# Use of Neural Networks in Testing Analog to Digital Converters

Size: px
Start display at page:

## Transcription

3 circuit. We specified a number for each of these fault places. Table shows the numbers that indicate each place of occurring stuck at fault in the circuit. R R6 R7 R8 k k k k Vin UA Vref UA S S6 S7 U7A U8A Fig. : A simple flash ADC.. Vref For each of 5 fault models, fault data bank was created by changing the input voltage from zero to 8.V (little more than full scale voltage), using Orcad 9.. Totally, 5454 samples for all of fault models were obtained. The voltage of 9 nodes of circuit and the 5 fault model were considered as neural network inputs and outputs. In training phase, we observed that applying all the samples together to the network is an impractical work. Long training time, possible stoppage of training in an inappropriate SSE (sum square error) in MLP networks and insufficient neuron number for reaching desirable SSE are some reasons of this. So IN IN IN6 IN7 4 8 IN IN IN IN IN4 IN5 IN6 IN A A Vin 9 A A 6 A A FREQ = 5 VAMPL = VOFF = Table : Numbers for each Place of Occurring Stuck At Fault in the Circuit Node Name S S S S4 S5 S6 Fault No Node Name S7 IN IN IN IN IN4 Fault No Node Name IN5 IN6 IN7 A A A Fault No for improving the training time of the neural network, we used the ideas of outputs separation and indexing.. Separation of neural network outputs Fig. 4 shows the flowchart of this technique. For example, SA fault can occur in 8 nodes of the ADC circuit. In the case of outputs separation, we divide the desired outputs of SA fault model into 8 classes. In class number, we convert all of outputs which were not equal to, into zero. In class number, we convert all the outputs that are not equal to into zero and others into. We continued this work for all other classes. Then, the outputs of each class that belong to bound of [ ], were rounded to their nearest integer value. Now, outputs can be only or. Then, we multiplied outputs of each class by its class number (For example, outputs of class number, were multiplied by ).Then, we summed all 8 class outputs and we had one total network. Experiment show that this method decreases the training time to less than percent for MLP networks and less than 5 percents for RBF networks beside the primary case. Furthermore, when we tested the networks, we observed that the error of neural network in finding the location of the fault reaches zero. Whereas, error of neural network without output separation never reaches zero. So, we see that this method increases the network generalization, even. Table compares the results of RBF and MLP network in the case of using separation of outputs. Fig. 5 shows the structure of the MLP neural network that was used for training each separated network. We used a network with a five neurons hidden layer. Table : RBF and MLP networks results with separation of outputs MLP RBF Error ( E separation Enormal ).4 %.58 % Training Time ( t separation tnormal ).68 % 5 % No. of Neurons ( n n ) 8 % 6 % separation normal Total Desired Outputs Matrix Convert each fault model vector to n vectors, where n is number of occurrence of that fault in circuit Conversion method: Convert outputs equal with number of vector to and others to zero Train all networks Apply test vectors Round Outputs Multiply Outputs of each network by network number Combining networks Divide into each fault model vector Fig. 4: Separation technique flowchart.

4 . 9 inputs of network 5 hidden neurons One Separated Output Fig. 5: Structure of the MLP neural network that was used for training each separated network. For testing the network, we chose 4 test vectors that consist of test vectors for each of SA, SA, open and tolerance, at random and applied them to the network. Fig. 6 shows the error of MLP network of each of 5 fault models after applying the 4 test vectors. We see that the network of SA fault model, has correctly anticipated the location of fault for all test vectors. But the network of SA fault model has error () for test vector number 6. This test vector is obtained by applying tolerance fault to resistance R in the circuit. The interesting point is that this error tells us, the test vector number 6 is similar to input patterns for SA fault in node S (the inferior node of R) in the circuit. So, neural network can tell us that the test vector may belong to which other input pattern of other fault models. Of course, we should indicate that the neural network has not correctly anticipated the location of fault in test vectors (about 7.5 percents of all cases). In of this test vectors, the neural network anticipated the circuit is fault free.. Indexing of neural network outputs To perform the indexing of neural network outputs, we should convert each number in desired output vector to its index. For better understanding this concept, pay attention to the following example. If vector x is in form of x = [,, ], then its index matrix will be like this: x = (4) For example, SA fault can occur in 8 nodes of the ADC circuit. So, indexing of neural network outputs, converts the desired output vector of SA fault model to matrix. The first advantage of indexing is that amount of error of all samples in calculating SSE, would be equal. We anticipate that indexing would have the following two more advantages: Using indexing, neural network can identify the occurrence of or more faults in the circuit. Because of enlargement of neural network output layer and also because most of elements of desired output matrix are zero (the maximum number of ones is equal to the number of columns of desired output matrix, so always more than percents of desired output elements are zero.), the network would need less neurons in middle layers and it would converge faster. Experiment show that this method decreases the training time to less than percent for MLP networks. But this method can't improve the training phase time for RBF networks. Table compares the results of RBF and MLP network in the case of using indexing of outputs. Table : RBF and MLP networks results with indexing of outputs MLP RBF Error ( E E ). % 8. % separation normal Training Time ( t ).8 %.8 % separation tnormal In the case of existence of faults in the circuit, this method can correctly identify one of fault locations in all input test vectors. But without indexing, network can correctly identify one of fault locations only in percents of cases. Indexing method can correctly identify both fault locations in percents of cases. So we see that indexing method can improve the network generalization, too. Table 4 SA net SA net Open net Bridge net Tolerance net error No. of test vector No. of test vector No. of test vector No. of test vector No. of test vector Fig. 6: Separation technique. applying test vectors to MLP networks of fault models a) SA b) SA c) Open d) Bridge e) Tolerance

5 compares the results of RBF and MLP network in the case of occurrence of faults in the circuit. Table 4: RBF and MLP s Results with Fault Occurrence in the Locate of Locate both faults correct faults correct Normal % % MLP Separation 5 % % Indexing % % Normal % % RBF Separation % % Indexing 5 % % Fig. 7 shows the error of MLP network of each of 5 fault models after applying the 4 test vectors. We see that like separation method, this technique has the ability of finding similarity between the test vector and patterns of other fault models. We also see that this method has not correctly anticipated the location of fault in test vector (about.5 percents of all cases). So, in this method, network has less error than separation technique. In general, we can conclude that besides neural network can locate the fault with high reliability; it identifies other possible places that the test vector may belong to. So we can say this method is a robust way for fault diagnosis in testing mixed signal circuits. 4 Conclusion In this paper, we studied different ADC test approaches. Stuck at, open, bridge and tolerance faults were applied to a bit flash ADC. For each of fault model, a data bank was created. Using these fault data banks, neural network was trained. In this paper, we introduced the ideas of separation and indexing of neural network outputs to improve the training phase time. Experiment show that these methods decrease the training time to less than percent for MLP networks beside the primary case. Furthermore, when we tested the networks, we observed that the error of neural network in finding the location of the faults reaches zero. Whereas, error of neural network without output separation never reaches zero. We observe that these methods increase the network generalization. Table 5: Generalization and Equivalent Fault Detection of RBF and MLP s Equivalent generalization fault Separation 9.5 % Yes Separation & Rounding 9.5 % Yes Separation and Indexing 97.5 % Yes Separation 6 % No Separation & Rounding 8 % No Separation and Indexing 9.5 % Yes Table 5, compares RBF and MLP networks generalization capability. We see that when indexing and separation of outputs are used together, generalization reaches 97.5 %. We also simulated other ADC testing approaches such as histogram, FFT or sine fit. 5 samples were taken using PSPICE in Orcad 9. for each case of applying each fault model to possible places in the circuit. We observed that these methods have the advantage of being simple and fast. These methods are successful in finding out if the circuit is faulty or not. But they weren't useful methods for fault location analysis, while neural network approach is able to determine the location of fault, too. In general, we can conclude that beside neural network can locate the fault with high reliability; it identifies other possible places that the test vector may belong to. So we can say this method is a robust way for fault diagnosis in testing mixed signal circuits. MLP RBF References [] Peter B.L. Meijer, Neural s for Device SA net SA net Open net Bridge net 4 Tolerance net No. of test vector No. of test vector No. of test vector No. of test vector No. of test vector Fig. 7: Indexing technique. applying test vectors to MLP networks of fault models a) SA b) SA c) Open d) Bridge e) Tolerance

6 and Circuit Modeling, rd International Workshop Scientific Computing in Electrical Engineering, [] S. Chakrabarti, S. Cherubal, A. Chatterjee, Fault diagnosis for mixed signal electronic systems, Proceedings of IEEE Aerospace Conference, 999, 6979 vol. [] P. Arpaia, F. Cennamo, P. Daponte, Metrological characterization of analogtodigital convertersa state of the art, rd Advanced A/D and D/A Conversion Techniques and Their Applications, IEE ADDA99, Glasgow (UK), 68 July 999, pp. 444 [4] Howard Demuth, Mark Beale, Neural Toolbox for Use with MATLAB, MATLAB User s Guide Version 4 [5] Simon Haykin, Neural s: A Comprehensive Foundation, Prentice Hall, 999 [6] I. Dalmi, L. Kovacs, I. Lorant, G. Terstranszky, Adaptive learning and neural networks in fault diagnosis, UKACC International Conference on Control '98, Conference Publication No.455, IEE 998 [7] Mohammadi. K., Mohseni. A. R., Fault diagnosis of analog circuits with tolerances by using RBF and BP neural networks, Student Conference on Research and Development Proceedings, Shah Alam, Malaysia [8] Mandeep Singh, Israel Koren, Fault Sensitivity Analysis and Reliability Enhancement of AnalogtoDigital Converters, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume, Issue 5 (October ), Pages: [9] Samiha Mourad, Yervant Zorian, Principles of Testing Electronic Systems, John Wiley & Sons, Ltd, [] Ying Deng; Yigang He; Yichuang Sun, Fault diagnosis of analog circuits with tolerances using artificial neural networks, The IEEE AsiaPacific Conference on Circuits and Systems,, IEEE APCCAS

### CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF

95 CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF 6.1 INTRODUCTION An artificial neural network (ANN) is an information processing model that is inspired by biological nervous systems

### Neural Network Classifier and Filtering for EEG Detection in Brain-Computer Interface Device

Neural Network Classifier and Filtering for EEG Detection in Brain-Computer Interface Device Mr. CHOI NANG SO Email: cnso@excite.com Prof. J GODFREY LUCAS Email: jglucas@optusnet.com.au SCHOOL OF MECHATRONICS,

### DIAGNOSIS OF STATOR FAULT IN ASYNCHRONOUS MACHINE USING SOFT COMPUTING METHODS

DIAGNOSIS OF STATOR FAULT IN ASYNCHRONOUS MACHINE USING SOFT COMPUTING METHODS K. Vinoth Kumar 1, S. Suresh Kumar 2, A. Immanuel Selvakumar 1 and Vicky Jose 1 1 Department of EEE, School of Electrical

### Signal Processing of Automobile Millimeter Wave Radar Base on BP Neural Network

AIML 06 International Conference, 3-5 June 006, Sharm El Sheikh, Egypt Signal Processing of Automobile Millimeter Wave Radar Base on BP Neural Network Xinglin Zheng ), Yang Liu ), Yingsheng Zeng 3) ))3)

### Current Harmonic Estimation in Power Transmission Lines Using Multi-layer Perceptron Learning Strategies

Journal of Electrical Engineering 5 (27) 29-23 doi:.7265/2328-2223/27.5. D DAVID PUBLISHING Current Harmonic Estimation in Power Transmission Lines Using Multi-layer Patrice Wira and Thien Minh Nguyen

### NEURO-ACTIVE NOISE CONTROL USING A DECOUPLED LINEAIUNONLINEAR SYSTEM APPROACH

FIFTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION DECEMBER 15-18, 1997 ADELAIDE, SOUTH AUSTRALIA NEURO-ACTIVE NOISE CONTROL USING A DECOUPLED LINEAIUNONLINEAR SYSTEM APPROACH M. O. Tokhi and R. Wood

### Fault Diagnosis of Analog Circuit Using DC Approach and Neural Networks

294 Fault Diagnosis of Analog Circuit Using DC Approach and Neural Networks Ajeet Kumar Singh 1, Ajay Kumar Yadav 2, Mayank Kumar 3 1 M.Tech, EC Department, Mewar University Chittorgarh, Rajasthan, INDIA

### Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network

International Journal of Smart Grid and Clean Energy Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network R P Hasabe *, A P Vaidya Electrical Engineering

### A Novel Fuzzy Neural Network Based Distance Relaying Scheme

902 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 15, NO. 3, JULY 2000 A Novel Fuzzy Neural Network Based Distance Relaying Scheme P. K. Dash, A. K. Pradhan, and G. Panda Abstract This paper presents a new

### NEURAL NETWORK DEMODULATOR FOR QUADRATURE AMPLITUDE MODULATION (QAM)

NEURAL NETWORK DEMODULATOR FOR QUADRATURE AMPLITUDE MODULATION (QAM) Ahmed Nasraden Milad M. Aziz M Rahmadwati Artificial neural network (ANN) is one of the most advanced technology fields, which allows

### Systolic modular VLSI Architecture for Multi-Model Neural Network Implementation +

Systolic modular VLSI Architecture for Multi-Model Neural Network Implementation + J.M. Moreno *, J. Madrenas, J. Cabestany Departament d'enginyeria Electrònica Universitat Politècnica de Catalunya Barcelona,

### Approximation a One-Dimensional Functions by Using Multilayer Perceptron and Radial Basis Function Networks

Approximation a One-Dimensional Functions by Using Multilayer Perceptron and Radial Basis Function Networks Huda Dheyauldeen Najeeb Department of public relations College of Media, University of Al Iraqia,

### Using of Artificial Neural Networks to Recognize the Noisy Accidents Patterns of Nuclear Research Reactors

Int. J. Advanced Networking and Applications 1053 Using of Artificial Neural Networks to Recognize the Noisy Accidents Patterns of Nuclear Research Reactors Eng. Abdelfattah A. Ahmed Atomic Energy Authority,

### Comparison of Various Neural Network Algorithms Used for Location Estimation in Wireless Communication

Comparison of Various Neural Network Algorithms Used for Location Estimation in Wireless Communication * Shashank Mishra 1, G.S. Tripathi M.Tech. Student, Dept. of Electronics and Communication Engineering,

### CHAPTER 4 IMPLEMENTATION OF ADALINE IN MATLAB

52 CHAPTER 4 IMPLEMENTATION OF ADALINE IN MATLAB 4.1 INTRODUCTION The ADALINE is implemented in MATLAB environment running on a PC. One hundred data samples are acquired from a single cycle of load current

### A linear Multi-Layer Perceptron for identifying harmonic contents of biomedical signals

A linear Multi-Layer Perceptron for identifying harmonic contents of biomedical signals Thien Minh Nguyen 1 and Patrice Wira 1 Université de Haute Alsace, Laboratoire MIPS, Mulhouse, France, {thien-minh.nguyen,

### An Hybrid MLP-SVM Handwritten Digit Recognizer

An Hybrid MLP-SVM Handwritten Digit Recognizer A. Bellili ½ ¾ M. Gilloux ¾ P. Gallinari ½ ½ LIP6, Université Pierre et Marie Curie ¾ La Poste 4, Place Jussieu 10, rue de l Ile Mabon, BP 86334 75252 Paris

### Multiple-Layer Networks. and. Backpropagation Algorithms

Multiple-Layer Networks and Algorithms Multiple-Layer Networks and Algorithms is the generalization of the Widrow-Hoff learning rule to multiple-layer networks and nonlinear differentiable transfer functions.

### Application of Feed-forward Artificial Neural Networks to the Identification of Defective Analog Integrated Circuits

eural Comput & Applic (2002)11:71 79 Ownership and Copyright 2002 Springer-Verlag London Limited Application of Feed-forward Artificial eural etworks to the Identification of Defective Analog Integrated

### Prediction of Missing PMU Measurement using Artificial Neural Network

Prediction of Missing PMU Measurement using Artificial Neural Network Gaurav Khare, SN Singh, Abheejeet Mohapatra Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur-208016,

### J. C. Brégains (Student Member, IEEE), and F. Ares (Senior Member, IEEE).

ANALYSIS, SYNTHESIS AND DIAGNOSTICS OF ANTENNA ARRAYS THROUGH COMPLEX-VALUED NEURAL NETWORKS. J. C. Brégains (Student Member, IEEE), and F. Ares (Senior Member, IEEE). Radiating Systems Group, Department

### ARTIFICIAL NEURAL NETWORKS FOR INTELLIGENT REAL TIME POWER QUALITY MONITORING SYSTEM

ARTIFICIAL NEURAL NETWORKS FOR INTELLIGENT REAL TIME POWER QUALITY MONITORING SYSTEM Ajith Abraham and Baikunth Nath Gippsland School of Computing & Information Technology Monash University, Churchill

### Background Pixel Classification for Motion Detection in Video Image Sequences

Background Pixel Classification for Motion Detection in Video Image Sequences P. Gil-Jiménez, S. Maldonado-Bascón, R. Gil-Pita, and H. Gómez-Moreno Dpto. de Teoría de la señal y Comunicaciones. Universidad

### CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE

53 CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE 4.1 INTRODUCTION Due to economic reasons arising out of deregulation and open market of electricity,

### MINE 432 Industrial Automation and Robotics

MINE 432 Industrial Automation and Robotics Part 3, Lecture 5 Overview of Artificial Neural Networks A. Farzanegan (Visiting Associate Professor) Fall 2014 Norman B. Keevil Institute of Mining Engineering

### Harmonic detection by using different artificial neural network topologies

Harmonic detection by using different artificial neural network topologies J.L. Flores Garrido y P. Salmerón Revuelta Department of Electrical Engineering E. P. S., Huelva University Ctra de Palos de la

### DYNAMIC BEHAVIOR MODELS OF ANALOG TO DIGITAL CONVERTERS AIMED FOR POST-CORRECTION IN WIDEBAND APPLICATIONS

XVIII IMEKO WORLD CONGRESS th 11 WORKSHOP ON ADC MODELLING AND TESTING September, 17 22, 26, Rio de Janeiro, Brazil DYNAMIC BEHAVIOR MODELS OF ANALOG TO DIGITAL CONVERTERS AIMED FOR POST-CORRECTION IN

### CHAPTER 4 MIXED-SIGNAL DESIGN OF NEUROHARDWARE

69 CHAPTER 4 MIXED-SIGNAL DESIGN OF NEUROHARDWARE 4. SIGNIFICANCE OF MIXED-SIGNAL DESIGN Digital realization of Neurohardwares is discussed in Chapter 3, which dealt with cancer cell diagnosis system and

### AN IMPROVED NEURAL NETWORK-BASED DECODER SCHEME FOR SYSTEMATIC CONVOLUTIONAL CODE. A Thesis by. Andrew J. Zerngast

AN IMPROVED NEURAL NETWORK-BASED DECODER SCHEME FOR SYSTEMATIC CONVOLUTIONAL CODE A Thesis by Andrew J. Zerngast Bachelor of Science, Wichita State University, 2008 Submitted to the Department of Electrical

### Stock Price Prediction Using Multilayer Perceptron Neural Network by Monitoring Frog Leaping Algorithm

Stock Price Prediction Using Multilayer Perceptron Neural Network by Monitoring Frog Leaping Algorithm Ahdieh Rahimi Garakani Department of Computer South Tehran Branch Islamic Azad University Tehran,

### Figure 1. Artificial Neural Network structure. B. Spiking Neural Networks Spiking Neural networks (SNNs) fall into the third generation of neural netw

Review Analysis of Pattern Recognition by Neural Network Soni Chaturvedi A.A.Khurshid Meftah Boudjelal Electronics & Comm Engg Electronics & Comm Engg Dept. of Computer Science P.I.E.T, Nagpur RCOEM, Nagpur

### LabVIEW based Intelligent Frontal & Non- Frontal Face Recognition System

LabVIEW based Intelligent Frontal & Non- Frontal Face Recognition System Muralindran Mariappan, Manimehala Nadarajan, and Karthigayan Muthukaruppan Abstract Face identification and tracking has taken a

### Comparison of MLP and RBF neural networks for Prediction of ECG Signals

124 Comparison of MLP and RBF neural networks for Prediction of ECG Signals Ali Sadr 1, Najmeh Mohsenifar 2, Raziyeh Sadat Okhovat 3 Department Of electrical engineering Iran University of Science and

### IDENTIFICATION OF POWER QUALITY PROBLEMS IN IEEE BUS SYSTEM BY USING NEURAL NETWORKS

Fourth International Conference on Control System and Power Electronics CSPE IDENTIFICATION OF POWER QUALITY PROBLEMS IN IEEE BUS SYSTEM BY USING NEURAL NETWORKS Mr. Devadasu * and Dr. M Sushama ** * Associate

### Sonia Sharma ECE Department, University Institute of Engineering and Technology, MDU, Rohtak, India. Fig.1.Neuron and its connection

NEUROCOMPUTATION FOR MICROSTRIP ANTENNA Sonia Sharma ECE Department, University Institute of Engineering and Technology, MDU, Rohtak, India Abstract: A Neural Network is a powerful computational tool that

### Characterization of LF and LMA signal of Wire Rope Tester

Volume 8, No. 5, May June 2017 International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at www.ijarcs.info ISSN No. 0976-5697 Characterization of LF and LMA signal

### Multiple Signal Direction of Arrival (DoA) Estimation for a Switched-Beam System Using Neural Networks

PIERS ONLINE, VOL. 3, NO. 8, 27 116 Multiple Signal Direction of Arrival (DoA) Estimation for a Switched-Beam System Using Neural Networks K. A. Gotsis, E. G. Vaitsopoulos, K. Siakavara, and J. N. Sahalos

### A New Localization Algorithm Based on Taylor Series Expansion for NLOS Environment

BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 5 Special Issue on Application of Advanced Computing and Simulation in Information Systems Sofia 016 Print ISSN: 1311-970;

### MAGNT Research Report (ISSN ) Vol.6(1). PP , Controlling Cost and Time of Construction Projects Using Neural Network

Controlling Cost and Time of Construction Projects Using Neural Network Li Ping Lo Faculty of Computer Science and Engineering Beijing University China Abstract In order to achieve optimized management,

CHAPTER 4 LINK ADAPTATION USING NEURAL NETWORK 4.1 INTRODUCTION For accurate system level simulator performance, link level modeling and prediction [103] must be reliable and fast so as to improve the

### Image Recognition for PCB Soldering Platform Controlled by Embedded Microchip Based on Hopfield Neural Network

436 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER Image Recognition for PCB Soldering Platform Controlled by Embedded Microchip Based on Hopfield Neural Network Chung-Chi Wu Department of Electrical Engineering,

### Segmentation of Fingerprint Images

Segmentation of Fingerprint Images Asker M. Bazen and Sabih H. Gerez University of Twente, Department of Electrical Engineering, Laboratory of Signals and Systems, P.O. box 217-75 AE Enschede - The Netherlands

### TCM-coded OFDM assisted by ANN in Wireless Channels

1 Aradhana Misra & 2 Kandarpa Kumar Sarma Dept. of Electronics and Communication Technology Gauhati University Guwahati-781014. Assam, India Email: aradhana66@yahoo.co.in, kandarpaks@gmail.com Abstract

### A comparative study of different feature sets for recognition of handwritten Arabic numerals using a Multi Layer Perceptron

Proc. National Conference on Recent Trends in Intelligent Computing (2006) 86-92 A comparative study of different feature sets for recognition of handwritten Arabic numerals using a Multi Layer Perceptron

### Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert Transform Approach

SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) volume 1 Issue 10 Dec 014 Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert

### Neural Model for Path Loss Prediction in Suburban Environment

Neural Model for Path Loss Prediction in Suburban Environment Ileana Popescu, Ioan Nafornita, Philip Constantinou 3, Athanasios Kanatas 3, Netarios Moraitis 3 University of Oradea, 5 Armatei Romane Str.,

### Artificial Neural Network Based Fault Locator for Single Line to Ground Fault in Double Circuit Transmission Line

DOI: 10.7763/IPEDR. 2014. V75. 11 Artificial Neural Network Based Fault Locator for Single Line to Ground Fault in Double Circuit Transmission Line Aravinda Surya. V 1, Ebha Koley 2 +, AnamikaYadav 3 and

### A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHINE

A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHINE CONDITION CLASSIFICATION A. C. McCormick and A. K. Nandi Abstract Statistical estimates of vibration signals

### Application Research on BP Neural Network PID Control of the Belt Conveyor

Application Research on BP Neural Network PID Control of the Belt Conveyor Pingyuan Xi 1, Yandong Song 2 1 School of Mechanical Engineering Huaihai Institute of Technology Lianyungang 222005, China 2 School

### A Neural Network Approach for the calculation of Resonant frequency of a circular microstrip antenna

A Neural Network Approach for the calculation of Resonant frequency of a circular microstrip antenna K. Kumar, Senior Lecturer, Dept. of ECE, Pondicherry Engineering College, Pondicherry e-mail: kumarpec95@yahoo.co.in

### Analog Implementation of Neo-Fuzzy Neuron and Its On-board Learning

Analog Implementation of Neo-Fuzzy Neuron and Its On-board Learning TSUTOMU MIKI and TAKESHI YAMAKAWA Department of Control Engineering and Science Kyushu Institute of Technology 68-4 Kawazu, Iizuka, Fukuoka

### NNC for Power Electronics Converter Circuits: Design & Simulation

NNC for Power Electronics Converter Circuits: Design & Simulation 1 Ms. Kashmira J. Rathi, 2 Dr. M. S. Ali Abstract: AI-based control techniques have been very popular since the beginning of the 90s. Usually,

### Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016

Artificial Neural Networks Artificial Intelligence Santa Clara, 2016 Simulate the functioning of the brain Can simulate actual neurons: Computational neuroscience Can introduce simplified neurons: Neural

### Shunt active filter algorithms for a three phase system fed to adjustable speed drive

Shunt active filter algorithms for a three phase system fed to adjustable speed drive Sujatha.CH(Assoc.prof) Department of Electrical and Electronic Engineering, Gudlavalleru Engineering College, Gudlavalleru,

### Introduction to Machine Learning

Introduction to Machine Learning Deep Learning Barnabás Póczos Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey Hinton Yann LeCun 2

### PID Controller Design Based on Radial Basis Function Neural Networks for the Steam Generator Level Control

BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6 No 5 Special Issue on Application of Advanced Computing and Simulation in Information Systems Sofia 06 Print ISSN: 3-970;

### Indirect Vector Control of Induction Motor Using Pi Speed Controller and Neural Networks

Vol.3, Issue.4, Jul - Aug. 2013 pp-1980-1987 ISSN: 2249-6645 Indirect Vector Control of Induction Motor Using Pi Speed Controller and Neural Networks C. Mohan Krishna M. Tech 1, G. Meerimatha M.Tech 2,

### Design Neural Network Controller for Mechatronic System

Design Neural Network Controller for Mechatronic System Ismail Algelli Sassi Ehtiwesh, and Mohamed Ali Elhaj Abstract The main goal of the study is to analyze all relevant properties of the electro hydraulic

### Application of Multi Layer Perceptron (MLP) for Shower Size Prediction

Chapter 3 Application of Multi Layer Perceptron (MLP) for Shower Size Prediction 3.1 Basic considerations of the ANN Artificial Neural Network (ANN)s are non- parametric prediction tools that can be used

### MATLAB/GUI Simulation Tool for Power System Fault Analysis with Neural Network Fault Classifier

MATLAB/GUI Simulation Tool for Power System Fault Analysis with Neural Network Fault Classifier Ph Chitaranjan Sharma, Ishaan Pandiya, Dipak Swargari, Kusum Dangi * Department of Electrical Engineering,

### Modeling and Simulation of 6-Pulse and 12-Pulse Rectifiers under Balanced and Unbalanced Conditions with Impacts to Input Current Harmonics

Second Asia International Conference on Modelling & Simulation Modeling and Simulation of 6-Pulse and 12-Pulse Rectifiers under Balanced and Unbalanced Conditions with Impacts to Input Current Harmonics

### Surveillance and Calibration Verification Using Autoassociative Neural Networks

Surveillance and Calibration Verification Using Autoassociative Neural Networks Darryl J. Wrest, J. Wesley Hines, and Robert E. Uhrig* Department of Nuclear Engineering, University of Tennessee, Knoxville,

### A Quantitative Comparison of Different MLP Activation Functions in Classification

A Quantitative Comparison of Different MLP Activation Functions in Classification Emad A. M. Andrews Shenouda Department of Computer Science, University of Toronto, Toronto, ON, Canada emad@cs.toronto.edu

### NEURAL NETWORK BASED MAXIMUM POWER POINT TRACKING

NEURAL NETWORK BASED MAXIMUM POWER POINT TRACKING 3.1 Introduction This chapter introduces concept of neural networks, it also deals with a novel approach to track the maximum power continuously from PV

### Improved Detection by Peak Shape Recognition Using Artificial Neural Networks

Improved Detection by Peak Shape Recognition Using Artificial Neural Networks Stefan Wunsch, Johannes Fink, Friedrich K. Jondral Communications Engineering Lab, Karlsruhe Institute of Technology Stefan.Wunsch@student.kit.edu,

### VLSI IMPLEMENTATION OF BACK PROPAGATED NEURAL NETWORK FOR SIGNAL PROCESSING

VLSI IMPLEMENTATION OF BACK PROPAGATED NEURAL NETWORK FOR SIGNAL PROCESSING DR. UJWALA A. KSHIRSAGAR (BELORKAR), MR. ASHISH E. BHANDE H.V.P.M. s College of Engineering & Technology, Amravati- 444 605 E-mail:ujwalabelorkar@rediffmail.com,

### COMBINATION OF DISCRETE WAVELET TRANSFORM AND PROBABILISTIC NEURAL NETWORK ALGORITHM FOR DETECTING FAULT LOCATION ON TRANSMISSION SYSTEM

International Journal of Innovative Computing, Information and Control ICIC International c 2011 ISSN 1349-4198 Volume 7, Number 4, April 2011 pp. 1861 1873 COMBINATION OF DISCRETE WAVELET TRANSFORM AND

### Artificial Neural Network Engine: Parallel and Parameterized Architecture Implemented in FPGA

Artificial Neural Network Engine: Parallel and Parameterized Architecture Implemented in FPGA Milene Barbosa Carvalho 1, Alexandre Marques Amaral 1, Luiz Eduardo da Silva Ramos 1,2, Carlos Augusto Paiva

### SERIES (OPEN CONDUCTOR) FAULT DISTANCE LOCATION IN THREE PHASE TRANSMISSION LINE USING ARTIFICIAL NEURAL NETWORK

1067 SERIES (OPEN CONDUCTOR) FAULT DISTANCE LOCATION IN THREE PHASE TRANSMISSION LINE USING ARTIFICIAL NEURAL NETWORK A Nareshkumar 1 1 Assistant professor, Department of Electrical Engineering Institute

### A fast and accurate distance relaying scheme using an efficient radial basis function neural network

Electric Power Systems Research 60 (2001) 1 8 www.elsevier.com/locate/epsr A fast and accurate distance relaying scheme using an efficient radial basis function neural network A.K. Pradhan *, P.K. Dash,

### VLSI Implementationn of Back Propagated Neural Network Signal Processing

IETE 46th Mid Term Symposium Impact of Technology on Skill Development MTS- 2015 VLSI Implementationn of Back Propagated Neural Network for Signal Processing Abstract - Mainly due to the rapid advances

### Transient stability Assessment using Artificial Neural Network Considering Fault Location

Vol.6 No., 200 مجلد 6, العدد, 200 Proc. st International Conf. Energy, Power and Control Basrah University, Basrah, Iraq 0 Nov. to 2 Dec. 200 Transient stability Assessment using Artificial Neural Network

### Enhanced MLP Input-Output Mapping for Degraded Pattern Recognition

Enhanced MLP Input-Output Mapping for Degraded Pattern Recognition Shigueo Nomura and José Ricardo Gonçalves Manzan Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, MG,

### 1 Introduction. w k x k (1.1)

Neural Smithing 1 Introduction Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The major

### Performance Evaluation of Nonlinear Equalizer based on Multilayer Perceptron for OFDM Power- Line Communication

International Journal of Electrical Engineering. ISSN 974-2158 Volume 4, Number 8 (211), pp. 929-938 International Research Publication House http://www.irphouse.com Performance Evaluation of Nonlinear

Neural Network based Digital Receiver for Radio Communications G. LIODAKIS, D. ARVANITIS, and I.O. VARDIAMBASIS Microwave Communications & Electromagnetic Applications Laboratory, Department of Electronics,

### Initialisation improvement in engineering feedforward ANN models.

Initialisation improvement in engineering feedforward ANN models. A. Krimpenis and G.-C. Vosniakos National Technical University of Athens, School of Mechanical Engineering, Manufacturing Technology Division,

### A Radial Basis Function Network for Adaptive Channel Equalization in Coherent Optical OFDM Systems

121 A Radial Basis Function Network for Adaptive Channel Equalization in Coherent Optical OFDM Systems Gurpreet Kaur 1, Gurmeet Kaur 2 1 Department of Electronics and Communication Engineering, Punjabi

### Hardware Implementation of an ADC Error Compensation Using Neural Networks. Hervé Chanal 1

Hardware Implementation of an ADC Error Compensation Using Neural Networks Hervé Chanal 1 1 Clermont Université, Université Blaise Pascal,CNRS/IN2P3, Laboratoire de Physique Corpusculaire, Pôle Micrhau,

### ARTIFICIAL NEURAL NETWORK BASED CLASSIFICATION FOR MONOBLOCK CENTRIFUGAL PUMP USING WAVELET ANALYSIS

International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print) ISSN 0976 6359(Online) Volume 1 Number 1, July - Aug (2010), pp. 28-37 IAEME, http://www.iaeme.com/ijmet.html

### Determination of Fault Location and Type in Distribution Systems using Clark Transformation and Neural Network

International Journal of Applied Power Engineering (IJAPE) Vol., No., August, pp. 75~86 ISSN: 5879 75 Determination of Fault Location and Type in Distribution Systems using Clark Transformation and Neural

### FAULT DIAGNOSIS AND PERFORMANCE ASSESSMENT FOR A ROTARY ACTUATOR BASED ON NEURAL NETWORK OBSERVER

7 Journal of Marine Science and Technology, Vol., No., pp. 7-78 () DOI:.9/JMST-3 FAULT DIAGNOSIS AND PERFORMANCE ASSESSMENT FOR A ROTARY ACTUATOR BASED ON NEURAL NETWORK OBSERVER Jian Ma,, Xin Li,, Chen

### Transactions on Information and Communications Technologies vol 1, 1993 WIT Press, ISSN

Combining multi-layer perceptrons with heuristics for reliable control chart pattern classification D.T. Pham & E. Oztemel Intelligent Systems Research Laboratory, School of Electrical, Electronic and

### Color Constancy Using Standard Deviation of Color Channels

2010 International Conference on Pattern Recognition Color Constancy Using Standard Deviation of Color Channels Anustup Choudhury and Gérard Medioni Department of Computer Science University of Southern

### AUTOMATIC MODULATION RECOGNITION OF COMMUNICATION SIGNALS

エシアンゾロナルオフネチュラルアンドアプライヅサエニセズ ISSN: 2186-8476, ISSN: 2186-8468 Print AUTOMATIC MODULATION RECOGNITION OF COMMUNICATION SIGNALS Muazzam Ali Khan 1, Maqsood Muhammad Khan 2, Muhammad Saad Khan 3 1 Blekinge

### Adaptive Neural Network-based Synchronization Control for Dual-drive Servo System

Adaptive Neural Network-based Synchronization Control for Dual-drive Servo System Suprapto 1 1 Graduate School of Engineering Science & Technology, Doulio, Yunlin, Taiwan, R.O.C. e-mail: d10210035@yuntech.edu.tw

### Chapter 2 Channel Equalization

Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

### Identification of Object Oriented Reusable Components Using Multilayer Perceptron Based Approach

Identification of Object Oriented Reusable Components Using Multilayer Perceptron Based Approach Shamsher Singh, Pushpinder Singh, and Neeraj Mohan Abstract Software reuse, is the use of existing software

### Computational Intelligence Introduction

Computational Intelligence Introduction Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Neural Networks 1/21 Fuzzy Systems What are

### Efficient Learning in Cellular Simultaneous Recurrent Neural Networks - The Case of Maze Navigation Problem

Efficient Learning in Cellular Simultaneous Recurrent Neural Networks - The Case of Maze Navigation Problem Roman Ilin Department of Mathematical Sciences The University of Memphis Memphis, TN 38117 E-mail:

### Control of Induction Motor Drive by Artificial Neural Network

Control of Induction Motor Drive y Artificial Neural Network L.FARAH, N.FARAH, M.BEDDA Centre Universitaire Souk Ahras BP 553 Souk Ahras ALGERIA Astract: Recently there has een increasing interest in the

### A novel Method for Radar Pulse Tracking using Neural Networks

A novel Method for Radar Pulse Tracking using Neural Networks WOOK HYEON SHIN, WON DON LEE Department of Computer Science Chungnam National University Yusung-ku, Taejon, 305-764 KOREA Abstract: - Within

### Course Objectives. This course gives a basic neural network architectures and learning rules.

Introduction Course Objectives This course gives a basic neural network architectures and learning rules. Emphasis is placed on the mathematical analysis of these networks, on methods of training them

### Statistical Tests: More Complicated Discriminants

03/07/07 PHY310: Statistical Data Analysis 1 PHY310: Lecture 14 Statistical Tests: More Complicated Discriminants Road Map When the likelihood discriminant will fail The Multi Layer Perceptron discriminant

### Classification of Analog Modulated Communication Signals using Clustering Techniques: A Comparative Study

F. Ü. Fen ve Mühendislik Bilimleri Dergisi, 7 (), 47-56, 005 Classification of Analog Modulated Communication Signals using Clustering Techniques: A Comparative Study Hanifi GULDEMIR Abdulkadir SENGUR

### MLP for Adaptive Postprocessing Block-Coded Images

1450 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 MLP for Adaptive Postprocessing Block-Coded Images Guoping Qiu, Member, IEEE Abstract A new technique

### Replacing Fuzzy Systems with Neural Networks

Replacing Fuzzy Systems with Neural Networks Tiantian Xie, Hao Yu, and Bogdan Wilamowski Auburn University, Alabama, USA, tzx@auburn.edu, hzy@auburn.edu, wilam@ieee.org Abstract. In this paper, a neural

### Multitone Curve-Fitting Algorithms for Communication Application ADC Testing

Electronics and Communications in Japan, Part 2, Vol. 86, No. 8, 2003 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J86-C, No. 2, February 2003, pp. 186 196 Multitone Curve-Fitting Algorithms