LITES and GROUP-C on the ISS

Size: px
Start display at page:

Download "LITES and GROUP-C on the ISS"

Transcription

1 LITES and GROUP-C on the ISS Collaboration Opportunities with ICON and GOLD See also poster by Budzien et al. Andrew Stephan, Scott Budzien (NRL) Susanna Finn, Tim Cook, Supriya Chakrabarti (UMass Lowell) Steve Powell, Dave Hysell (Cornell) Rebecca Bishop (The Aerospace Corp) ICON-GOLD-GEO September 2016

2 Overview LITES + GROUP-C form a Combined Ultraviolet and Radio Ionospheric Observation suite (CURIO?) that will operate from the International Space Station (ISS) The two experiments together comprise a suite of sensors uniquely suited to perform global ionospheric tomography at 20 km vertical and horizontal resolution in the orbital plane of the ISS. Launch on SpaceX CRS-10 ISS resupply mission; launch date is pending but likely in early 2017 Two year mission (minimum) Mission Objectives (1) LITES will demonstrate an ultraviolet single-element imaging spectrograph for remotely sensing the composition and density of the thermosphere and ionosphere day and night using spectral limb imaging. (2) GROUP-C will demonstrate a second-generation UV nightside ionosphere photometer to characterize horizontal ionosphere gradients, along with a 1U-size software-based GPS occultation receiver for measuring slant TEC to derive vertical electron density profiles day and night. LITES and GROUP-C are DoD Space Test Program remote sensing technology demonstrations. Geospace scientific objectives are not part of the current mission. LITES & GROUP-C 2

3 Complementary Science Capabilities GEO GOLD 800 km COSMIC 600 km Application Measurement Sensor ICON Ionosphere (night) 91.1 nm, nm LITES, GROUP-C Ionosphere (day) 83.4 nm and 61.7 nm LITES TEC (day + night) GPS RO GROUP-C 400 km LITES & GROUP-C Thermosphere O, N 2 (day) nm and N 2 LBH nm LITES Scintillation GPS GROUP-C 3 LITES & GROUP-C 3

4 Sensor Descriptions (GROUP-C) Tiny Ionospheric Photometer (TIP) Measurement: Horizontal ion gradients and plasma bubbles Technique: O nm ionospheric nightglow, viewing nadir Advantages: High-sensitivity (1200 C s -1 R -1 ), enabled by heated 100 C SrF2 window that eliminates an unwanted oxygen emission line at nm and passes nm nearly unattenuated. Updated version of the TIP sensors [Kalmanson et al., 2004] that flew on the COSMIC constellation in 2006 [Budzien et al., 2009]. (GROUP-C) Fast Orbital TEC, Observables, and Navigation (FOTON) Measurement: Ionospheric TEC (line of sight), altitude profiles, and scintillation events Technique: Radio occultation using carrier phase difference and amplitude of GPS L1 (1575 MHz) and L2C (1227 MHz) at 100 Hz as satellites are tracked past the horizon as the ISS orbits. Advantages: The ground plane array of three patch antennas allow assessment of any multipath noise from structures in the ISS environment. (LITES) Limb-imaging Ionospheric and Thermospheric EUV Spectrograph Measurement: Vertical profiles of daytime ions and neutrals, and nighttime line-of-sight TEC for tomographic reconstruction of the 2D ionosphere Technique: One-dimensional, vertical (altitude) profiles of EUV/FUV airglow in a nm passband from Earth s limb, in the aft direction. Ionospheric emission features: O and 83.4 nm (day) and O 91.1 and nm (night). Advantages: Toroidal grating images the airglow scene vertically (10 field of view) and the mm wide slit in the horizontal dimension [Cotton et al.,1994; Cotton et al., 2000] with sufficient throughput for high sensitivity (~15 C s -1 R -1 ), < 1.7 nm spectral resolution, and 0.25 imaging resolution LITES & GROUP-C 4

5 STP-H5 Location on ISS Wake view Ram STP-H5 ELC-1 LITES & GROUP-C 5

6 Imaging Observations in ISS Orbit Plane 350 km 0.25 LITES Ground-based image from Martinis, et al. [2009] km (Collapsed scene) Spectrum GROUP-C LITES & GROUP-C 6

7 Operating Zones and Restrictions GROUP-C/FOTON has no restrictions LITES always on GROUP-C/TIP: Night-only GROUP-C/TIP can only operate at night LITES cannot operate when the Sun will enter the field of view (daytime, small ISS solar β-angle) LITES and GROUP-C/TIP: Night-only LITES and TIP have Sun-sensors and HV trips to provide backup instrument safety Timed On/Off schedules are uploaded to autonomously operate LITES and TIP as necessary ISS real-time commanding and telemetry offers option for man-in-the loop capability for specific campaigns near restricted zones LITES & GROUP-C 7

8 Ground-Support Network (UMass-Lowell) HiT&MIS High Throughput and Multi-slit Imaging Spectrograph Two built at UMass Lowell Portable (once currently deployed at Millstone Hill) Round-the-clock airglow observations simultaneously in six spectral lines Field of view: 0.1 x 50 Spectral resolution: 0.01 nm Data will be validated using the vast network of digisondes operated by UMass Lowell as part of the Global Ionospheric Radio Observatory (GIRO) ( Phenomenon Feature Production mechanism Red Airglow/Aurora OI nm Night: O e O + O ( 1 D) Day: e * + O e * + O( 1 D) ; O 2 + hν O( 3 P) + O( 1 D) Green Airglow/Aurora OI nm Night: O e O + O ( 1 S) Day: e * + O e * + O( 1 S) ; O 2 + hν O( 3 P) + O( 1 S) Airglow + Aurora OI nm O + +e O( 5 P) analog to FUV nm Blue Aurora N nm (Aurora): N 2 + e * N + 2 (B 2 Σ + u) Hydrogen-alpha Hydrogen-beta HI nm HI nm (Energetic protons, w/ blue-shifted emissions LITES & GROUP-C 8

9 Potential Contributions of LITES & GROUP-C LITES and GROUP-C provide: (1) Ionospheric density specification and identification of gradients and structures (2) Thermospheric densities and exospheric temperatures (3) Overlapping and expanded set of emission feature measurements for on-orbit photochemistry experiments, tests, and evaluations Enhanced global coverage, especially middle latitudes between ±50 latitude ICON, and first COSMIC-2 fleet have low-inclination orbits Observation across north and south equatorial arcs each orbit ISS Precession across all local times Unique ionosphere-thermosphere measurements will provide information on middle and high latitude effects that impact the low latitude region LITES & GROUP-C 9

10 Support for ICON EUV Day Ionosphere LITES provides direct measurements of the 83.4 and 61.7 nm emissions that are also used by ICON to infer the daytime ionosphere. LITES measurements will provide: hmf2 < ~350 km Complementary ionospheric measurements 834 A 617 A O + ions & Electrons ( km) Atomic O ( km) LITES & GROUP-C 10

11 Support for ICON EUV Day Ionosphere LITES provides direct measurements of the 83.4 and 61.7 nm emissions that are also used by ICON to infer the daytime ionosphere. LITES measurements will provide: hmf2 < ~350 km Complementary ionospheric measurements 834 A 617 A O + ions & Electrons ( km) hmf2 > ~ 350 km direct measure of the photoionization region with the brighter 83.4 nm emission 83.4 nm / 61.7 nm comparison to validate forward model Atomic O ( km) Ground-based truth data can enable experiments to confirm which regime we are in LITES & GROUP-C 11

12 Support for FUV (Day and Night) LITES and GROUP-C/TIP measure FUV nm that is measured day and night by both GOLD and ICON Dymond et al., 2011 Co-located nadir and limb-viewing measurements enable enhanced tomographic inversions at night TIP high sensitivity enables clear measure of plasma gradients (e.g. MSTID shown in top right) Clearer imaging of plasma structures in lower ionosphere (near or below ion & airglow peak) Directly match GROUP-C GPS scintillation observations to plasma structures LITES & GROUP-C 12

13 Support for GOLD Thermospheric Temperature Temperatures at ~160 km are retrieved on the dayside disk by fitting the observed rotational structure of the N 2 LBH bands, Estimation must model variation along slant line-of-sight: N 2 density Temperature O 2 (photoabsorption) T LITES can provide limb-viewing airglow profiles during under-flights of the GOLD hemisphere to inform and validate the estimation of the production and absorption, and the scaleheight temperatures VERs [N 2 ] and [O 2 ] LITES & GROUP-C 13

14 LITES & GROUP-C Summary Mission Objective (1) LITES will demonstrate an ultraviolet single-element imaging spectrograph for remotely sensing the composition and density of the thermosphere and ionosphere day and night using spectral limb imaging. (2) GROUP-C will demonstrate a 2 nd -generation UV nightside ionosphere photometer to characterize horizontal ionosphere gradients, along with a 1U-size software-based GPS occultation receiver for measuring slant TEC to derive vertical electron density profiles day and night. Measurement Approach Location: International Space Station Launch: SpaceX CRS10 Launch Date: pending (sched. 1 Nov 2016) Mission duration: Two year minimum GEO 800 km 600 km 400 km ICON GOLD COSMIC LITES & GROUP-C Application Measurement Sensor Ionosphere (night) 91.1 nm, nm LITES, GROUP-C Ionosphere (day) 83.4 nm and 61.7 nm LITES TEC (day + night) GPS RO GROUP-C Thermosphere O, N 2 (day) nm N 2 LBH nm LITES Scintillation GPS GROUP-C Value and Contributions to ICON/GOLD/COSMIC Unique persistent location in low-altitude ISS orbit, with precession across all local times Daytime ionosphere specification and evaluation of photoionization emission source Night ionosphere tomography at 20 km vertical and horizontal resolution, and high-sensitivity measurement of low-altitude structures and plasma gradients Daytime measurement of thermospheric densities and temperatures Measurement up to middle latitudes across both hemispheres Points of Contact Dr. Andrew Stephan / / lites@nrl.navy.mil Dr. Scott Budzien / / group-c@nrl.navy.mil Space Science Division, U.S. Naval Research LITES & GROUP-C Laboratory 14 Washington, DC 20375

Observations of Ionosphere/Troposphere Coupling as Observed by COSMIC

Observations of Ionosphere/Troposphere Coupling as Observed by COSMIC Observations of Ionosphere/Troposphere Coupling as Observed by COSMIC K. F. Dymond, C. Coker, D. E. Siskind, A. C. Nicholas, S. A. Budzien, S. E. McDonald, and C. E. Dymond * Space Science Division, Naval

More information

CDAAC Ionospheric Products

CDAAC Ionospheric Products CDAAC Ionospheric Products Stig Syndergaard COSMIC Project Office COSMIC retreat, Oct 13 14, 5 COSMIC Ionospheric Measurements GPS receiver: { Total Electron Content (TEC) to all GPS satellites in view

More information

IT-SPINS Ionospheric Imaging Mission

IT-SPINS Ionospheric Imaging Mission IT-SPINS Ionospheric Imaging Mission Rick Doe, SRI Gary Bust, Romina Nikoukar, APL Dave Klumpar, Kevin Zack, Matt Handley, MSU 14 th Annual CubeSat Dveloper s Workshop 26 April 2017 IT-SPINS Ionosphere-Thermosphere

More information

The Volumetric Imaging System for the Ionosphere (VISION)

The Volumetric Imaging System for the Ionosphere (VISION) The Volumetric Imaging System for the Ionosphere (VISION) S. A. Budzien 1, K. F. Dymond 1, D. Chua 1, C. Coker 1, A. C. Nicholas 1, and S. E. Thonnard 2 1 Space Science Division, Naval Research Laboratory,

More information

Outline. GPS RO Overview. COSMIC Overview. COSMIC-2 Overview. Summary 9/29/16

Outline. GPS RO Overview. COSMIC Overview. COSMIC-2 Overview. Summary 9/29/16 Bill Schreiner and UCAR/COSMIC Team UCAR COSMIC Program Observation and Analysis Opportunities Collaborating with the ICON and GOLD Missions Sept 27, 216 GPS RO Overview Outline COSMIC Overview COSMIC-2

More information

RAIDS Update. Introduction. Current Status. Jun 3, The Remote Atmospheric and Ionospheric Detection System aboard the ISS

RAIDS Update. Introduction. Current Status. Jun 3, The Remote Atmospheric and Ionospheric Detection System aboard the ISS RAIDS Update The Remote Atmospheric and Ionospheric Detection System aboard the ISS Jun 3, 2009 Figure 1: The RAIDS experiment after refurbishment was completed in July, including both the scan head and

More information

ESS 7 Lectures 15 and 16 November 3 and 5, The Atmosphere and Ionosphere

ESS 7 Lectures 15 and 16 November 3 and 5, The Atmosphere and Ionosphere ESS 7 Lectures 15 and 16 November 3 and 5, 2008 The Atmosphere and Ionosphere The Earth s Atmosphere The Earth s upper atmosphere is important for groundbased and satellite radio communication and navigation.

More information

First Results From the GPS Compact Total Electron Content Sensor (CTECS) on the PSSCT-2 Nanosat

First Results From the GPS Compact Total Electron Content Sensor (CTECS) on the PSSCT-2 Nanosat First Results From the GPS Compact Total Electron Content Sensor (CTECS) on the PSSCT-2 Nanosat Rebecca Bishop 1, David Hinkley 1, Daniel Stoffel 1, David Ping 1, Paul Straus 1, Timothy Burbaker 2 1 The

More information

Study of small scale plasma irregularities. Đorđe Stevanović

Study of small scale plasma irregularities. Đorđe Stevanović Study of small scale plasma irregularities in the ionosphere Đorđe Stevanović Overview 1. Global Navigation Satellite Systems 2. Space weather 3. Ionosphere and its effects 4. Case study a. Instruments

More information

The Role of Ground-Based Observations in M-I I Coupling Research. John Foster MIT Haystack Observatory

The Role of Ground-Based Observations in M-I I Coupling Research. John Foster MIT Haystack Observatory The Role of Ground-Based Observations in M-I I Coupling Research John Foster MIT Haystack Observatory CEDAR/GEM Student Workshop Outline Some Definitions: Magnetosphere, etc. Space Weather Ionospheric

More information

Daytime Ionosphere Retrieval Algorithm for the Ionospheric Connection Explorer (ICON)

Daytime Ionosphere Retrieval Algorithm for the Ionospheric Connection Explorer (ICON) Space Science Reviews DOI 10.1007/s11214-017-0385-1 Preprint: May not contain full content of published article Outside of USA Copyright Springer Science+Business Media B.V. 2017 Daytime Ionosphere Retrieval

More information

Data assimilation of FORMOSAT-3/COSMIC using NCAR Thermosphere Ionosphere Electrodynamic General Circulation Model (TIE-GCM)

Data assimilation of FORMOSAT-3/COSMIC using NCAR Thermosphere Ionosphere Electrodynamic General Circulation Model (TIE-GCM) Session 2B-03 5 th FORMOSAT-3 / COSMIC Data Users Workshop & ICGPSRO 2011 Data assimilation of FORMOSAT-3/COSMIC using NCAR Thermosphere Ionosphere Electrodynamic General Circulation Model (TIE-GCM) I

More information

Storms in Earth s ionosphere

Storms in Earth s ionosphere Storms in Earth s ionosphere Archana Bhattacharyya Indian Institute of Geomagnetism IISF 2017, WSE Conclave; Anna University, Chennai Earth s Ionosphere Ionosphere is the region of the atmosphere in which

More information

The Earth s Atmosphere

The Earth s Atmosphere ESS 7 Lectures 15 and 16 May 5 and 7, 2010 The Atmosphere and Ionosphere The Earth s Atmosphere The Earth s upper atmosphere is important for groundbased and satellite radio communication and navigation.

More information

The Ionosphere and its Impact on Communications and Navigation. Tim Fuller-Rowell NOAA Space Environment Center and CIRES, University of Colorado

The Ionosphere and its Impact on Communications and Navigation. Tim Fuller-Rowell NOAA Space Environment Center and CIRES, University of Colorado The Ionosphere and its Impact on Communications and Navigation Tim Fuller-Rowell NOAA Space Environment Center and CIRES, University of Colorado Customers for Ionospheric Information High Frequency (HF)

More information

OPAL Optical Profiling of the Atmospheric Limb

OPAL Optical Profiling of the Atmospheric Limb OPAL Optical Profiling of the Atmospheric Limb Alan Marchant Chad Fish Erik Stromberg Charles Swenson Jim Peterson OPAL STEADE Mission Storm Time Energy & Dynamics Explorers NASA Mission of Opportunity

More information

Assimilation Ionosphere Model

Assimilation Ionosphere Model Assimilation Ionosphere Model Robert W. Schunk Space Environment Corporation 399 North Main, Suite 325 Logan, UT 84321 phone: (435) 752-6567 fax: (435) 752-6687 email: schunk@spacenv.com Award #: N00014-98-C-0085

More information

Scanning Imaging Photometer System (SIPS) Ionospheric Space Weather Sensor

Scanning Imaging Photometer System (SIPS) Ionospheric Space Weather Sensor Scanning Imaging Photometer System (SIPS) Ionospheric Space Weather Sensor Chad Fish, Geoff Crowley, Irfan Azeem, Marcin Pilinski ASTRA LLC., Boulder, CO John Noto, Mike Migliosi Scientific Solutions,

More information

Preparing for COSMIC: Inversion and Analysis of Ionospheric Data Products

Preparing for COSMIC: Inversion and Analysis of Ionospheric Data Products Preparing for COSMIC: Inversion and Analysis of Ionospheric Data Products S. Syndergaard 1, W. S. Schreiner 1, C. Rocken 1, D. C. Hunt 1, and K. F. Dymond 2 1 COSMIC Project Office, University Corporation

More information

PoS(2nd MCCT -SKADS)003

PoS(2nd MCCT -SKADS)003 The Earth's ionosphere: structure and composition. Dispersive effects, absorption and emission in EM wave propagation 1 Observatorio Astronómico Nacional Calle Alfonso XII, 3; E-28014 Madrid, Spain E-mail:

More information

The Ionosphere and Thermosphere: a Geospace Perspective

The Ionosphere and Thermosphere: a Geospace Perspective The Ionosphere and Thermosphere: a Geospace Perspective John Foster, MIT Haystack Observatory CEDAR Student Workshop June 24, 2018 North America Introduction My Geospace Background (Who is the Lecturer?

More information

An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R

An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R Lidia Cucurull (1), Dave Ector (2), and Estel Cardellach (3) (1) NOAA/NWS/NCEP/EMC (2) NOAA/NESDIS/OSD (3) IEEC/ICE-CSIC

More information

COSMIC / FormoSat 3 Overview, Status, First results, Data distribution

COSMIC / FormoSat 3 Overview, Status, First results, Data distribution COSMIC / FormoSat 3 Overview, Status, First results, Data distribution COSMIC Introduction / Status Early results from COSMIC Neutral Atmosphere profiles Refractivity Temperature, Water vapor Planetary

More information

Activities of the JPL Ionosphere Group

Activities of the JPL Ionosphere Group Activities of the JPL Ionosphere Group On-going GIM wor Submit rapid and final GIM TEC maps for IGS combined ionosphere products FAA WAAS & SBAS analysis Error bounds for Brazilian sector, increasing availability

More information

The Ionospheric Mapping and Geocoronal Experiment (IMAGER): a New System for Monitoring Ionospheric Space Weather

The Ionospheric Mapping and Geocoronal Experiment (IMAGER): a New System for Monitoring Ionospheric Space Weather The Ionospheric Mapping and Geocoronal Experiment (IMAGER): a New System for Monitoring Ionospheric Space Weather K. S. Wood E. O. Hulburt Center for Space Research, Naval Research Laboratory ABSTRACT

More information

Terrestrial Ionospheres

Terrestrial Ionospheres Terrestrial Ionospheres I" Stan Solomon" High Altitude Observatory National Center for Atmospheric Research Boulder, Colorado stans@ucar.edu Heliophysics Summer School National Center for Atmospheric Research

More information

COMMUNICATION/NAVIGATION OUTAGE FORECASTING SYSTEM (CNOFS)

COMMUNICATION/NAVIGATION OUTAGE FORECASTING SYSTEM (CNOFS) AFRL-VS-PS- TR-2005-1125 AFRL-VS-PS- TR-2005-1125 COMMUNICATION/NAVIGATION OUTAGE FORECASTING SYSTEM (CNOFS) Marko Stoyanof Laila Jeong 27 September 2005 Interim Report APPROVED FOR PUBLIC RELEASE; DISTRIBUTION

More information

The First Results from the Scintillation and Ionospheric TEC Receiver in Space (CITRIS) Instrument on STPSat1

The First Results from the Scintillation and Ionospheric TEC Receiver in Space (CITRIS) Instrument on STPSat1 The First Results from the Scintillation and Ionospheric TEC Receiver in Space (CITRIS) Instrument on STPSat1 Carl L. Siefring and Paul A. Bernhardt Plasma Physics Division, Naval Research Laboratory Washington,

More information

New Synergistic Opportunities for Magnetosphere-Ionosphere-Thermosphere Coupling Investigations Using Swarm and CASSIOPE e-pop

New Synergistic Opportunities for Magnetosphere-Ionosphere-Thermosphere Coupling Investigations Using Swarm and CASSIOPE e-pop New Synergistic Opportunities for Magnetosphere-Ionosphere-Thermosphere Coupling Investigations Using Swarm and CASSIOPE e-pop Andrew W. Yau 1, R. Floberghagen 2, Leroy L. Cogger 1, Eelco N. Doornbos 3,

More information

COSMIC GPS Ionospheric Sensing and Space Weather

COSMIC GPS Ionospheric Sensing and Space Weather COSMIC GPS Ionospheric Sensing and Space Weather G. A. Hajj 1,2, L. C. Lee 3, X. Pi 1,2, L. J. Romans 1,2, W. S. Schreiner 4, P. R. Straus 5, C. Wang 2 1- Jet Propulsion Laboratory, California Institute

More information

Monitoring the Ionosphere and Neutral Atmosphere with GPS

Monitoring the Ionosphere and Neutral Atmosphere with GPS Monitoring the Ionosphere and Neutral Atmosphere with GPS Richard B. Langley Geodetic Research Laboratory Department of Geodesy and Geomatics Engineering University of New Brunswick Fredericton, N.B. Division

More information

and Atmosphere Model:

and Atmosphere Model: 1st VarSITI General Symposium, Albena, Bulgaria, 2016 Canadian Ionosphere and Atmosphere Model: model status and applications Victor I. Fomichev 1, O. V. Martynenko 1, G. G. Shepherd 1, W. E. Ward 2, K.

More information

Christian Rocken *, Stig Syndergaard, William S. Schreiner, Douglas C. Hunt University Corporation for Atmospheric Research

Christian Rocken *, Stig Syndergaard, William S. Schreiner, Douglas C. Hunt University Corporation for Atmospheric Research 1.11 COSMIC A SATELLITE CONSTELLATION FOR ATMOSPHERIC SOUNDINGS FROM 800 KM TO EARTH S SURFACE Christian Rocken *, Stig Syndergaard, William S. Schreiner, Douglas C. Hunt University Corporation for Atmospheric

More information

Plasma in the ionosphere Ionization and Recombination

Plasma in the ionosphere Ionization and Recombination Plasma in the ionosphere Ionization and Recombination Jamil Muhammad Supervisor: Professor kjell Rönnmark 1 Contents: 1. Introduction 3 1.1 History.3 1.2 What is the ionosphere?...4 2. Ionization and recombination.5

More information

Plasma effects on transionospheric propagation of radio waves II

Plasma effects on transionospheric propagation of radio waves II Plasma effects on transionospheric propagation of radio waves II R. Leitinger General remarks Reminder on (transionospheric) wave propagation Reminder of propagation effects GPS as a data source Some electron

More information

GAIM: Ionospheric Modeling

GAIM: Ionospheric Modeling GAIM: Ionospheric Modeling J.J.Sojka, R.W. Schunk, L. Scherliess, D.C. Thompson, & L. Zhu Center for Atmospheric & Space Sciences Utah State University Logan, Utah Presented at: SDO EVE 2008 Workshop Virginia

More information

Global Assimilation of Ionospheric Measurements (GAIM)

Global Assimilation of Ionospheric Measurements (GAIM) Global Assimilation of Ionospheric Measurements (GAIM) Robert W. Schunk Center for Atmospheric and Space Sciences Utah State University Logan, Utah 84322-4405 phone: (435) 797-2978 fax: (435) 797-2992

More information

Topside Ionospheric Model Based On the Electron Density Profile Data of Cosmic Mission

Topside Ionospheric Model Based On the Electron Density Profile Data of Cosmic Mission Topside Ionospheric Model Based On the Electron Density Profile Data of Cosmic Mission PING Jingsong, SHI Xian, GUO Peng, YAN Haojian Shanghai Astronomical Observatory, Chinese Academy of Sciences, Nandan

More information

The NSF Cubesat Program

The NSF Cubesat Program The NSF Cubesat Program Therese Moretto Jorgensen Atmospheric and Geospace Science Division The National Science Foundation Cubesat Science advance research in many science areas spur innovation, creativity

More information

Introduction. Global Positioning System. GPS - Intro. Space Segment. GPS - Intro. Space Segment - Contd..

Introduction. Global Positioning System. GPS - Intro. Space Segment. GPS - Intro. Space Segment - Contd.. Introduction Global Positioning System Prof. D. Nagesh Kumar Dept. of Civil Engg., IISc, Bangalore 560 012, India URL: http://www.civil.iisc.ernet.in/~nagesh GPS is funded and controlled by U. S. Department

More information

Assimilation Ionosphere Model

Assimilation Ionosphere Model Assimilation Ionosphere Model Robert W. Schunk Space Environment Corporation 221 North Spring Creek Parkway, Suite A Providence, UT 84332 phone: (435) 752-6567 fax: (435) 752-6687 email: schunk@spacenv.com

More information

Community Perspective: GeoSpace Observations and Analysis

Community Perspective: GeoSpace Observations and Analysis Community Perspective: GeoSpace Observations and Analysis Prof. Jeff Thayer Aerospace Engineering Sciences Department OBSERVATION AND ANALYSIS OPPORTUNITIES COLLABORATING WITH THE ICON AND GOLD MISSIONS,

More information

Space Situational Awareness 2015: GPS Applications in Space

Space Situational Awareness 2015: GPS Applications in Space Space Situational Awareness 2015: GPS Applications in Space James J. Miller, Deputy Director Policy & Strategic Communications Division May 13, 2015 GPS Extends the Reach of NASA Networks to Enable New

More information

First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP

First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP Carl L. Siefring, Paul A. Bernhardt, Stanley J. Briczinski, and Michael McCarrick Naval Research Laboratory Matthew

More information

Preliminary results of ionosphere measurement from GNOS on China FY-3C satellite

Preliminary results of ionosphere measurement from GNOS on China FY-3C satellite Preliminary results of ionosphere measurement from GNOS on China FY-3C satellite Guanglin Yang 1, Tian Mao 1, Lingfeng Sun 2, Xinan Yue 3, Weihua Bai 4 and Yueqiang Sun 4 1 National Satellite Meteorological

More information

Developing systems for ionospheric data assimilation

Developing systems for ionospheric data assimilation Developing systems for ionospheric data assimilation Making a quantitative comparison between observations and models A.C. Bushell, 5 th European Space Weather Week, Brussels, 20 th November 2008 Collaborators

More information

Radio-science experiments with the Enhanced Polar Outflow Probe satellite payload using its RRI, GAP and CERTO instruments

Radio-science experiments with the Enhanced Polar Outflow Probe satellite payload using its RRI, GAP and CERTO instruments Radio-science experiments with the Enhanced Polar Outflow Probe satellite payload using its RRI, GAP and CERTO instruments H.G. James, CRC, Ottawa, Canada P.A. Bernhardt, NRL, Washington, U.S.A. R.B. Langley,

More information

(CSES) Introduction for China Seismo- Electromagnetic Satellite

(CSES) Introduction for China Seismo- Electromagnetic Satellite Introduction for China Seismo- Electromagnetic Satellite (CSES) Wang Lanwei Working Group of China Earthquake-related related Satellites Mission China Earthquake Administration Outline Project Objectives

More information

Effects of magnetic storms on GPS signals

Effects of magnetic storms on GPS signals Effects of magnetic storms on GPS signals Andreja Sušnik Supervisor: doc.dr. Biagio Forte Outline 1. Background - GPS system - Ionosphere 2. Ionospheric Scintillations 3. Experimental data 4. Conclusions

More information

Space Weather and the Ionosphere

Space Weather and the Ionosphere Dynamic Positioning Conference October 17-18, 2000 Sensors Space Weather and the Ionosphere Grant Marshall Trimble Navigation, Inc. Note: Use the Page Down key to view this presentation correctly Space

More information

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan Takayuki Yoshihara, Electronic Navigation Research Institute (ENRI) Naoki Fujii,

More information

On the Importance of Radio Occultation data for Ionosphere Modeling

On the Importance of Radio Occultation data for Ionosphere Modeling On the Importance of Radio Occultation data for Ionosphere Modeling IROWG Workshop, Estes Park, March 30, 2012 ABSTRACT The availability of unprecedented amounts of Global Navigation Satellite Systems

More information

Space Environmental NanoSat Experiment (SENSE) Capt Paul La Tour SENSE PM

Space Environmental NanoSat Experiment (SENSE) Capt Paul La Tour SENSE PM Space Environmental NanoSat Experiment (SENSE) Capt Paul La Tour SENSE PM Overview Objectives, Organizations, and CONOPS Spacecraft Bus CTECS (Compact Total Electron Content Sensor) WINCS (Wind Ion Neutrals

More information

Examination of Three Empirical Atmospheric Models

Examination of Three Empirical Atmospheric Models Examination of Three Empirical Atmospheric Models A Presentation Given to The Department of Physics Utah State University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Incorporation of UV Radiances Into the USU GAIM Models

Incorporation of UV Radiances Into the USU GAIM Models Incorporation of UV Radiances Into the USU GAIM Models Robert W. Schunk Center for Atmospheric and Space Sciences Utah State University Logan, Utah 84322-4405 phone: (435) 797-2978 fax: (435) 797-2992

More information

Continued Development and Validation of the USU GAIM Models

Continued Development and Validation of the USU GAIM Models Continued Development and Validation of the USU GAIM Models Robert W. Schunk Center for Atmospheric and Space Sciences Utah State University Logan, Utah 84322-4405 phone: (435) 797-2978 fax: (435) 797-2992

More information

Analysis of Ionospheric Anomalies due to Space Weather Conditions by using GPS-TEC Variations

Analysis of Ionospheric Anomalies due to Space Weather Conditions by using GPS-TEC Variations Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey Analysis of Ionospheric Anomalies due to Space Weather Conditions by using GPS-TEC Variations Asst. Prof. Dr. Mustafa ULUKAVAK 1,

More information

Page 1 of 8 Search Contact NRL Personnel Locator Human Resources Public Affairs Office Visitor Info Planning a Visit Directions Maps Weather & Traffic Field Sites Stennis Monterey VXS-1 Chesapeake Bay

More information

Ionospheric Structure Imaging with ALOS PALSAR

Ionospheric Structure Imaging with ALOS PALSAR The Second ALOS PI Symposium Rhodes, Greece November 3 7, 008 Ionospheric Structure Imaging with ALOS PALSAR PI Number: 37 JAXA-RA PI: Jong-Sen Lee, Thomas L. Ainsworth and Kun-Shan Chen CSRSR, National

More information

Miniaturized In-Situ Plasma Sensors Applications for NSF Small Satellite program. Dr. Geoff McHarg

Miniaturized In-Situ Plasma Sensors Applications for NSF Small Satellite program. Dr. Geoff McHarg Miniaturized In-Situ Plasma Sensors Applications for NSF Small Satellite program Dr. Geoff McHarg National Science Foundation Small Satellite Workshop- CEDAR June 2007 FalconSat-3 Physics on a small satellite

More information

Satellite Fleet Operations Using a Global Ground Station Network. Naomi Kurahara Infostellar

Satellite Fleet Operations Using a Global Ground Station Network. Naomi Kurahara Infostellar Satellite Fleet Operations Using a Global Ground Station Network Naomi Kurahara Infostellar 1 Japanese university satellites Image via University Space Engineering Consortium, http://unisec.jp/wp/wp-content/uploads/2016/06/unisec_satellites_160120_jp_s.jpg

More information

GNSS Remo Sensing in ensin a 6U Cubesat

GNSS Remo Sensing in ensin a 6U Cubesat GNSS Remote Sensing in a 6U Cubesat Andrew Dempster Remote Sensing using GNSS Radio occultation Well established, with existing missions, v useful for input to weather models Reflectometry Experimental,

More information

How the ionosphere of Mars works

How the ionosphere of Mars works How the ionosphere of Mars works This hazy region contains the atmosphere and ionosphere of Mars Paul Withers Boston University (withers@bu.edu) Department Lecture Series, EAPS, MIT Wednesday 2012.02.08

More information

ICON. Exploring the Ionosphere, Earth s Interface to Space. Ionospheric Connection Explorer. Press Kit November

ICON. Exploring the Ionosphere, Earth s Interface to Space. Ionospheric Connection Explorer. Press Kit November National Aeronautics and Space Administration ICON Ionospheric Connection Explorer Exploring the Ionosphere, Earth s Interface to Space Press Kit November 2018 www.nasa.gov Table of Contents ICON Media

More information

Dayside ionospheric response to recurrent geomagnetic activity during the extreme solar minimum of 2008

Dayside ionospheric response to recurrent geomagnetic activity during the extreme solar minimum of 2008 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L02101, doi:10.1029/2009gl041038, 2010 Dayside ionospheric response to recurrent geomagnetic activity during the extreme solar minimum

More information

Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model

Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model Susumu Saito and Naoki Fujii Communication, Navigation, and Surveillance Department, Electronic

More information

PROJECT IGOSAT June 10th 2016

PROJECT IGOSAT June 10th 2016 PROJECT IGOSAT June 10th 2016 Ionospheric & Gamma-Ray Observation SATellite Hillton Tang 2 SUMMARY I. The project IGOSAT II. Scientific requirements III. Mission profile IV. Payload (GPS and Scintillator)

More information

ICG WG-B Achievements on Interoperable GNSS Space Service Volume (SSV) November, 2016 Sochi, Russian Federation

ICG WG-B Achievements on Interoperable GNSS Space Service Volume (SSV) November, 2016 Sochi, Russian Federation ICG WG-B Achievements on Interoperable GNSS Space Service Volume (SSV) November, 2016 Sochi, Russian Federation ICG WG-B Action Group on SSV Action group on SSV was formed within WG-B in order to Establish

More information

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT SPACE SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT Satellite communications, earth observation, navigation and positioning and control stations indracompany.com SSCMI SPREAD SPECTRUM CHANNEL MEASUREMENT

More information

Basics of Satellite Navigation an Elementary Introduction Prof. Dr. Bernhard Hofmann-Wellenhof Graz, University of Technology, Austria

Basics of Satellite Navigation an Elementary Introduction Prof. Dr. Bernhard Hofmann-Wellenhof Graz, University of Technology, Austria Basics of Satellite Navigation an Elementary Introduction Prof. Dr. Bernhard Hofmann-Wellenhof Graz, University of Technology, Austria CONCEPT OF GPS Prof. Dr. Bernhard Hofmann-Wellenhof Graz, University

More information

MWA Ionospheric Science Opportunities Space Weather Storms & Irregularities (location location location) John Foster MIT Haystack Observatory

MWA Ionospheric Science Opportunities Space Weather Storms & Irregularities (location location location) John Foster MIT Haystack Observatory MWA Ionospheric Science Opportunities Space Weather Storms & Irregularities (location location location) John Foster MIT Haystack Observatory Storm Enhanced Density: Longitude-specific Ionospheric Redistribution

More information

Department of Geomatics Engineering. Detection of High-Latitude Ionospheric Irregularities from GPS Radio Occultation

Department of Geomatics Engineering. Detection of High-Latitude Ionospheric Irregularities from GPS Radio Occultation UCGE REPORTS Number 20310 Department of Geomatics Engineering Detection of High-Latitude Ionospheric Irregularities from GPS Radio Occultation (URL: http://www.geomatics.ucalgary.ca/graduatetheses) by

More information

Introduction To The Ionosphere

Introduction To The Ionosphere Introduction To The Ionosphere John Bosco Habarulema Radar School 12 13 September 2015, SANSA, What is a radar? This being a radar school... RAdio Detection And Ranging To determine the range, R, R=Ct/2,

More information

Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi

Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi Subject Paper No and Title Module No and Title Module Tag Geology Remote Sensing and GIS Concepts of Global Navigation Satellite RS & GIS XXXIII Principal Investigator Co-Principal Investigator Co-Principal

More information

Space-born system for on-line precursors monitoring of eathquakes,, natural and man-made made catastrophes

Space-born system for on-line precursors monitoring of eathquakes,, natural and man-made made catastrophes Space-born system for on-line precursors monitoring of eathquakes,, natural and man-made made catastrophes The main goal of the Project In my brief report, I would like to inform about the work on developing

More information

imaging of the ionosphere and its applications to radio propagation Fundamentals of tomographic Ionospheric Tomography I: Ionospheric Tomography I:

imaging of the ionosphere and its applications to radio propagation Fundamentals of tomographic Ionospheric Tomography I: Ionospheric Tomography I: Ionospheric Tomography I: Ionospheric Tomography I: Fundamentals of tomographic imaging of the ionosphere and its applications to radio propagation Summary Introduction to tomography Introduction to tomography

More information

The Significance of GNSS for Radio Science

The Significance of GNSS for Radio Science Space Weather Effects on the Wide Area Augmentation System (WAAS) The Significance of GNSS for Radio Science Patricia H. Doherty Vice Chair, Commission G International Union of Radio Science www.ursi.org

More information

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation

More information

Preliminary results from the Arecibo Heating EXperiment (HEX): From HF to GPS

Preliminary results from the Arecibo Heating EXperiment (HEX): From HF to GPS Preliminary results from the Arecibo Heating EXperiment (HEX): From HF to GPS CEDAR Workshop 2017 Keystone, Co Dr Natasha Jackson-Booth 21 st June 2017 Collaborators and Acknowledgements QinetiQ Richard

More information

Resection. We can measure direction in the real world! Lecture 10: Position Determination. Resection Example: Isola, Slovenia. Professor Keith Clarke

Resection. We can measure direction in the real world! Lecture 10: Position Determination. Resection Example: Isola, Slovenia. Professor Keith Clarke Geography 12: Maps and Spatial Reasoning Lecture 10: Position Determination We can measure direction in the real world! Professor Keith Clarke Resection Resection Example: Isola, Slovenia Back azimuth

More information

Lessons Learned from the US Air Force SENSE CubeSat Mission

Lessons Learned from the US Air Force SENSE CubeSat Mission Lessons Learned from the US Air Force SENSE CubeSat Mission Lyle Abramowitz Developmental Plans and Projects April 22 2015 2015 The Aerospace Corporation Recap of the Space Environment NanoSat Experiment

More information

USUSat III - TOROID. TOmographic Remote Observer of Ionospheric Disturbances

USUSat III - TOROID. TOmographic Remote Observer of Ionospheric Disturbances USUSat III - TOROID TOmographic Remote Observer of Ionospheric Disturbances Matthew D. Carney Systems Engineer Center for Space Engineering Industry Day February 28, 2006 Logan, UT Outline Mission Overview

More information

Data Assimilation Models for Space Weather

Data Assimilation Models for Space Weather Data Assimilation Models for Space Weather R.W. Schunk, L. Scherliess, D.C. Thompson, J. J. Sojka, & L. Zhu Center for Atmospheric & Space Sciences Utah State University Logan, Utah Presented at: SVECSE

More information

Monitoring the polar cap/ auroral ionosphere: Industrial applications. P. T. Jayachandran Physics Department University of New Brunswick Fredericton

Monitoring the polar cap/ auroral ionosphere: Industrial applications. P. T. Jayachandran Physics Department University of New Brunswick Fredericton Monitoring the polar cap/ auroral ionosphere: Industrial applications P. T. Jayachandran Physics Department University of New Brunswick Fredericton Outline Ionosphere and its effects on modern and old

More information

Miniaturized Ion and Neutral Mass Spectrometer for CubeSat Atmospheric Measurements

Miniaturized Ion and Neutral Mass Spectrometer for CubeSat Atmospheric Measurements Miniaturized Ion and Neutral Mass Spectrometer for CubeSat Atmospheric Measurements M. Rodriguez, N. Paschalidis, S. Jones, E. Sittler, D. Chornay, P. Uribe, NASA Goddard Space Flight Center T. Cameron,

More information

2. REPORT TYPE Final Technical Report

2. REPORT TYPE Final Technical Report REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

The Indian Regional Navigation. First Position Fix with IRNSS. Successful Proof-of-Concept Demonstration

The Indian Regional Navigation. First Position Fix with IRNSS. Successful Proof-of-Concept Demonstration Successful Proof-of-Concept Demonstration First Position Fix with IRNSS A. S. GANESHAN, S. C. RATNAKARA, NIRMALA SRINIVASAN, BABU RAJARAM, NEETHA TIRMAL, KARTIK ANBALAGAN INDIAN SPACE RESEARCH ORGANISATION

More information

Ionospheric Imprint to LOFAR

Ionospheric Imprint to LOFAR Ionospheric Imprint to LOFAR Norbert Jakowski Institute of Communications und Navigation German Aerospace Center Kalkhorstweg 53, D-17235 Neustrelitz, Germany LOFAR Workshop, 8/9 November 2010, Potsdam,

More information

THE USE OF GPS/MET DATA FOR IONOSPHERIC STUDIES

THE USE OF GPS/MET DATA FOR IONOSPHERIC STUDIES THE USE OF GPS/MET DATA FOR IONOSPHERIC STUDIES Christian Rocken GPS/MET Program Office University Corporation for Atmospheric Research Boulder, CO 80301 phone: (303) 497 8012, fax: (303) 449 7857, e-mail:

More information

Low Cost Earth Sensor based on Oxygen Airglow

Low Cost Earth Sensor based on Oxygen Airglow Assessment Executive Summary Date : 16.06.2008 Page: 1 of 7 Low Cost Earth Sensor based on Oxygen Airglow Executive Summary Prepared by: H. Shea EPFL LMTS herbert.shea@epfl.ch EPFL Lausanne Switzerland

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

Continuous FUV/EUV Imaging of the Ionosphere from Geosynchronous Orbit

Continuous FUV/EUV Imaging of the Ionosphere from Geosynchronous Orbit Continuous FUV/EUV Imaging of the Ionosphere from Geosynchronous Orbit K. S. Wood, K. F. Dymond, S. A. Budzien, S. E McDonald, C. Coker, A. C. Nicholas, and M. P. Kowalski Naval Research Laboratory Washington,

More information

Chapter 6 Propagation

Chapter 6 Propagation Chapter 6 Propagation Al Penney VO1NO Objectives To become familiar with: Classification of waves wrt propagation; Factors that affect radio wave propagation; and Propagation characteristics of Amateur

More information

APPLICATION OF SMALL SATELLITES FOR HIGH PRECISION MEASURING EFFECTS OF RADIO WAVE PROPAGATION

APPLICATION OF SMALL SATELLITES FOR HIGH PRECISION MEASURING EFFECTS OF RADIO WAVE PROPAGATION APPLICATION OF SMALL SATELLITES FOR HIGH PRECISION MEASURING EFFECTS OF RADIO WAVE PROPAGATION K. Igarashi 1, N.A. Armand 2, A.G. Pavelyev 2, Ch. Reigber 3, J. Wickert 3, K. Hocke 1, G. Beyerle 3, S.S.

More information

First Measurements of Ionospheric TEC and GPS Scintillations from an Unmanned Marine Vehicle

First Measurements of Ionospheric TEC and GPS Scintillations from an Unmanned Marine Vehicle First Measurements of Ionospheric TEC and GPS Scintillations from an Unmanned Marine Vehicle Irfan Azeem, Geoff Crowley, and Adam Reynolds ASTRA 5777 Central Ave., Suite 221 Boulder, CO 80301 USA ABSTRACT

More information

Sub-Mesoscale Imaging of the Ionosphere with SMAP

Sub-Mesoscale Imaging of the Ionosphere with SMAP Sub-Mesoscale Imaging of the Ionosphere with SMAP Tony Freeman Xiaoqing Pi Xiaoyan Zhou CEOS Workshop, ASF, Fairbanks, Alaska, December 2009 1 Soil Moisture Active-Passive (SMAP) Overview Baseline Mission

More information

Phoenix. A 3U CubeSat to Study Urban Heat Islands. Sarah Rogers - Project Manager NASA Space Grant Symposium April 14, 2018

Phoenix. A 3U CubeSat to Study Urban Heat Islands. Sarah Rogers - Project Manager NASA Space Grant Symposium April 14, 2018 Phoenix A 3U CubeSat to Study Urban Heat Islands Sarah Rogers - Project Manager NASA Space Grant Symposium April 14, 2018 Phoenix Overview Undergraduate-led 3U CubeSat to study Urban Heat Islands through

More information

Ionospheric Radio Occultation Measurements Onboard CHAMP

Ionospheric Radio Occultation Measurements Onboard CHAMP Ionospheric Radio Occultation Measurements Onboard CHAMP N. Jakowski 1, K. Tsybulya 1, S. M. Stankov 1, V. Wilken 1, S. Heise 2, A. Wehrenpfennig 3 1 DLR / Institut für Kommunikation und Navigation, Kalkhorstweg

More information

AIREON SPACE-BASED ADS-B

AIREON SPACE-BASED ADS-B AIREON SPACE-BASED ADS-B 2018 Transport Canada Delegates Conference Steve Bellingham Manager, Navigation Systems Engineering Steve.Bellingham@navcanada.ca CNS/ATM Systems Communication Navigation Surveillance

More information

Three-dimensional and numerical ray tracing on a phenomenological ionospheric model

Three-dimensional and numerical ray tracing on a phenomenological ionospheric model Three-dimensional and numerical ray tracing on a phenomenological ionospheric model Lung-Chih Tsai 1, 2, C. H. Liu 3, T. Y. Hsiao 4, and J. Y. Huang 1 (1) Center for Space and Remote Sensing research,

More information