Cmos Full Adder and Multiplexer Based Encoder for Low Resolution Flash Adc

Size: px
Start display at page:

Download "Cmos Full Adder and Multiplexer Based Encoder for Low Resolution Flash Adc"

Transcription

1 IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: ,p- ISSN: Volume 12, Issue 2, Ver. II (Mar.-Apr. 2017), PP Cmos Full Adder and Multiplexer Based Encoder for Low Resolution Flash Adc M.Kiranmai 1,V.Y.S.S.Sudir patnaikuni 2, K.Mouli 3, B.Manikanta sai 4, V.Nancharaiah 5. 1 student, Dept of ECE, Lendi institute of engineering and technology, jntuk, India. 2 Assistant Professor, Dept of ECE, Lendi institute of engineering and technology, jntuk, India. 3 student, Dept of ECE, Lendi institute of engineering and technology, jntuk, India. 4 student, Dept of ECE, Lendi institute of engineering and technology, jntuk, India. 5 Associate professor, Dept of ECE, Lendi institute of engineering and technology, jntuk, India. Abstract: The present investigation proposed a low power encoding scheme of thermometer code to binary code converter for flash analog to digital conversion by the design of different circuits. In this paper, we have proposed three encoding techniques for the conversion of analog to digital signal using Multiplexer based encoder, heterogeneous encoder and encoding technique using dynamic logic circuits providing low power of operation and we compare the results obtained from each technique based on power consumption. The multiplexer based encoder was designed with the help of multiplexers which consumes less amount of power comparing with other designs. Keywords: Analog to digital converter, Multiplexer based encoder, TIQ comparator, Heterogeneous encoder, Dynamic logic. I. Introduction The flash ADC is a fastest speed compared to other ADC architectures. Therefore, it is mainly used for high speed and large bandwidth applications such as radar processing, digital oscilloscopes and so on. The flash ADC is also known as parallel ADC because of its parallel architecture. Analog to Digital Converter (ADC) plays an important role in digital signal processing systems. The main challenges of designing ADC for system on chip applications are high speed, low voltage, and low power consumption. Reducing the power consumption is a major concern in a portable device. Low power techniques are applied to prolong the battery life of a system. Similarly ADCs also require a low power technique in the design to reduce the total power consumption of ADC.Speed, power dissipation and resolution are the three crucial parameters the design of any ADC which cannot be changed once the design is complete. In wireless and mobile communication applications require a high speed ADC with low resolution. In these applications, flash ADC is the most suitable ADC because of its parallel operation. The complete conversion is done in a single cycle with the help of a large number of comparators. The below figure illustrates the structural design of a typical flash ADC. This architecture requires 2 n -1 comparators for the operation. For example if the circuit requires five bit as output then the number of comparators to be used was 31 as per calculation. The exponential increase of the number of comparators in flash ADC leads to a large die size as well as large power consumption in a chip. The reference voltage of each comparator is provided by an external reference source. The reference voltages are equally spaced between largest reference voltage and the smallest reference voltage. A common analog input is given to each and every individual comparator which are used in flash ADC. Since all the comparators are functioning in parallel way, the output is produced in a single cycle. The digital outputs which are obtained in a specific manner from the comparators are called thermocode and further there will be a encoder for converting the resulting thermocode to binary code. Here, in this paper the encoders designed for the conversion are multiplexer based encoder, heterogeneous encoder and dynamic logic using full adders. DOI: / Page

2 The proposed encoder dynamic logic utilizes the properties of logic style implementation and Wallace tree implementation. In order to reduce the power dissipation the logic implementation is done with the use of dynamic logic. To make the code as more resilient i.e., lack of errors last stage was implemented using Wallace tree encoder. The present investigation was described as follows. The designing of three encoders explains in section 2. The method of implementation is described in the section3. Succeeding results, comparison and conclusion are provided. II. Design Analysis Of The Propoed Encoders The conversion from output of a comparator thermometer code to binary code is one of the bottlenecks in flash ADC. The bubble error usually results from timing differences between clock and signal lines and it is a situation where 1 is found above zero in thermometer code. The binary output totally depends on the output of a comparator based on number of 1 s.if the number of 1 s at the output was n then the binary output code was n. While designing thermometer code to binary code conversion two parameters are taken into consideration is error handling capability and power dissipation. Offset voltage in the comparator creates a bubble error in the thermometer code. Generally two methods are introduced to reduce the bubble errors. The first method is to convert thermometer code to gray code and then convert to binary code. But the accuracy of gray code steadily decreases as more number of comparators are used and more number of bubble errors is present in the thermometer code. The second method is the usage of Wallace tree encoder for the implementation using full adders for dynamic logic. This technique offers high robustness to bubble error and stuck at fault error because of its inherent global error correction or suppression capability. The disadvantage of this method is to provide a large delay of the encoder. In the first stage, conversion of thermometer code into two different four bit binary codes is done. With the help of four full adders and two different four bit binary codes, the final binary code was designed. The design equations which relates the thermometer code and binary code is presented and truth table is also shown below. MUX and heterogeneous encoders was designed with the help of full adders and multiplexers where the binary output depends on the ONEs obtained from the comparators as described below. DESIGN EQUATIONS: DOI: / Page

3 Table- Thermometer to binary code converter. 2.1 TIQ COMPARATOR In N bit Flash ADC 2 N -1 comparator is employed to compare the reference voltage with the input voltage to induce the thermometer code. Generally, resistor ladder is employed to generate reference voltage. This design is complex and additionally consumes more power and area. So in this paper we have proposed a comparator based on Threshold Inverter Quantization(TIQ) technique which is alternative approach to reduce the power consumption and chip area, it is basic CMOS inverter consists of one PMOS and one NMOS transistor with the switching threshold voltage.tiq comparator made up of two cascade CMOS inverter where the first inverter is used to set the reference voltage of comparator by varying the parameters like width and length of PMOS and NMOS transistors where as the second inverter increases the voltage gain and manage linearity balance for the voltage rising and falling intervals of high frequencies input signals. Fig:TIQ comparator MULTIPLEXER ENCODING TECHNIQUE MUX based encoders operates at high speed and covers the small chip area compared to the dynamic logic encoding technique. This encoder is implemented by grouping the results of smaller length MUX based encoder to develop a high bit resolution encoder to convert thermometer code into binary output. It gives better result than previous encoders in terms of power consumption, speed and space. DOI: / Page

4 2.1.2 HETEROGENEOUS ENCODER Heterogeneous encoder can be implemented by using any one of the existing encoders like Wallace tree encoder and multiplexer based encoder. This encoder was designed using full adders and multiplexers as shown below. In this selection signal is used from MUX which is critical. This can tolerant the bubble error and remaining signal can be used as inputs. Wallace encoder is also free from bubble error but the circuit is complex in nature. Hence, this encoder is designed which is easy to implement and also consumes less power. III. Implementation Of Proposed Encoders In order to convert the thermometer code to binary code different methods are implemented based on design equations. Pseudo NMOS, static CMOS and dynamic logic are the methods implemented for the conversion. One of the proposed encoding technique was dynamic logic as it overcome the disadvantages of other two methods. Since the power dissipation, consumption and number of transistors used was high for those two methods. Based on this intention, we proposed an encoding technique by dynamic logic providing low power consumption and medium speed of operation. The operation of dynamic logic evaluates in two phases namely precharge and evaluation. During precharging phase, when CLK=0, the output mode is fully charged to supply voltage vdd irrespective of pull down network through pull up transistor. At this time, the pull down path is disconnected as CLK is connected directly to NMOS transistor. The next phase is evaluation is done when CLK=1. In this case the pull up transistor is disconnected from the circuit and pull down path is discharged conditionally based on different inputs given to the circuit. The main thing to be concerned was during evaluation phase, the input to the gate has to make atmost one transition. The schematic implementation of dynamic logic, MUX based encoders and heterogeneous encoder are shown below. DOI: / Page

5 3.1 PROPOSED ENCODING TECHNIQUE USING DYNAMIC LOGIC IMPLEMENTATION OF b IMPLEMENTATION OF b2 DOI: / Page

6 3.1.3 IMPLEMENTATION OF b1 Cmos Full Adder and Multiplexer Based Encoder for Low Resolution Flash Adc IMPLEMENTATION OF b0 3.2 MULTIPLEXER BASED ENCODER The operation of multiplexer based encoder is as follows. The input signal is given to the TIQ comparator as a sinusoidal and it compares it with the threshold voltage generated by the first cmos invereter of comparator and generates the output signal as binary generating a thermometer code from all comparators. The output of each comparator is given to multiplexers in which each cell counts number of logical ONEs at each entries performing operation and generates a final binary output. DOI: / Page

7 3.2.1 IMPLEMENTATION OF CMOS FULL ADDER We have designed a CMOS full adder which consists of 28 transistors which consumes less amount of power and the design equation is as follows 3.3 HETEROGENEOUS BASED ENCODER IV. Simulation Results The proposed encoders which are designed had been tested for every inputs given in the truth table and results were verified. Three types of encoders used in this paper were compared based on the results obtained from power analysis. The MUX based encoder consumes less power for operation comparing with dynamic logic and heterogeneous encoders as shown in the table. The reconfigurable capability of the proposed encoders makes the design adaptable to reconfigurable flash ADC architecture. DOI: / Page

8 4.1 SIMULATED OUTPUT Cmos Full Adder and Multiplexer Based Encoder for Low Resolution Flash Adc 4.2 COMPARISON TABLE: Results Dynamic logic Heterogenous encoder MUX based encoder Architecture Flash Flash Flash Resolution 5 bits 4 bits 4 bits Vdd 5 V 5 V 5 V Power mw 1.08mW mW consumption V. Conclusion Now a days the growth of portable device and battery operated like cell phone, laptops has increased. Hence the device should be designed which consumes less power and have minimal area and device can be operated for long time. TIQ removes the array of resistors that makes the ADC devices to operate faster and takes less area. Hence we have designed three encoding techniques in which a MUX based encoder for the binary conversion which consumes less amount of power compared to the other techniques based on above results References [1]. D.Lee, J.Yoo, K.Choi and J. Ghaznavi, Fat-tree encoder design for ultrahigh speed flash analog to digital converters I proc. IEEE Mid-west Symp. Circuits Syst, pp , Aug [2]. S. Sheikhaei, S. Mirabbasi, A. Ivanov, An Encoder for a 5GS/s 4bit flash A/D converter in 0.18um CMOS,Canadian Conference on Electrical and Computer Engineering, pp , May [3]. [Jan M Rabaey, Anantha Chandra kasan, Borivoje Nikolic, Digital Integrated Circuits, a design perspective, second edition, Prentice Hall [4]. Vudadha, Chetan, et al. Low-Power Self Reconfigurable Multiplexer Based Decoder for Adaptive Resolution Flash ADCs. 25 th IEEE International conference on VLSI Design, pp , Jan [5]. Sail, E.; Vesterbacka, M, A multiplexer based decoder for flash analog to- digital converters, IEEE region 10 conference, TENCON 2004, pp , Nov [6]. Sall, Erik, Mark Vesterbacka, and K.Ola Andersson. A study of digital decoders in flash analog-to-digital converters, Proc. of International symposium on Circuits and systems, pp , May [7]. Gupta, Yogendra, et al. Design of low power and high speed multiplexer based Thermometer to Gray Encoder,IEEE International Symposium on Intelligent Signal Processing and Communications Systems, pp , Nov DOI: / Page

A High Speed Encoder for a 5GS/s 5 Bit Flash ADC

A High Speed Encoder for a 5GS/s 5 Bit Flash ADC A High Speed Encoder for a 5GS/s 5 Bit Flash ADC George Tom Varghese and K. K. Mahapatra Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela, India E-mail:

More information

A NEW APPROACH TO DESIGN LOW POWER CMOS FLASH A/D CONVERTER

A NEW APPROACH TO DESIGN LOW POWER CMOS FLASH A/D CONVERTER A NEW APPROACH TO DESIGN LOW POWER CMOS FLASH A/D CONVERTER C Mohan¹ and T Ravisekhar 2 ¹M. Tech (VLSI) Student, Sree Vidyanikethan Engineering College (Autonomous), Tirupati, India 2 Assistant Professor,

More information

Index terms: Analog to digital converter, Flash ADC, Pseudo NMOS logic, Pseudo Dynamic CMOS logic multi threshold voltage CMOS inverters.

Index terms: Analog to digital converter, Flash ADC, Pseudo NMOS logic, Pseudo Dynamic CMOS logic multi threshold voltage CMOS inverters. Low Power CMOS Flash ADC C Mohan, T Ravisekhar Abstract The present investigation proposes an efficient low power encoding scheme intended for a flash analog to digital converter. The designing of a thermometer

More information

Design and Implementation of Low Power Dynamic Thermometer Encoder For Flash ADC

Design and Implementation of Low Power Dynamic Thermometer Encoder For Flash ADC Design and Implementation of Low Power Dynamic Thermometer Encoder For Flash ADC Abstract: In the design of a low power Flash ADC, a major challenge lies in designing a high speed thermometer code to binary

More information

High Efficiency Flash ADC Using High Speed Low Power Double Tail Comparator

High Efficiency Flash ADC Using High Speed Low Power Double Tail Comparator High Efficiency Flash ADC Using High Speed Low Power Double Tail Sruthi James 1, Ancy Joy 2, Dr.K.T Mathew 3 PG Student [VLSI], Dept. of ECE, Viswajyothy College Of Engineering & Technology, Vazhakulam,Kerala,

More information

Design and Implementation of combinational circuits in different low power logic styles

Design and Implementation of combinational circuits in different low power logic styles IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. II (Nov -Dec. 2015), PP 01-05 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Design and Implementation of

More information

Design And Implementation of Pulse-Based Low Power 5-Bit Flash Adc In Time-Domain

Design And Implementation of Pulse-Based Low Power 5-Bit Flash Adc In Time-Domain IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 13, Issue 3, Ver. I (May. - June. 2018), PP 55-60 www.iosrjournals.org Design And Implementation

More information

A Novel ROM Architecture for Reducing Bubble and Metastability Errors in High Speed Flash ADCs

A Novel ROM Architecture for Reducing Bubble and Metastability Errors in High Speed Flash ADCs 1 A Novel ROM Architecture for Reducing Bubble and Metastability Errors in High Speed Flash ADCs Mustafijur Rahman, Member, IEEE, K. L. Baishnab, F. A. Talukdar, Member, IEEE Dept. of Electronics & Communication

More information

TIQ Based Analog to Digital Converters and Power Reduction Principles

TIQ Based Analog to Digital Converters and Power Reduction Principles JOINT ADVANCED STUDENT SCHOOL 2011, MOSCOW TIQ Based Analog to Digital Converters and Power eduction Principles Final eport by Vahe Arakelyan 2nd year Master Student Synopsys Armenia Educational Department,

More information

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN ISSN 0976-6480 (Print) ISSN 0976-6499

More information

VLSI Implementation of a Simple Spiking Neuron Model

VLSI Implementation of a Simple Spiking Neuron Model VLSI Implementation of a Simple Spiking Neuron Model Abdullah H. Ozcan Vamshi Chatla ECE 6332 Fall 2009 University of Virginia aho3h@virginia.edu vkc5em@virginia.edu ABSTRACT In this paper, we design a

More information

Design of 4-bit Flash Analog to Digital Converter using CMOS Comparator in Tanner Tool

Design of 4-bit Flash Analog to Digital Converter using CMOS Comparator in Tanner Tool 70 Design of 4-bit Flash Analog to Digital Converter using CMOS Comparator in Tanner Tool Nupur S. Kakde Dept. of Electronics Engineering G.H.Raisoni College of Engineering Nagpur, India Amol Y. Deshmukh

More information

A Multiplexer-Based Digital Passive Linear Counter (PLINCO)

A Multiplexer-Based Digital Passive Linear Counter (PLINCO) A Multiplexer-Based Digital Passive Linear Counter (PLINCO) Skyler Weaver, Benjamin Hershberg, Pavan Kumar Hanumolu, and Un-Ku Moon School of EECS, Oregon State University, 48 Kelley Engineering Center,

More information

Algebraic Modeling of New Enhanced Linearity Threshold Comparator based Flash ADC

Algebraic Modeling of New Enhanced Linearity Threshold Comparator based Flash ADC IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 6, Ver. II (Nov - Dec. 2014), PP 11-19 e-issn: 2319 4200, p-issn No. : 2319 4197 Algebraic Modeling of New Enhanced Linearity Threshold

More information

Gdi Technique Based Carry Look Ahead Adder Design

Gdi Technique Based Carry Look Ahead Adder Design IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 6, Ver. I (Nov - Dec. 2014), PP 01-09 e-issn: 2319 4200, p-issn No. : 2319 4197 Gdi Technique Based Carry Look Ahead Adder Design

More information

An Efficient and High Speed 10 Transistor Full Adders with Lector Technique

An Efficient and High Speed 10 Transistor Full Adders with Lector Technique IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 5, Ver. II (Sep.- Oct. 2017), PP 68-73 www.iosrjournals.org An Efficient and

More information

A 4 Bit, 1.22V a New MUX Encoder based Flash ADC using TIQ Technique

A 4 Bit, 1.22V a New MUX Encoder based Flash ADC using TIQ Technique IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 05, 2015 ISSN (online): 2321-0613 A 4 Bit, 1.22V a New MUX Encoder based Flash ADC using TIQ Technique S. P. Praveen 1

More information

Investigation on Performance of high speed CMOS Full adder Circuits

Investigation on Performance of high speed CMOS Full adder Circuits ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Investigation on Performance of high speed CMOS Full adder Circuits 1 KATTUPALLI

More information

A REVIEW ON 4 BIT FLASH ANALOG TO DIGITAL CONVERTOR

A REVIEW ON 4 BIT FLASH ANALOG TO DIGITAL CONVERTOR RESEARCH ARTICLE OPEN ACCESS A REVIEW ON 4 BIT FLASH ANALOG TO DIGITAL CONVERTOR Vijay V. Chakole 1, Prof. S. R. Vaidya 2, Prof. M. N. Thakre 3 1 MTech Scholar, S. D. College of Engineering, Selukate,

More information

Low Power and High Performance ALU using Dual Mode Transmission Gate Diffusion Input (DMTGDI)

Low Power and High Performance ALU using Dual Mode Transmission Gate Diffusion Input (DMTGDI) International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-6 Issue-6, August 2017 Low Power and High Performance ALU using Dual Mode Transmission Gate Diffusion Input

More information

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 6545(Print), ISSN 0976 6545(Print) ISSN 0976 6553(Online)

More information

Low Power Adiabatic Logic Design

Low Power Adiabatic Logic Design IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 1, Ver. III (Jan.-Feb. 2017), PP 28-34 www.iosrjournals.org Low Power Adiabatic

More information

High Speed Flash Analog to Digital Converters

High Speed Flash Analog to Digital Converters ECE 551, Analog Integrated Circuit Design, High Speed Flash ADCs, Dec 2005 1 High Speed Flash Analog to Digital Converters Alireza Mahmoodi Abstract Flash analog-to-digital converters, also known as parallel

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 5.71 International Journal of Advance Engineering and Research Development Volume 5, Issue 05, May -2018 e-issn (O): 2348-4470 p-issn (P): 2348-6406 COMPARATIVE

More information

DESIGN, IMPLEMENTATION AND ANALYSIS OF FLASH ADC ARCHITECTURE WITH DIFFERENTIAL AMPLIFIER AS COMPARATOR USING CUSTOM DESIGN APPROACH

DESIGN, IMPLEMENTATION AND ANALYSIS OF FLASH ADC ARCHITECTURE WITH DIFFERENTIAL AMPLIFIER AS COMPARATOR USING CUSTOM DESIGN APPROACH DESIGN, IMPLEMENTATION AND ANALYSIS OF FLASH ADC ARCHITECTURE WITH DIFFERENTIAL AMPLIFIER AS COMPARATOR USING CUSTOM DESIGN APPROACH 1 CHANNAKKA LAKKANNAVAR, 2 SHRIKANTH K. SHIRAKOL, 3 KALMESHWAR N. HOSUR

More information

Design of Robust and power Efficient 8-Bit Ripple Carry Adder using Different Logic Styles

Design of Robust and power Efficient 8-Bit Ripple Carry Adder using Different Logic Styles Design of Robust and power Efficient 8-Bit Ripple Carry Adder using Different Logic Styles Mangayarkkarasi M 1, Joseph Gladwin S 2 1 Assistant Professor, 2 Associate Professor 12 Department of ECE 1 Sri

More information

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) HIGH-SPEED 64-BIT BINARY COMPARATOR USING NEW APPROACH

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) HIGH-SPEED 64-BIT BINARY COMPARATOR USING NEW APPROACH INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) ISSN 0976 6367(Print) ISSN 0976 6375(Online) Volume 4, Issue 1, January- February (2013), pp. 325-336 IAEME:www.iaeme.com/ijcet.asp Journal

More information

Power-Area trade-off for Different CMOS Design Technologies

Power-Area trade-off for Different CMOS Design Technologies Power-Area trade-off for Different CMOS Design Technologies Priyadarshini.V Department of ECE Sri Vishnu Engineering College for Women, Bhimavaram dpriya69@gmail.com Prof.G.R.L.V.N.Srinivasa Raju Head

More information

THE QUANTIZED DIFFERENTIAL COMPARATOR IN FLASH ANALOG TO DIGITAL CONVERTER DESIGN

THE QUANTIZED DIFFERENTIAL COMPARATOR IN FLASH ANALOG TO DIGITAL CONVERTER DESIGN THE QUANTIZED DIFFERENTIAL COMPARATOR IN FLASH ANALOG TO DIGITAL CONVERTER DESIGN Meghana Kulkarni 1, V. Sridhar 2, G.H.Kulkarni 3 1 Asst.Prof., E & C Dept, Gogte Institute of Technology, Bgm, Karnataka,

More information

A High-Speed 64-Bit Binary Comparator

A High-Speed 64-Bit Binary Comparator IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834, p- ISSN: 2278-8735. Volume 4, Issue 5 (Jan. - Feb. 2013), PP 38-50 A High-Speed 64-Bit Binary Comparator Anjuli,

More information

Design and Analysis of Sram Cell for Reducing Leakage in Submicron Technologies Using Cadence Tool

Design and Analysis of Sram Cell for Reducing Leakage in Submicron Technologies Using Cadence Tool IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 2 Ver. II (Mar Apr. 2015), PP 52-57 www.iosrjournals.org Design and Analysis of

More information

High-Performance of Domino Logic Circuit for Wide Fan-In Gates Using Mentor Graphics Tools

High-Performance of Domino Logic Circuit for Wide Fan-In Gates Using Mentor Graphics Tools IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. II (Nov -Dec. 2015), PP 06-15 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org High-Performance of Domino Logic

More information

Performance Analysis Comparison of a Conventional Wallace Multiplier and a Reduced Complexity Wallace multiplier

Performance Analysis Comparison of a Conventional Wallace Multiplier and a Reduced Complexity Wallace multiplier IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 2, Ver. I (Mar. - Apr. 2015), PP 23-27 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Performance Analysis Comparison

More information

High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells

High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells Reza Faghih Mirzaee, Mohammad Hossein Moaiyeri, Keivan Navi Abstract In this paper we present two novel 1-bit full adder cells in dynamic logic

More information

Design and Analyse Low Power Wallace Multiplier Using GDI Technique

Design and Analyse Low Power Wallace Multiplier Using GDI Technique IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 2, Ver. III (Mar.-Apr. 2017), PP 49-54 www.iosrjournals.org Design and Analyse

More information

Design of 10-bit current steering DAC with binary and segmented architecture

Design of 10-bit current steering DAC with binary and segmented architecture IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 13, Issue 3 Ver. III (May. June. 2018), PP 62-66 www.iosrjournals.org Design of 10-bit current

More information

II. Previous Work. III. New 8T Adder Design

II. Previous Work. III. New 8T Adder Design ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: High Performance Circuit Level Design For Multiplier Arun Kumar

More information

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection NMOS Transistors in Series/Parallel Connection Topic 6 CMOS Static & Dynamic Logic Gates Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Transistors can be thought

More information

Design of a Low Voltage low Power Double tail comparator in 180nm cmos Technology

Design of a Low Voltage low Power Double tail comparator in 180nm cmos Technology Research Paper American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-3, Issue-9, pp-15-19 www.ajer.org Open Access Design of a Low Voltage low Power Double tail comparator

More information

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 ISSN 0976-6480 (Print) ISSN

More information

A 2-bit/step SAR ADC structure with one radix-4 DAC

A 2-bit/step SAR ADC structure with one radix-4 DAC A 2-bit/step SAR ADC structure with one radix-4 DAC M. H. M. Larijani and M. B. Ghaznavi-Ghoushchi a) School of Engineering, Shahed University, Tehran, Iran a) ghaznavi@shahed.ac.ir Abstract: In this letter,

More information

Deep-Submicron CMOS Design Methodology for High-Performance Low- Power Analog-to-Digital Converters

Deep-Submicron CMOS Design Methodology for High-Performance Low- Power Analog-to-Digital Converters Deep-Submicron CMOS Design Methodology for High-Performance Low- Power Analog-to-Digital Converters Abstract In this paper, we present a complete design methodology for high-performance low-power Analog-to-Digital

More information

IMPLEMENTATION OF POWER GATING TECHNIQUE IN CMOS FULL ADDER CELL TO REDUCE LEAKAGE POWER AND GROUND BOUNCE NOISE FOR MOBILE APPLICATION

IMPLEMENTATION OF POWER GATING TECHNIQUE IN CMOS FULL ADDER CELL TO REDUCE LEAKAGE POWER AND GROUND BOUNCE NOISE FOR MOBILE APPLICATION International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol.2, Issue 3 Sep 2012 97-108 TJPRC Pvt. Ltd., IMPLEMENTATION OF POWER

More information

A SUBSTRATE BIASED FULL ADDER CIRCUIT

A SUBSTRATE BIASED FULL ADDER CIRCUIT International Journal on Intelligent Electronic System, Vol. 8 No.. July 4 9 A SUBSTRATE BIASED FULL ADDER CIRCUIT Abstract Saravanakumar C., Senthilmurugan S.,, Department of ECE, Valliammai Engineering

More information

Implementation of Low Power Inverter using Adiabatic Logic

Implementation of Low Power Inverter using Adiabatic Logic Implementation of Low Power Inverter using Adiabatic Logic Pragati Upadhyay 1, Vishal Moyal 2 M.E. [VLSI Design], Dept. of ECE, SSGI SSTC (FET), Bhilai, Chhattisgarh, India 1 Associate Professor, Dept.

More information

Optimization of Digitally Controlled Oscillator with Low Power

Optimization of Digitally Controlled Oscillator with Low Power IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. I (Nov -Dec. 2015), PP 52-57 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Optimization of Digitally Controlled

More information

Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power Applications

Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power Applications International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 11 (June 2014) PP: 1-7 Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power

More information

Design Of Arthematic Logic Unit using GDI adder and multiplexer 1

Design Of Arthematic Logic Unit using GDI adder and multiplexer 1 Design Of Arthematic Logic Unit using GDI adder and multiplexer 1 M.Vishala, 2 Maddana, 1 PG Scholar, Dept of VLSI System Design, Geetanjali college of engineering & technology, 2 HOD Dept of ECE, Geetanjali

More information

Implementation of High Performance Carry Save Adder Using Domino Logic

Implementation of High Performance Carry Save Adder Using Domino Logic Page 136 Implementation of High Performance Carry Save Adder Using Domino Logic T.Jayasimha 1, Daka Lakshmi 2, M.Gokula Lakshmi 3, S.Kiruthiga 4 and K.Kaviya 5 1 Assistant Professor, Department of ECE,

More information

nd International Conference on VLSI Design

nd International Conference on VLSI Design 29 22nd International Conference on VLI Design Design of a Low Power, Variable-Resolution Flash ADC reehari Veeramachanen, A. Mahesh Kumar, Venkat Tummala*,M.B. rinivas Centre for VLI and Embedded ystem

More information

A Comparative Analysis of Low Power and Area Efficient Digital Circuit Design

A Comparative Analysis of Low Power and Area Efficient Digital Circuit Design A Comparative Analysis of Low Power and Area Efficient Digital Circuit Design 1 B. Dilli Kumar, 2 A. Chandra Babu, 2 V. Prasad 1 Assistant Professor, Dept. of ECE, Yoganada Institute of Technology & Science,

More information

Design and Implementation of Complex Multiplier Using Compressors

Design and Implementation of Complex Multiplier Using Compressors Design and Implementation of Complex Multiplier Using Compressors Abstract: In this paper, a low-power high speed Complex Multiplier using compressor circuit is proposed for fast digital arithmetic integrated

More information

A Novel Approach for High Speed and Low Power 4-Bit Multiplier

A Novel Approach for High Speed and Low Power 4-Bit Multiplier IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 2319 4200, ISBN No. : 2319 4197 Volume 1, Issue 3 (Nov. - Dec. 2012), PP 13-26 A Novel Approach for High Speed and Low Power 4-Bit Multiplier

More information

Design of 1.8V, 72MS/s 12 Bit Pipeline ADC in 0.18µm Technology

Design of 1.8V, 72MS/s 12 Bit Pipeline ADC in 0.18µm Technology Design of 1.8V, 72MS/s 12 Bit Pipeline ADC in 0.18µm Technology Ravi Kumar 1, Seema Kanathe 2 ¹PG Scholar, Department of Electronics and Communication, Suresh GyanVihar University, Jaipur, India ²Assistant

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, MAY-2013 ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, MAY-2013 ISSN High-Speed 64-Bit Binary using Three Different Logic Styles Anjuli (Student Member IEEE), Satyajit Anand Abstract--High-speed 64-bit binary comparator using three different logic styles is proposed in

More information

Design of Low Power Double Tail Comparator by Adding Switching Transistors

Design of Low Power Double Tail Comparator by Adding Switching Transistors Design of Low Power Double Tail Comparator by Adding Switching Transistors K.Mathumathi (1), S.Selvarasu (2), T.Kowsalya (3) [1] PG Scholar[VLSI, Muthayammal Engineering College, Rasipuram, Namakkal, Tamilnadu,

More information

A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS

A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS Shruti Gatade 1, M. Nagabhushan 2, Manjunath.R 3 1,3 Student, Department of ECE, M S Ramaiah Institute of Technology, Bangalore (India) 2 Assistant

More information

Area and Power Efficient Pass Transistor Based (PTL) Full Adder Design

Area and Power Efficient Pass Transistor Based (PTL) Full Adder Design This work by IJARBEST is licensed under Creative Commons Attribution 4.0 International License. Available at https://www.ijarbest.com Area and Power Efficient Pass Transistor Based (PTL) Full Adder Design

More information

A 1.2 Vpp, 5.53 µw; 3-Bit Flash Analog to Digital Converter Using Diode Free Adiabatic Logic Threshold Inverter Quantizer

A 1.2 Vpp, 5.53 µw; 3-Bit Flash Analog to Digital Converter Using Diode Free Adiabatic Logic Threshold Inverter Quantizer IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 08, Issue 2 (February. 2018), V1 PP 58-64 www.iosrjen.org A 1.2 Vpp, 5.53 µw; 3-Bit Flash Analog to Digital Converter

More information

Implementation of Full Adder using Cmos Logic

Implementation of Full Adder using Cmos Logic ISSN: 232-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, July 27- Available at www.ijraset.com Implementation of Full Adder using Cmos Logic Ravika Gupta Undergraduate Student, Dept

More information

Comparison of Power Dissipation in inverter using SVL Techniques

Comparison of Power Dissipation in inverter using SVL Techniques Comparison of Power Dissipation in inverter using SVL Techniques K. Kalai Selvi Assistant Professor, Dept. of Electronics & Communication Engineering, Government College of Engineering, Tirunelveli, India

More information

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY Jasbir kaur 1, Neeraj Singla 2 1 Assistant Professor, 2 PG Scholar Electronics and Communication

More information

Design and Analysis of CMOS based Low Power Carry Select Full Adder

Design and Analysis of CMOS based Low Power Carry Select Full Adder Design and Analysis of CMOS based Low Power Carry Select Full Adder Mayank Sharma 1, Himanshu Prakash Rajput 2 1 Department of Electronics & Communication Engineering Hindustan College of Science & Technology,

More information

[Vivekanand*, 4.(12): December, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Vivekanand*, 4.(12): December, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DESIGN AND IMPLEMENTATION OF HIGH RELIABLE 6T SRAM CELL V.Vivekanand*, P.Aditya, P.Pavan Kumar * Electronics and Communication

More information

Adiabatic Logic Circuits for Low Power, High Speed Applications

Adiabatic Logic Circuits for Low Power, High Speed Applications IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 10 April 2017 ISSN (online): 2349-784X Adiabatic Logic Circuits for Low Power, High Speed Applications Satyendra Kumar Ram

More information

Design and Implementation of ALU Chip using D3L Logic and Ancient Mathematics

Design and Implementation of ALU Chip using D3L Logic and Ancient Mathematics Design and Implementation of ALU Chip using D3L and Ancient Mathematics Mohanarangan S PG Student (M.E-Applied Electronics) Department of Electronics and Communicaiton Engineering Sri Venkateswara College

More information

A Design of Sigma-Delta ADC Using OTA

A Design of Sigma-Delta ADC Using OTA RESEARCH ARTICLE OPEN ACCESS A Design of Sigma-Delta ADC Using OTA Miss. Niveditha Yadav M 1, Mr. Yaseen Basha 2, Dr. Venkatesh kumar H 3 1 Department of ECE, PG Student, NCET/VTU, and Bengaluru, India

More information

Design Analysis of 1-bit Comparator using 45nm Technology

Design Analysis of 1-bit Comparator using 45nm Technology Design Analysis of 1-bit Comparator using 45nm Technology Pardeep Sharma 1, Rajesh Mehra 2 1,2 Department of Electronics and Communication Engineering, National Institute for Technical Teachers Training

More information

Design of 32-bit ALU using Low Power Energy Efficient Full Adder Circuits

Design of 32-bit ALU using Low Power Energy Efficient Full Adder Circuits Design of 32-bit ALU using Low Power Energy Efficient Full Adder Circuits Priyadarshini.V Department of ECE Gudlavalleru Engieering College,Gudlavalleru darshiniv708@gmail.com Ramya.P Department of ECE

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 636 Low Power Consumption exemplified using XOR Gate via different logic styles Harshita Mittal, Shubham Budhiraja

More information

A study to Design and comparison of Full Adder using Various Techniques

A study to Design and comparison of Full Adder using Various Techniques IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735. Volume 7, Issue 5 (Sep. - Oct. 2013), PP 33-37 A study to Design and comparison of Full Adder

More information

A Literature Survey on Low PDP Adder Circuits

A Literature Survey on Low PDP Adder Circuits Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 12, December 2015,

More information

Static and dynamic parameter estimation of Threshold Inverter Quantizer based flash ADC

Static and dynamic parameter estimation of Threshold Inverter Quantizer based flash ADC Volume 118 No. 16 2018, 695-705 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Static and dynamic parameter estimation of Threshold Inverter Quantizer

More information

International Journal of Modern Trends in Engineering and Research

International Journal of Modern Trends in Engineering and Research International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 28-30 April, 2016 Temperaments in the Design of Low-voltage Low-power Double Tail Comparator

More information

Minimization of Area and Power in Digital System Design for Digital Combinational Circuits

Minimization of Area and Power in Digital System Design for Digital Combinational Circuits Indian Journal of Science and Technology, Vol 9(29), DOI: 10.17485/ijst/2016/v9i29/93237, August 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Minimization of Area and Power in Digital System

More information

Design of Multipliers Using Low Power High Speed Logic in CMOS Technologies

Design of Multipliers Using Low Power High Speed Logic in CMOS Technologies Design of Multipliers Using Low Power High Speed Logic in CMOS Technologies Linet. K 1, Umarani.P 2, T. Ravi 3 M.Tech VLSI Design, Dept. of ECE, Sathyabama University, Chennai, Tamilnadu, India 1 Assistant

More information

Design and Implementation of an Ultra-Low Power High Speed CMOS Logic using Cadence

Design and Implementation of an Ultra-Low Power High Speed CMOS Logic using Cadence Design and Implementation of an Ultra-Low Power High Speed CMOS Logic using Cadence L.Vasanth 1, D. Yokeshwari 2 1 Assistant Professor, 2 PG Scholar, Department of ECE Tejaa Shakthi Institute of Technology

More information

An Optimized Design of High-Speed and Energy- Efficient Carry Skip Adder with Variable Latency Extension

An Optimized Design of High-Speed and Energy- Efficient Carry Skip Adder with Variable Latency Extension An Optimized Design of High-Speed and Energy- Efficient Carry Skip Adder with Variable Latency Extension Monisha.T.S 1, Senthil Prakash.K 2 1 PG Student, ECE, Velalar College of Engineering and Technology

More information

A 45nm Flash Analog to Digital Converter for Low Voltage High Speed System-on-Chips

A 45nm Flash Analog to Digital Converter for Low Voltage High Speed System-on-Chips A 45nm Flash Analog to Digital Converter for Low Voltage High Speed System-on-Chips Dhruva Ghai Saraju P. Mohanty Elias Kougianos dvg0010@unt.edu smohanty@cse.unt.edu eliask@unt.edu VLSI Design and CAD

More information

A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION

A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION Mr. Snehal Kumbhalkar 1, Mr. Sanjay Tembhurne 2 Department of Electronics and Communication Engineering GHRAET, Nagpur, Maharashtra,

More information

A Comparative Study of Dynamic Latch Comparator

A Comparative Study of Dynamic Latch Comparator A Comparative Study of Dynamic Latch Comparator Sandeep K. Arya, Neelkamal Department of Electronics & Communication Engineering Guru Jambheshwar University of Science & Technology, Hisar, India (125001)

More information

A 4-bit High Speed, Low Power Flash ADC by Employing Binary Search Algorithm 1 Brahmaiah Throvagunta, 2 Prashant K Shah

A 4-bit High Speed, Low Power Flash ADC by Employing Binary Search Algorithm 1 Brahmaiah Throvagunta, 2 Prashant K Shah A 4-bit High Speed, Low Power Flash ADC by Employing Binary Search Algorithm 1 Brahmaiah Throvagunta, 2 Prashant K Shah 1 Master of Technology,Dept. of VLSI &Embedded Systems,Sardar Vallabhbhai National

More information

Design of Low Power CMOS Ternary Logic Gates

Design of Low Power CMOS Ternary Logic Gates IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) ISSN: 2278-2834, ISBN: 2278-8735, PP: 55-59 www.iosrjournals.org Design of Low Power CMOS Ternary Logic Gates 1 Savitri Vanjol, 2 Pradnya

More information

P. Sree latha, M. Arun kumar

P. Sree latha, M. Arun kumar International Journal of Scientific & Engineering Research Volume 9, Issue 3, March-2018 1 Performance Analysis of Comparator using Different Design Techniques P. Sree latha, M. Arun kumar Abstract - As

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK DESIGN OF LOW POWER MULTIPLIERS USING APPROXIMATE ADDER MR. PAWAN SONWANE 1, DR.

More information

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.01-06 Design of Low Power High Speed Fully Dynamic

More information

Design of Low Power Vlsi Circuits Using Cascode Logic Style

Design of Low Power Vlsi Circuits Using Cascode Logic Style Design of Low Power Vlsi Circuits Using Cascode Logic Style Revathi Loganathan 1, Deepika.P 2, Department of EST, 1 -Velalar College of Enginering & Technology, 2- Nandha Engineering College,Erode,Tamilnadu,India

More information

Design And Implementation Of Arithmetic Logic Unit Using Modified Quasi Static Energy Recovery Adiabatic Logic

Design And Implementation Of Arithmetic Logic Unit Using Modified Quasi Static Energy Recovery Adiabatic Logic IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 7, Issue 3, Ver. I (May. - June. 2017), PP 27-34 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Design And Implementation Of

More information

Leakage Power Reduction in 5-Bit Full Adder using Keeper & Footer Transistor

Leakage Power Reduction in 5-Bit Full Adder using Keeper & Footer Transistor Leakage Power Reduction in 5-Bit Full Adder using Keeper & Footer Transistor Narendra Yadav 1, Vipin Kumar Gupta 2 1 Department of Electronics and Communication, Gyan Vihar University, Jaipur, Rajasthan,

More information

Analysis of New Dynamic Comparator for ADC Circuit

Analysis of New Dynamic Comparator for ADC Circuit RESEARCH ARTICLE OPEN ACCESS Analysis of New Dynamic Comparator for ADC Circuit B. Shiva Kumar *, Fazal Noorbasha**, K. Vinay Kumar ***, N. V. Siva Rama Krishna. T**** * (Student of VLSI Systems Research

More information

A HIGH SPEED DYNAMIC RIPPLE CARRY ADDER

A HIGH SPEED DYNAMIC RIPPLE CARRY ADDER A HIGH SPEED DYNAMIC RIPPLE CARRY ADDER Y. Anil Kumar 1, M. Satyanarayana 2 1 Student, Department of ECE, MVGR College of Engineering, India. 2 Associate Professor, Department of ECE, MVGR College of Engineering,

More information

A High Performance Asynchronous Counter using Area and Power Efficient GDI T-Flip Flop

A High Performance Asynchronous Counter using Area and Power Efficient GDI T-Flip Flop Indian Journal of Science and Technology, Vol 8(7), 622 628, April 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 DOI: 10.17485/ijst/2015/v8i7/62847 A High Performance Asynchronous Counter using

More information

Comparison And Performance Analysis Of Phase Frequency Detector With Charge Pump And Voltage Controlled Oscillator For PLL In 180nm Technology

Comparison And Performance Analysis Of Phase Frequency Detector With Charge Pump And Voltage Controlled Oscillator For PLL In 180nm Technology IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 4, Ver. I (Jul - Aug. 2015), PP 22-30 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Comparison And Performance Analysis

More information

A Novel Low power and Area Efficient Carry- Lookahead Adder Using MOD-GDI Technique

A Novel Low power and Area Efficient Carry- Lookahead Adder Using MOD-GDI Technique A Novel Low power and Area Efficient Carry- Lookahead Adder Using MOD-GDI Technique Pinninti Kishore 1, P. V. Sridevi 2, K. Babulu 3, K.S Pradeep Chandra 4 1 Assistant Professor, Dept. of ECE, VNRVJIET,

More information

Design and Implementation of High Speed Carry Select Adder Korrapatti Mohammed Ghouse 1 K.Bala. 2

Design and Implementation of High Speed Carry Select Adder Korrapatti Mohammed Ghouse 1 K.Bala. 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 07, 2015 ISSN (online): 2321-0613 Design and Implementation of High Speed Carry Select Adder Korrapatti Mohammed Ghouse

More information

Power Efficient adder Cell For Low Power Bio MedicalDevices

Power Efficient adder Cell For Low Power Bio MedicalDevices IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 2, Ver. III (Mar-Apr. 2014), PP 39-45 e-issn: 2319 4200, p-issn No. : 2319 4197 Power Efficient adder Cell For Low Power Bio MedicalDevices

More information

EC 1354-Principles of VLSI Design

EC 1354-Principles of VLSI Design EC 1354-Principles of VLSI Design UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY PART-A 1. What are the four generations of integrated circuits? 2. Give the advantages of IC. 3. Give the variety of

More information

Enhancement of Design Quality for an 8-bit ALU

Enhancement of Design Quality for an 8-bit ALU ABHIYANTRIKI An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol. 3, No. 5 (May, 2016) http://www.aijet.in/ eissn: 2394-627X Enhancement of Design Quality for an

More information

A design of 16-bit adiabatic Microprocessor core

A design of 16-bit adiabatic Microprocessor core 194 A design of 16-bit adiabatic Microprocessor core Youngjoon Shin, Hanseung Lee, Yong Moon, and Chanho Lee Abstract A 16-bit adiabatic low-power Microprocessor core is designed. The processor consists

More information

Wide Fan-In Gates for Combinational Circuits Using CCD

Wide Fan-In Gates for Combinational Circuits Using CCD Wide Fan-In Gates for Combinational Circuits Using CCD Mekala.S Post Graduate Scholar, Nandha Engineering College, Erode, Tamil Nadu, India Abstract: A new domino circuit is proposed with low leakage and

More information