Introduction To The Ionosphere

Size: px
Start display at page:

Download "Introduction To The Ionosphere"

Transcription

1 Introduction To The Ionosphere John Bosco Habarulema Radar School September 2015, SANSA,

2 What is a radar? This being a radar school... RAdio Detection And Ranging To determine the range, R, R=Ct/2, C is the speed of light, and the factor of 2? We will come back to this later, Next Introduction to the ionosphere

3 Definitions thick shell of free electrons within the Earth s upper atmosphere

4 Definitions that region of the Earth s upper atmosphere covering an altitude range from ~ 50 to ~ 1000 km

5 Definitions a lightly ionized plasma. a propagation medium for HF communications

6 Atmospheric Structure Vertical structure based on temperature variation with altitude 5 layers: troposphere, stratosphere, mesosphere, thermosphere and exosphere

7 Ionosphere sits between Mesosphere and exosphere Region between ~ 50 km to ~1000 km

8 Source of the ionosphere Ionised plasma created by EUV radiation and high energy solar particles

9 Sun Production of electrons Stripping of electrons from neutral atoms by EUV + A A + + e -

10 Loss of electrons recombination Dissociative + + A 2 + X + AX + + A + + AX + + e - A + X

11 Radiative recombination Direct combination of electrons with positively charged ions to form neutral atoms and also leads to photon emission + X + + e - X +Photon(Energy)

12 Summary of production and loss mechanisms Production of electrons: Photoionisation Loss of electrons: Recombination ( both dissociative and radiative processes) In the lower regions such as the D-region, attachment is the main process of losing electrons (electrons attach themselves to neutral atoms to form negatively charged ions) Attachment and recombination always take place within the ionosphere and are negative contributors to ionisation

13 Complex Ionospheric Structure Maximum density at some altitude Neutral atmosphere gets less dense Absorption by neutral atoms EUV weaker

14 Ionospheric formation summary

15 Ionospheric Structure Daytime structure has 4 regions: D region, km E region, km F1 region, km F2 region over 200 km Night time structure has 2 regions: E region F region

16 How were the layers labelled? Edward Appleton Nobel Prize, Physics, 1947 Asked how he came up with the labelling of the ionospheric layers, he gave the following answer The story of how I came to give the names D, E and F is really a simple one. In the early work with broadcasting wavelength, I obtained reflections from the Kennelly-Heaviside layer and I used on my diagrams the letter E for the electric vector of the down coming wave. When I found in winter 1925 that I could get reflections from a higher and completely different layer, I used the latter F for the electric vector of the down coming wave. Then about the same time I got occasionally reflections from a very low height and so naturally used the letter D for the electric vector of the returning waves. Then I suddenly realized that I must name these discrete layers and being rather fearful of assuming any finality about measurements, I felt I ought not to call these layers A, B and C, since there might be undiscovered layers, both below and above them. I therefore felt that the original designation for the electric field vector D, E and F might be used for the layers themselves. Worked with Robert Wattson-Watt on technology that led to the invention of RADAR

17 Dominant Ions Region Height [km] Ne max [cm -3 ] ion D x 10 4 (noon) absent at night NO + E x 10 5 (noon) < 1 x 10 4 (night) F x 10 5 (noon) absent at night F (noon) 10 5 (midnight) O 2 + NO + NO + O +

18 Ionospheric structure summary

19 Regions - Instruments Topside Ionosphere Satellites Bottomside Ionosphere Ionosondes, ISR Lower Ionosphere Rockets, Balloons

20 The ionosphere is variable (highly non-linear and changing medium) Not shown: Seasonal variation (1yr) Latitude dependence Diurnal variation (24 hrs) Solar activity variation (11 yrs) Magnetic activity variation

21 Latitudinal Variation Ionosphere has distinct features at some latitudes At lower latitudes, high electron concentration at approx ±20 off the magnetic equator Due to fountain effect High latitudes, ionosphere very complex because of its connection to the magnetosphere and interplanetary medium, through Earth s magnetic field

22 Diurnal Variation Electron density/frequencies great during the day than at night time F1 layer disappears at night, while F2 remain E region usually much weaker and may disappear Diurnal variation due to Sun movement across the sky

23 Seasonal Variation 14 Solar Maximum (2000) fof2, [MHz] Solar Minimum (1996) Seasonal variation associated with the revolution of the Earth around Sun Ionisation greater in summer than winter in E, F1 region but not F2 region seasonal anomaly Day Number

24 Solar Cycle Variation Solar Variation linked to 11-year solar activity, measured using sunspot numbers During high solar activity, ionisation great because solar radiation intensity is high thus enhancing electron concentration in ionosphere Solar disturbances (e.g. solar flares, CMEs) more frequent geomagnetic storms more frequent disturbances in the ionosphere more frequent

25 Magnetic Activity Variation -ve storm effect +ve storm effects

26 Summary The ionosphere is a highly complex medium Different layers (D, E, F1, F2) with different compositions and properties Can be measured by different techniques/instruments such as... Highly variable: Solar activity, magnetic activity, diurnal and seasonal variations Among the reasons we study the ionosphere are High Frequency (HF) (3-30 MHz) Radio propagation (Next Talk) Monitoring Space Weather (Next Talk) Radio Astronomy (SKA) Error correction for GPS applications, Navigation, Surveying, Geodesy Scientific Research

27 References Davies K., Ionospheric radio, Peter Peregrinus Ltd, 1990 McNamara L.F., The ionosphere: communications, surveillance, and direction finding, Krieger Publishing Company, Hofmann-Wellenhof., Lichtenegger, H., Collins, J.: GPS Theory and Practice (4th ed), Introduction to HF Radio Propagation, Australian Government IPS Radio and Space Services,

28 Thank You

Plasma in the ionosphere Ionization and Recombination

Plasma in the ionosphere Ionization and Recombination Plasma in the ionosphere Ionization and Recombination Jamil Muhammad Supervisor: Professor kjell Rönnmark 1 Contents: 1. Introduction 3 1.1 History.3 1.2 What is the ionosphere?...4 2. Ionization and recombination.5

More information

ESS 7 Lectures 15 and 16 November 3 and 5, The Atmosphere and Ionosphere

ESS 7 Lectures 15 and 16 November 3 and 5, The Atmosphere and Ionosphere ESS 7 Lectures 15 and 16 November 3 and 5, 2008 The Atmosphere and Ionosphere The Earth s Atmosphere The Earth s upper atmosphere is important for groundbased and satellite radio communication and navigation.

More information

The Earth s Atmosphere

The Earth s Atmosphere ESS 7 Lectures 15 and 16 May 5 and 7, 2010 The Atmosphere and Ionosphere The Earth s Atmosphere The Earth s upper atmosphere is important for groundbased and satellite radio communication and navigation.

More information

Storms in Earth s ionosphere

Storms in Earth s ionosphere Storms in Earth s ionosphere Archana Bhattacharyya Indian Institute of Geomagnetism IISF 2017, WSE Conclave; Anna University, Chennai Earth s Ionosphere Ionosphere is the region of the atmosphere in which

More information

Reading 28 PROPAGATION THE IONOSPHERE

Reading 28 PROPAGATION THE IONOSPHERE Reading 28 Ron Bertrand VK2DQ http://www.radioelectronicschool.com PROPAGATION THE IONOSPHERE The ionosphere is a region of the upper atmosphere extending from a height of about 60 km to greater than 500

More information

Chapter 7 HF Propagation. Ionosphere Solar Effects Scatter and NVIS

Chapter 7 HF Propagation. Ionosphere Solar Effects Scatter and NVIS Chapter 7 HF Propagation Ionosphere Solar Effects Scatter and NVIS Ionosphere and Layers Radio Waves Bent by the Ionosphere Daily variation of Ionosphere Layers Ionospheric Reflection Conduction by electrons

More information

PoS(2nd MCCT -SKADS)003

PoS(2nd MCCT -SKADS)003 The Earth's ionosphere: structure and composition. Dispersive effects, absorption and emission in EM wave propagation 1 Observatorio Astronómico Nacional Calle Alfonso XII, 3; E-28014 Madrid, Spain E-mail:

More information

Earthquake Analysis over the Equatorial

Earthquake Analysis over the Equatorial Earthquake Analysis over the Equatorial Region by Using the Critical Frequency Data and Geomagnetic Index Earthquake Analysis over the Equatorial Region by Using the Critical Frequency Data and Geomagnetic

More information

Chapter 6 Propagation

Chapter 6 Propagation Chapter 6 Propagation Al Penney VO1NO Objectives To become familiar with: Classification of waves wrt propagation; Factors that affect radio wave propagation; and Propagation characteristics of Amateur

More information

Terrestrial Ionospheres

Terrestrial Ionospheres Terrestrial Ionospheres I" Stan Solomon" High Altitude Observatory National Center for Atmospheric Research Boulder, Colorado stans@ucar.edu Heliophysics Summer School National Center for Atmospheric Research

More information

Analysis of Ionospheric Anomalies due to Space Weather Conditions by using GPS-TEC Variations

Analysis of Ionospheric Anomalies due to Space Weather Conditions by using GPS-TEC Variations Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey Analysis of Ionospheric Anomalies due to Space Weather Conditions by using GPS-TEC Variations Asst. Prof. Dr. Mustafa ULUKAVAK 1,

More information

4/29/2012. General Class Element 3 Course Presentation. Radio Wave Propagation. Radio Wave Propagation. Radio Wave Propagation.

4/29/2012. General Class Element 3 Course Presentation. Radio Wave Propagation. Radio Wave Propagation. Radio Wave Propagation. General Class Element 3 Course Presentation ti ELEMENT 3 SUB ELEMENTS General Licensing Class Subelement G3 3 Exam Questions, 3 Groups G1 Commission s Rules G2 Operating Procedures G3 G4 Amateur Radio

More information

Terry G. Glagowski W1TR / AFA1DI

Terry G. Glagowski W1TR / AFA1DI The Ionogram and Radio Propagation By Terry G. Glagowski / W1TR / AFA1DI - 9/29/2017 9:46 AM Excerpts from a presentation by Tom Carrigan / NE1R / AFA1ID by Terry G. Glagowski W1TR / AFA1DI Knowledge of

More information

Space Weather and the Ionosphere

Space Weather and the Ionosphere Dynamic Positioning Conference October 17-18, 2000 Sensors Space Weather and the Ionosphere Grant Marshall Trimble Navigation, Inc. Note: Use the Page Down key to view this presentation correctly Space

More information

Ionospheric Propagation

Ionospheric Propagation Ionospheric Nick Massey VA7NRM 1 Electromagnetic Spectrum Radio Waves are a form of Electromagnetic Radiation Visible Light is also a form of Electromagnetic Radiation Radio Waves behave a lot like light

More information

A Neural Network tool for the interpolation of fof2 data in the presence of sporadic E layer

A Neural Network tool for the interpolation of fof2 data in the presence of sporadic E layer A Neural Network tool for the interpolation of fof data in the presence of sporadic E layer Haris Haralambous, Antonis Ioannou and Harris Papadopoulos Computer Science and Engineering Department, Frederick

More information

GEOMAGNETISM AND ATMOSPHERIC LAYERS

GEOMAGNETISM AND ATMOSPHERIC LAYERS GEOMAGNETISM AND ATMOSPHERIC LAYERS Praveen B. Gawali Earth is divided into different layers. Likewise, atmosphere too has many layers. The invention of mercury barometer led to the discovery of finite

More information

Plasma in the Ionosphere Ionization and Recombination

Plasma in the Ionosphere Ionization and Recombination Plasma in the Ionosphere Ionization and Recombination Agabi E Oshiorenoya July, 2004 Space Physics 5P Umeå Universitet Department of Physics Umeå, Sweden Contents 1 Introduction 6 2 Ionization and Recombination

More information

High Frequency Propagation (and a little about NVIS)

High Frequency Propagation (and a little about NVIS) High Frequency Propagation (and a little about NVIS) Tom McDermott, N5EG August 18, 2010 September 2, 2010 Updated: February 7, 2013 The problem Radio waves, like light waves, travel in ~straight lines.

More information

General Classs Chapter 7

General Classs Chapter 7 General Classs Chapter 7 Radio Wave Propagation Bob KA9BHD Eric K9VIC Learning Objectives Teach you enough to get all the propagation questions right during the VE Session Learn a few things from you about

More information

Space Weather and Propagation JANUARY 14, 2017

Space Weather and Propagation JANUARY 14, 2017 Space Weather and Propagation MARTIN BUEHRING -KB4MG ELEC T R ICAL ENGINEER, A M AT EUR EXTRA CLASS LICENSE HOLDER JANUARY 14, 2017 Why know about Space Weather? Our SUN has an enormous affect not only

More information

THE IONOSPHERE AND RADIO PROPAGATION

THE IONOSPHERE AND RADIO PROPAGATION INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 ISSN 0976 6464(Print)

More information

Monitoring the polar cap/ auroral ionosphere: Industrial applications. P. T. Jayachandran Physics Department University of New Brunswick Fredericton

Monitoring the polar cap/ auroral ionosphere: Industrial applications. P. T. Jayachandran Physics Department University of New Brunswick Fredericton Monitoring the polar cap/ auroral ionosphere: Industrial applications P. T. Jayachandran Physics Department University of New Brunswick Fredericton Outline Ionosphere and its effects on modern and old

More information

What is Space Weather? THE ACTIVE SUN

What is Space Weather? THE ACTIVE SUN Aardvark Roost AOC Space Weather in Southern Africa Hannes Coetzee 1 What is Space Weather? THE ACTIVE SUN 2 The Violant Sun 3 What is Space Weather? Solar eruptive events (solar flares, coronal Mass Space

More information

Polarization orientation of the electric field vector with respect to the earth s surface (ground).

Polarization orientation of the electric field vector with respect to the earth s surface (ground). Free space propagation of electromagnetic waves is often called radio-frequency (rf) propagation or simply radio propagation. The earth s atmosphere, as medium introduces losses and impairments to the

More information

imaging of the ionosphere and its applications to radio propagation Fundamentals of tomographic Ionospheric Tomography I: Ionospheric Tomography I:

imaging of the ionosphere and its applications to radio propagation Fundamentals of tomographic Ionospheric Tomography I: Ionospheric Tomography I: Ionospheric Tomography I: Ionospheric Tomography I: Fundamentals of tomographic imaging of the ionosphere and its applications to radio propagation Summary Introduction to tomography Introduction to tomography

More information

Ionospheric sounding at the RMI Geophysical Centre in Dourbes: digital ionosonde performance and ionospheric monitoring service applications

Ionospheric sounding at the RMI Geophysical Centre in Dourbes: digital ionosonde performance and ionospheric monitoring service applications Solar Terrestrial Centre of Excellence Ionospheric sounding at the RMI Geophysical Centre in Dourbes: digital ionosonde performance and ionospheric monitoring service applications S. Stankov, T. Verhulst,

More information

and Atmosphere Model:

and Atmosphere Model: 1st VarSITI General Symposium, Albena, Bulgaria, 2016 Canadian Ionosphere and Atmosphere Model: model status and applications Victor I. Fomichev 1, O. V. Martynenko 1, G. G. Shepherd 1, W. E. Ward 2, K.

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION The dependence of society to technology increased in recent years as the technology has enhanced. increased. Moreover, in addition to technology, the dependence of society to nature

More information

OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE

OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE WAVE PROPAGATION OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE IONOSPHERIC LAYERS ABSORPTION AND FADING

More information

Monitoring Solar flares by Radio Astronomy

Monitoring Solar flares by Radio Astronomy Monitoring Solar flares by Radio Astronomy Presented at the RASC Sunshine Coast Centre, February 8th, 2013, 7:30 pm Mike Bradley, RASC Sunshine Coast Centre Solar flares Solar flares occur when sunspots

More information

Radio Astronomy and the Ionosphere

Radio Astronomy and the Ionosphere Radio Astronomy and the Ionosphere John A Kennewell, Mike Terkildsen CAASTRO EoR Global Signal Workshop November 2012 THE IONOSPHERE UPPER ATMOSPHERIC PLASMA - The ionosphere is a weak (1%) variable plasma

More information

The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles.

The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles. The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles. J.C. Morka * ; D.N. Nwachuku; and D.A. Ogwu. Physics Department, College of Education, Agbor, Nigeria E-mail: johnmorka84@gmail.com

More information

Ionospheric Impacts on UHF Space Surveillance. James C. Jones Darvy Ceron-Gomez Dr. Gregory P. Richards Northrop Grumman

Ionospheric Impacts on UHF Space Surveillance. James C. Jones Darvy Ceron-Gomez Dr. Gregory P. Richards Northrop Grumman Ionospheric Impacts on UHF Space Surveillance James C. Jones Darvy Ceron-Gomez Dr. Gregory P. Richards Northrop Grumman CONFERENCE PAPER Earth s atmosphere contains regions of ionized plasma caused by

More information

RADIO WAVE PROPAGATION

RADIO WAVE PROPAGATION CHAPTER 2 RADIO WAVE PROPAGATION Radio direction finding (RDF) deals with the direction of arrival of radio waves. Therefore, it is necessary to understand the basic principles involved in the propagation

More information

If maximum electron density in a layer is less than n', the wave will penetrate the layer

If maximum electron density in a layer is less than n', the wave will penetrate the layer UNIT-7 1. Briefly the describe the terms related to the sky wave propagation: virtual heights, critical frequency, maximum usable frequency, skip distance and fading? Ans: Sky wave propagation: It is also

More information

Comparing the Low-- and Mid Latitude Ionosphere and Electrodynamics of TIE-GCM and the Coupled GIP TIE-GCM

Comparing the Low-- and Mid Latitude Ionosphere and Electrodynamics of TIE-GCM and the Coupled GIP TIE-GCM Comparing the Low-- and Mid Latitude Ionosphere and Electrodynamics of TIE-GCM and the Coupled GIP TIE-GCM Clarah Lelei Bryn Mawr College Mentors: Dr. Astrid Maute, Dr. Art Richmond and Dr. George Millward

More information

Lesson 12: Signal Propagation

Lesson 12: Signal Propagation Lesson 12: Signal Propagation Preparation for Amateur Radio Technician Class Exam Topics HF Propagation Ground-wave Sky-wave Ionospheric regions VHF/UHF Propagation Line-of-sight Tropospheric Bending and

More information

The Ionosphere and Thermosphere: a Geospace Perspective

The Ionosphere and Thermosphere: a Geospace Perspective The Ionosphere and Thermosphere: a Geospace Perspective John Foster, MIT Haystack Observatory CEDAR Student Workshop June 24, 2018 North America Introduction My Geospace Background (Who is the Lecturer?

More information

IRI-Plas Optimization Based Ionospheric Tomography

IRI-Plas Optimization Based Ionospheric Tomography IRI-Plas Optimization Based Ionospheric Tomography Onur Cilibas onurcilibas@gmail.com.tr Umut Sezen usezen@hacettepe.edu.tr Feza Arikan arikan@hacettepe.edu.tr Tamara Gulyaeva IZMIRAN 142190 Troitsk Moscow

More information

Study of small scale plasma irregularities. Đorđe Stevanović

Study of small scale plasma irregularities. Đorđe Stevanović Study of small scale plasma irregularities in the ionosphere Đorđe Stevanović Overview 1. Global Navigation Satellite Systems 2. Space weather 3. Ionosphere and its effects 4. Case study a. Instruments

More information

14. COMMUNICATION SYSTEM

14. COMMUNICATION SYSTEM 14. COMMUNICATION SYSTEM SYNOPSIS : INTRODUCTION 1. The exchange of information between a sender and receiver is called communication. 2. The arrangement of devices to transfere the information is called

More information

High-frequency radio wave absorption in the D- region

High-frequency radio wave absorption in the D- region Utah State University From the SelectedWorks of David Smith Spring 2017 High-frequency radio wave absorption in the D- region David Alan Smith, Utah State University This work is licensed under a Creative

More information

The Role of Ground-Based Observations in M-I I Coupling Research. John Foster MIT Haystack Observatory

The Role of Ground-Based Observations in M-I I Coupling Research. John Foster MIT Haystack Observatory The Role of Ground-Based Observations in M-I I Coupling Research John Foster MIT Haystack Observatory CEDAR/GEM Student Workshop Outline Some Definitions: Magnetosphere, etc. Space Weather Ionospheric

More information

Ionospheric Sounders What are they? How can you use them?

Ionospheric Sounders What are they? How can you use them? Ionospheric Sounders What are they? How can you use them? History of the ionosphere Jan. 1901 Marconi sends signals from Isle of Wight to The Lizard, Cornwall Dec. 1901 Marconi crosses Atlantic, from Poldhu

More information

Spatial and Temporal Variations of GPS-Derived TEC over Malaysia from 2003 to 2009

Spatial and Temporal Variations of GPS-Derived TEC over Malaysia from 2003 to 2009 Spatial and Temporal Variations of GPS-Derived TEC over Malaysia from 2003 to 2009 Leong, S. K., Musa, T. A. & Abdullah, K. A. UTM-GNSS & Geodynamics Research Group, Infocomm Research Alliance, Faculty

More information

AGF-216. The Earth s Ionosphere & Radars on Svalbard

AGF-216. The Earth s Ionosphere & Radars on Svalbard AGF-216 The Earth s Ionosphere & Radars on Svalbard Katie Herlingshaw 07/02/2018 1 Overview Radar basics what, how, where, why? How do we use radars on Svalbard? What is EISCAT and what does it measure?

More information

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation

More information

Introduction to HF Propagation. Rick Fletcher, W7YP FVARC November 20, 2018

Introduction to HF Propagation. Rick Fletcher, W7YP FVARC November 20, 2018 Introduction to HF Propagation Rick Fletcher, W7YP FVARC November 20, 2018 Topics The HF Bands How HF propagation works Overview by HF band Sources of solar and propagation information Working HF during

More information

Examination of Three Empirical Atmospheric Models

Examination of Three Empirical Atmospheric Models Examination of Three Empirical Atmospheric Models A Presentation Given to The Department of Physics Utah State University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

IONOSPHERE EFFECTS ON GPS/RF COMMUNICATION, ELECTRIC, METAL NETWORKS AND SPACECRAFTS OSMAN AKGÜN

IONOSPHERE EFFECTS ON GPS/RF COMMUNICATION, ELECTRIC, METAL NETWORKS AND SPACECRAFTS OSMAN AKGÜN IONOSPHERE EFFECTS ON GPS/RF COMMUNICATION, ELECTRIC, METAL NETWORKS AND SPACECRAFTS 2119212 OSMAN AKGÜN IONOSPHERE IONOSPHERE EFFECTS POSSIBLE EFFECTS GPS errors Atomic oxygen attack Spacecraft charging

More information

Ray Tracing Analysis for the mid-latitude SuperDARN HF radar at Blackstone incorporating the IRI-2007 model

Ray Tracing Analysis for the mid-latitude SuperDARN HF radar at Blackstone incorporating the IRI-2007 model Ray Tracing Analysis for the mid-latitude SuperDARN HF radar at Blackstone incorporating the IRI-2007 model Nitya Ravindran Varrier Thesis submitted to the faculty of the Virginia Polytechnic Institute

More information

Radiation and Particles from the. Sun

Radiation and Particles from the. Sun 2017 Radiation and Particles from the Photons Sun Photons (300000km/s ~ 8m 20s) radio waves, infra red, visible light, ultra violet, x-ray, x galactic waves, Solar Flux (30000km/s ~ 8m 20s) The 10.7 cm

More information

Earth s Ionosphere and Upper Atmosphere

Earth s Ionosphere and Upper Atmosphere Chapter 16 Earth s Ionosphere and Upper Atmosphere Discussion of the ionosphere requires a basic knowledge of the upper atmosphere. The reason is that the ionosphere is the partially ionized plasma region

More information

Global Maps with Contoured Ionosphere Properties Some F-Layer Anomalies Revealed By Marcel H. De Canck, ON5AU. E Layer Critical Frequencies Maps

Global Maps with Contoured Ionosphere Properties Some F-Layer Anomalies Revealed By Marcel H. De Canck, ON5AU. E Layer Critical Frequencies Maps Global Maps with Contoured Ionosphere Properties Some F-Layer Anomalies Revealed By Marcel H. De Canck, ON5AU In this column, I shall handle some possibilities given by PROPLAB-PRO to have information

More information

3-4-3 Long-term Data Analysis of Ionosphere over Syowa Station, Antarctica

3-4-3 Long-term Data Analysis of Ionosphere over Syowa Station, Antarctica 3-4-3 Long-term Data Analysis of Ionosphere over Syowa Station, Antarctica The Earth s ionosphere is a partially ionized gas (electrons and ions) that forms several regions between the atmosphere and space

More information

The Significance of GNSS for Radio Science

The Significance of GNSS for Radio Science Space Weather Effects on the Wide Area Augmentation System (WAAS) The Significance of GNSS for Radio Science Patricia H. Doherty Vice Chair, Commission G International Union of Radio Science www.ursi.org

More information

How GNSS and Beacon receivers can be used to monitor auroral ionosphere and space weather?

How GNSS and Beacon receivers can be used to monitor auroral ionosphere and space weather? How GNSS and Beacon receivers can be used to monitor auroral ionosphere and space weather? Kirsti Kauristie, Finnish Meteorological Institute Special Thanks: J. Norberg (FMI), A. Aikio and T. Nygren (University

More information

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave WAVE PROPAGATION By Marcel H. De Canck, ON5AU Electromagnetic radio waves can propagate in three different ways between the transmitter and the receiver. 1- Ground waves 2- Troposphere waves 3- Sky waves

More information

Maximum Usable Frequency

Maximum Usable Frequency Maximum Usable Frequency 15 Frequency (MHz) 10 5 0 Maximum Usable Frequency Usable Frequency Window Lowest Usable Frequency Solar Flare 6 12 18 24 Time (Hours) Radio Blackout Usable Frequency Window Ken

More information

On the Importance of Radio Occultation data for Ionosphere Modeling

On the Importance of Radio Occultation data for Ionosphere Modeling On the Importance of Radio Occultation data for Ionosphere Modeling IROWG Workshop, Estes Park, March 30, 2012 ABSTRACT The availability of unprecedented amounts of Global Navigation Satellite Systems

More information

Ionosphere and Radio Communication

Ionosphere and Radio Communication Ionosphere and Radio Communication Saradi Bora The Earth s ionosphere consists of plasma produced by the photoionization of thin upper atmospheric gases by UV rays and photons of short wavelength from

More information

DYNAMIC POSITIONING CONFERENCE October 17 18, 2000 SENSORS. Space Weather and the Ionosphere. Grant Marshall Trimble Navigation Inc.

DYNAMIC POSITIONING CONFERENCE October 17 18, 2000 SENSORS. Space Weather and the Ionosphere. Grant Marshall Trimble Navigation Inc. DYNAMIC POSIIONING CONFERENCE October 17 18, 2000 SENSORS Space Weather and the Ionosphere Grant Marshall rimble Navigation Inc. Images shown here are part of an animated presentation and may not appear

More information

Ionosphere- Thermosphere

Ionosphere- Thermosphere Ionosphere- Thermosphere Jan J Sojka Center for Atmospheric and Space Sciences Utah State University, Logan, Utah 84322 PART I: Local I/T processes (relevance for Homework Assignments) PART II: Terrestrial

More information

A Study of the Effects of Sunrise and Sunset on the Ionosphere as Observed by VLF Wave Behavior

A Study of the Effects of Sunrise and Sunset on the Ionosphere as Observed by VLF Wave Behavior A Study of the Effects of Sunrise and Sunset on the Ionosphere as Observed by VLF Wave Behavior By Leandra Merola South Side High School Rockville Centre, New York Abstract The purpose of this study was

More information

NVIS PROPAGATION THEORY AND PRACTICE

NVIS PROPAGATION THEORY AND PRACTICE NVIS PROPAGATION THEORY AND PRACTICE Introduction Near-Vertical Incident Skywave (NVIS) propagation is a mode of HF operation that utilizes a high angle reflection off the ionosphere to fill in the gap

More information

Effects of magnetic storms on GPS signals

Effects of magnetic storms on GPS signals Effects of magnetic storms on GPS signals Andreja Sušnik Supervisor: doc.dr. Biagio Forte Outline 1. Background - GPS system - Ionosphere 2. Ionospheric Scintillations 3. Experimental data 4. Conclusions

More information

analysis of GPS total electron content Empirical orthogonal function (EOF) storm response 2016 NEROC Symposium M. Ruohoniemi (3)

analysis of GPS total electron content Empirical orthogonal function (EOF) storm response 2016 NEROC Symposium M. Ruohoniemi (3) Empirical orthogonal function (EOF) analysis of GPS total electron content storm response E. G. Thomas (1), A. J. Coster (2), S.-R. Zhang (2), R. M. McGranaghan (1), S. G. Shepherd (1), J. B. H. Baker

More information

The Ionosphere and its Impact on Communications and Navigation. Tim Fuller-Rowell NOAA Space Environment Center and CIRES, University of Colorado

The Ionosphere and its Impact on Communications and Navigation. Tim Fuller-Rowell NOAA Space Environment Center and CIRES, University of Colorado The Ionosphere and its Impact on Communications and Navigation Tim Fuller-Rowell NOAA Space Environment Center and CIRES, University of Colorado Customers for Ionospheric Information High Frequency (HF)

More information

Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite

Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite S. G. Meyer 1,2, A. B. Collier 1,2, C. J. Rodger 3 1 SANSA Space Science, Hermanus, South Africa 2 School

More information

From Wikipedia, the free encyclopedia

From Wikipedia, the free encyclopedia Ionosphere From Wikipedia, the free encyclopedia The ionosphere is the uppermost part of the atmosphere, distinguished because it is ionized by solar radiation. It plays an important part in atmospheric

More information

Assimilation Ionosphere Model

Assimilation Ionosphere Model Assimilation Ionosphere Model Robert W. Schunk Space Environment Corporation 221 North Spring Creek Parkway, Suite A Providence, UT 84332 phone: (435) 752-6567 fax: (435) 752-6687 email: schunk@spacenv.com

More information

HANDBOOK THE IONOSPHERE AND ITS EFFECTS ON RADIOWAVE PROPAGATION. A guide with background to ITU-R procedures for radio planners and users

HANDBOOK THE IONOSPHERE AND ITS EFFECTS ON RADIOWAVE PROPAGATION. A guide with background to ITU-R procedures for radio planners and users HANDBOOK THE IONOSPHERE AND ITS EFFECTS ON RADIOWAVE PROPAGATION A guide with background to ITU-R procedures for radio planners and users - iii - CONTENTS CHAPTER 1 - INTRODUCTION... 1 1.1 RELATIONSHIP

More information

Ionospheric Effects on Aviation

Ionospheric Effects on Aviation Ionospheric Effects on Aviation Recent experience in the observation and research of ionospheric irregularities, gradient anomalies, depletion walls, etc. in USA and Europe Stan Stankov, René Warnant,

More information

Plasma effects on transionospheric propagation of radio waves II

Plasma effects on transionospheric propagation of radio waves II Plasma effects on transionospheric propagation of radio waves II R. Leitinger General remarks Reminder on (transionospheric) wave propagation Reminder of propagation effects GPS as a data source Some electron

More information

A FEASIBILITY STUDY INTO THE POSSIBILITY OF IONOSPHERIC PROPAGATION OF LOW VHF (30 ~ 35 MHZ) SIGNALS BETWEEN SOUTH AFRICA AND CENTRAL AFRICA

A FEASIBILITY STUDY INTO THE POSSIBILITY OF IONOSPHERIC PROPAGATION OF LOW VHF (30 ~ 35 MHZ) SIGNALS BETWEEN SOUTH AFRICA AND CENTRAL AFRICA A FEASIBILITY STUDY INTO THE POSSIBILITY OF IONOSPHERIC PROPAGATION OF LOW VHF (30 ~ 35 MHZ) SIGNALS BETWEEN SOUTH AFRICA AND CENTRAL AFRICA A thesis submitted in fulfilment of the requirements for the

More information

EFFECT OF IONOSPHERIC INDUCED DEPOLARIZA- TION ON SATELLITE SOLAR POWER STATION

EFFECT OF IONOSPHERIC INDUCED DEPOLARIZA- TION ON SATELLITE SOLAR POWER STATION Progress In Electromagnetics Research Letters, Vol. 9, 39 47, 29 EFFECT OF IONOSPHERIC INDUCED DEPOLARIZA- TION ON SATELLITE SOLAR POWER STATION K. Chaudhary and B. R. Vishvakarma Electronics Engineering

More information

1. Terrestrial propagation

1. Terrestrial propagation Rec. ITU-R P.844-1 1 RECOMMENDATION ITU-R P.844-1 * IONOSPHERIC FACTORS AFFECTING FREQUENCY SHARING IN THE VHF AND UHF BANDS (30 MHz-3 GHz) (Question ITU-R 218/3) (1992-1994) Rec. ITU-R PI.844-1 The ITU

More information

Ionospheric Propagation

Ionospheric Propagation Ionospheric Propagation Page 1 Ionospheric Propagation The ionosphere exists between about 90 and 1000 km above the earth s surface. Radiation from the sun ionizes atoms and molecules here, liberating

More information

On the response of the equatorial and low latitude ionospheric regions in the Indian sector to the large magnetic disturbance of 29 October 2003

On the response of the equatorial and low latitude ionospheric regions in the Indian sector to the large magnetic disturbance of 29 October 2003 Ann. Geophys., 27, 2539 2544, 2009 Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Annales Geophysicae On the response of the equatorial and low latitude ionospheric

More information

Study of the ionosphere of Mars: application and limitations of the Chapman-layer model

Study of the ionosphere of Mars: application and limitations of the Chapman-layer model Highlights of Spanish Astrophysics VI, Proceedings of the IX Scientific Meeting of the Spanish Astronomical Society held on September 13-17, 2010, in Madrid, Spain. M. R. Zapatero Osorio et al. (eds.)

More information

Radio Frequency Propagation: A General Overview from LF to VHF.

Radio Frequency Propagation: A General Overview from LF to VHF. Radio Frequency Propagation: A General Overview from LF to VHF. Presented by: Mike Parkin GØJMI Slide 1 Introduction Mike Parkin: First licensed as G8NDJ in 1977. Became GØJMI in 1988. Interests in Radio

More information

How the ionosphere of Mars works

How the ionosphere of Mars works How the ionosphere of Mars works This hazy region contains the atmosphere and ionosphere of Mars Paul Withers Boston University (withers@bu.edu) Department Lecture Series, EAPS, MIT Wednesday 2012.02.08

More information

TRANSEQUATORIAL RADIO PROPAGATION

TRANSEQUATORIAL RADIO PROPAGATION TRANSEQUATORIAL RADIO PROPAGATION 1 Introduction Most ionospheric models consider the ionosphere as a series of horizontal layers that vary only slowly with time and geographical location. Propagation

More information

Assimilation Ionosphere Model

Assimilation Ionosphere Model Assimilation Ionosphere Model Robert W. Schunk Space Environment Corporation 399 North Main, Suite 325 Logan, UT 84321 phone: (435) 752-6567 fax: (435) 752-6687 email: schunk@spacenv.com Award #: N00014-98-C-0085

More information

Propagation Software Review rev 1

Propagation Software Review rev 1 Propagation Software Review rev 1 Carl Luetzelschwab K9LA k9la@arrl.net :KDW:H UH*RLQJWR&RYHU The model of the ionosphere :KDW VFRPPRQDPRQJDOOWKHVRIWZDUH Getting started with propagation predictions :KDW

More information

Spatial and temporal extent of ionospheric anomalies during sudden stratospheric warmings in the daytime ionosphere

Spatial and temporal extent of ionospheric anomalies during sudden stratospheric warmings in the daytime ionosphere Spatial and temporal extent of ionospheric anomalies during sudden stratospheric warmings in the daytime ionosphere Larisa Goncharenko, Shunrong Zhang, Anthea Coster, Leonid Benkevitch, Massachusetts Institute

More information

Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere

Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere RADIO SCIENCE, VOL. 44,, doi:10.1029/2008rs004081, 2009 Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere David J. Pawlowski 1 and Aaron J. Ridley

More information

Chapter 1: Telecommunication Fundamentals

Chapter 1: Telecommunication Fundamentals Chapter 1: Telecommunication Fundamentals Block Diagram of a communication system Noise n(t) m(t) Information (base-band signal) Signal Processing Carrier Circuits s(t) Transmission Medium r(t) Signal

More information

VI. Signal Propagation Effects. Image courtesy of

VI. Signal Propagation Effects. Image courtesy of VI. Signal Propagation Effects Image courtesy of www.tpub.com 56 VI. Signal Propagation Effects Name Date Class At Home Assignment Tune to the most remote AM station you can find. You should attempt to

More information

50 MHz F 2 Propagation Mechanisms

50 MHz F 2 Propagation Mechanisms Jim Kennedy, 2000, 50 MHz F2 Propagation Mechanisms, Proc. 34 th Conference of the Central States VHF Society, pp 87-105, ARRL 50 MHz F 2 Propagation Mechanisms Introduction J. R. Kennedy K6MIO/KH6 Gemini

More information

The USU-GAIM Data Assimilation Models for Ionospheric Specifications and Forecasts

The USU-GAIM Data Assimilation Models for Ionospheric Specifications and Forecasts The USU-GAIM Data Assimilation Models for Ionospheric Specifications and Forecasts L. Scherliess, R. W. Schunk, L. C. Gardner, L. Zhu, J.V. Eccles and J.J Sojka Center for Atmospheric and Space Sciences

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION v ABSTRACT The main purpose of the study is to determine the parameters used to identify the variability of the ionospheric region in Malaysia. In order to contribute to the development of a model of ionospheric

More information

Real-time ionosphere monitoring by three-dimensional tomography over Japan

Real-time ionosphere monitoring by three-dimensional tomography over Japan Real-time ionosphere monitoring by three-dimensional tomography over Japan 1* Susumu Saito, 2, Shota Suzuki, 2 Mamoru Yamamoto, 3 Chia-Hun Chen, and 4 Akinori Saito 1 Electronic Navigation Research Institute,

More information

Daily and seasonal variations of TID parameters over the Antarctic Peninsula

Daily and seasonal variations of TID parameters over the Antarctic Peninsula Daily and seasonal variations of TID parameters over the Antarctic Peninsula A. Zalizovski 1, Y. Yampolski 1, V. Paznukhov 2, E. Mishin 3, A. Sopin 1 1. Institute of Radio Astronomy, National Academy of

More information

Monitoring the Ionosphere and Neutral Atmosphere with GPS

Monitoring the Ionosphere and Neutral Atmosphere with GPS Monitoring the Ionosphere and Neutral Atmosphere with GPS Richard B. Langley Geodetic Research Laboratory Department of Geodesy and Geomatics Engineering University of New Brunswick Fredericton, N.B. Division

More information

Ducting and Spotlight Propagation on 160m Carl Luetzelschwab K9LA

Ducting and Spotlight Propagation on 160m Carl Luetzelschwab K9LA Ducting and Spotlight Propagation on 160m Carl Luetzelschwab K9LA [this article appeared in the December 2005 issue of CQ] If you enjoyed reading about the issues that contribute to the unpredictability

More information

Broad Principles of Propagation 4C4

Broad Principles of Propagation 4C4 Broad Principles of Propagation ledoyle@tcd.ie 4C4 Starting at the start All wireless systems use spectrum, radiowaves, electromagnetic waves to function It is the fundamental and basic ingredient of

More information

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz Rec. ITU-R P.1147-2 1 RECOMMENDATION ITU-R P.1147-2 Prediction of sky-wave field strength at frequencies between about 150 and 1 700 khz (Question ITU-R 225/3) (1995-1999-2003) The ITU Radiocommunication

More information

Satellite Navigation Science and Technology for Africa. 23 March - 9 April, The African Ionosphere

Satellite Navigation Science and Technology for Africa. 23 March - 9 April, The African Ionosphere 2025-28 Satellite Navigation Science and Technology for Africa 23 March - 9 April, 2009 The African Ionosphere Radicella Sandro Maria Abdus Salam Intern. Centre For Theoretical Physics Aeronomy and Radiopropagation

More information