol. 31, No. 1, March, 2012, pp. 40 47. Copyright c 2012 Faculty of Engineering, University of Nigeria. ISSN 1115-8443 NEURAL NETWORK BASED LOAD FREQUENCY CONTROL

More information

A New Localization Algorithm Based on Taylor Series Expansion for NLOS Environment

A New Localization Algorithm Based on Taylor Series Expansion for NLOS Environment BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 5 Special Issue on Application of Advanced Computing and Simulation in Information Systems Sofia 016 Print ISSN: 1311-970;

More information

APPLICATION OF NEURAL NETWORK TRAINED WITH META-HEURISTIC ALGORITHMS ON FAULT DIAGNOSIS OF MULTI-LEVEL INVERTER

APPLICATION OF NEURAL NETWORK TRAINED WITH META-HEURISTIC ALGORITHMS ON FAULT DIAGNOSIS OF MULTI-LEVEL INVERTER APPLICATION OF NEURAL NETWORK TRAINED WITH META-HEURISTIC ALGORITHMS ON FAULT DIAGNOSIS OF MULTI-LEVEL INVERTER 1 M.SIVAKUMAR, 2 R.M.S.PARVATHI 1 Research Scholar, Department of EEE, Anna University, Chennai,

More information

Comparison of Various Neural Network Algorithms Used for Location Estimation in Wireless Communication

Comparison of Various Neural Network Algorithms Used for Location Estimation in Wireless Communication Comparison of Various Neural Network Algorithms Used for Location Estimation in Wireless Communication * Shashank Mishra 1, G.S. Tripathi M.Tech. Student, Dept. of Electronics and Communication Engineering,

More information

Multiple-Layer Networks. and. Backpropagation Algorithms

Multiple-Layer Networks. and. Backpropagation Algorithms Multiple-Layer Networks and Algorithms Multiple-Layer Networks and Algorithms is the generalization of the Widrow-Hoff learning rule to multiple-layer networks and nonlinear differentiable transfer functions.

More information

Spectrum Hole Prediction And White Space Ranking For Cognitive Radio Network Using An Artificial Neural Network

Spectrum Hole Prediction And White Space Ranking For Cognitive Radio Network Using An Artificial Neural Network Spectrum Hole Prediction And White Space Ranking For Cognitive Radio Network Using An Artificial Neural Network Sunday Iliya, Eric Goodyer, Mario Gongora, John Gow Abstract: With spectrum becoming an ever

More information

Prediction of airblast loads in complex environments using artificial neural networks

Prediction of airblast loads in complex environments using artificial neural networks Structures Under Shock and Impact IX 269 Prediction of airblast loads in complex environments using artificial neural networks A. M. Remennikov 1 & P. A. Mendis 2 1 School of Civil, Mining and Environmental

More information