Design of Gates in Multiple Valued Logic

Size: px
Start display at page:

Download "Design of Gates in Multiple Valued Logic"

Transcription

1 Proc. of Int. Conf. on Recent Trends in Information, Telecommunication and Computing, ITC Design of Gates in Multiple Valued Logic Shweta Hajare 1, P.K.Dakhole 2 and Manisha Khorgade 3 1 Yashwantrao Chavan College of Engg,Department of Electronics Engg,Nagpur, India shwetahajare29@gmail.com 2 Yashwantrao Chavan College of Engg,Department of Electronics Engg,Nagpur, India pravin_dakhole@yahoo.com 3 R.G.C.E.R,,Department of Electronics & Telecommunication Engg,Nagpur, India manishakhorgade@hotmail.com Abstract Multiple-valued logic (MVL) application in the design of digital devices opens additional opportunities. In this paper we have designed Quaternary latch & quaternary multiplexer. Multiplexer is designed with different threshold voltages. All the circuits were simulated with the Spice tool using TSMC 250 nm technology and have shown improvements in performance and power consumption and propagation delay than their equivalent binary circuits. Index Terms MVL(Multiple valued logic), Quaternary latch, quaternary mux etc. I. INTRODUCTION Multiple-Valued Logic (MVL) is a discipline of discrete p valued systems where p>2, or in other words, nonbinary valued systems. In general sense, both binary-valued and discrete-valued variables with an infinite number of values can be considered as MVL systems Ref [1,2]. MVL circuits have been implemented in bipolar technology such as integrated injection logic (I2L), emitter-coupled logic (ECL), and charge coupled devices (CCDs),in CMOS technology and using quantum devices. The theoretical advantages of multiplevalued logic in reducing the number of interconnections required to implement logical functions have been well established and widely acknowledged. Serious pin out problems encountered in some VLSI circuit designs could be substantially influenced if signals were allowed to assume 4 or more status. Power dissipation is a major problem in VLSI. The dynamic power dissipation is determined mainly by the interconnection capacitance Ref [7]. Therefore, MVL is also useful for low power dissipation. The binary logic is limited due to interconnect which occupies large area on a VLSI chip. With the help of multiple valued logic different combinational circuits are designed Ref [8] and in the past decades several kinds of MVL circuits have been developed in several different technologies from earlier works on bipolar technologies to novel solutions presented using floating gates Ref [9], capacitive logic Ref [10] and quantum devices. There circuits shows somewhat improvements compared to binary circuits, but none of them have at the same time all requirements to be used in VLSI circuits.in this paper in order to match VLSI requirements, this work present a quaternary general purpose circuit of multiplexer & quaternary D-latch structure with the help of Down literal circuits in voltage mode technology with high performance, negligible static and low dynamic consumption using less transistors than the equivalent binary circuit. In this paper circuit presented were designed & simulated using SPICE with MOSIS parameter for a typical 250 nm CMOS process. DOI: 02.ITC Association of Computer Electronics and Electrical Engineers, 2014

2 II. QUATERNARY CIRCUIT DESIGN This circuit is a CMOS circuit operates with four voltage levels corresponding to 0V and other three power supply lines of 1V, 2V and 3V. Figure 1Quaternary NMIN gate Figure 2 Quaternary MIN gate 394

3 A. NMIN/MIN Gate In quaternary logic, binary NAND gate is replaced by NMIN gate & AND gate is replace by MIN gate [5]. The MIN operation sets the output of the MIN circuit to be the lowest value of inputs. MIN gate is equal to AND gate in binary. NMIN gate is not of MIN gate. In binary AND gate, minimum of two inputs of the gate are chosen at the output. NAND gate is not of AND gate. Similarly in quaternary logic gates minimum of two inputs are chosen for MIN gate. The truth table for NMIN given in Table1. NMIN circuit is combination of the inverter and a common binary AND circuit.min circuit is by adding one inverter at the output of NMIN gate as shown in Fig 1& Fig 2.Simulation result of NMIN & MIN gate is shown in Fig 3.& Fig. 4 respectively. TABLE I. TRUTH TABLE OF LOGIC GATES IN QUATERNARY LOGIC A B MIN MAX NMIN NMAX Figure 3 Simulation result of NMIN gate 395

4 Figure 4 Simulation result of MIN gate Figure 5 Quaternary NMAX gate 396

5 Figure 6. Quaternary MAX gate B. NMAX/MAX Gate In quaternary logic, binary NOR gate is replaced by NMAX gate & OR gate is replaced by MAX gate [5]. NMAX gate is not of MAX gate. The MAX operation sets the output of the MAX circuit to be the largest value of inputs. OR gate in binary is equal to MAX gate. NMAX gate is not of MAX gate circuit. The MAX gate is a circuit of multiple inputs and sets the output in the higher value of all entries. NMAX circuit is combination of the inverter and a common binary OR circuit.max circuit is by adding one inverter at the output of NMAX gate as shown in Fig. 5 & Fig.6.Simulation result of NMAX & MAX gate is shown in Fig 7.& Fig. 8 respectively. C. Quaternary Multiplexer Design In digital circuit, the multiplexer is a device that has many input streams and only one output stream. It forwards one of the input streams to the output stream based on the values of one or more "selection inputs" or control inputs. For example, a two-input multiplexer is a simple connection of logic gates whose output is either input A or input B depending on the value of a third input Z which selects the input. Quaternary multiplexer circuit consist of three down literal circuits, three quaternary inverter & six transmission gate [4] as shown in Fig. 9. Simulation result of Quaternary Multiplexer is shown in Fig.10. For a quaternary multiplexer, all inputs and the output are quaternary and it can have four quaternary input streams using only one quaternary control signal. So the quaternary MUX can implement all possible functions of one variable allowed in this logic.the quaternary logic Down literal circuits are designed by using standard CMOS technology with three different Vt (Threshold voltage) for NMOS and three different Vt for PMOS Ref[3] as given in Table2. D. The Quaternary D- Latch The Quaternary D- Latch circuit was designed with MIN gate, NMAX gate and quaternary inverters [6] as shown fig 11. When en is equal to logic high, the latch is open and the output follows the input. Whatever be the input same is the output. 397

6 Figure 7. Simulation result of NMAX gate Figure 8. Simulation result of Quaternary MAX gate 398

7 Figure 9.Quaternary multiplexer Figure10. Simulation result of Quaternary Multiplexer 399

8 The output of MIN gate circuit is the input to the NMAX gate. When en is equal to logic 0, the latch is closed and the output is held constant. Simulation result of Quaternary D-latch is shown in Fig.12. III. CONCLUSION In this paper, we have designed quaternary multiplexer & D-Latch, basic forming circuits were carried out with the Spice tool using TSMC 0.25µm technology with 3 power supply lines and multi-threshold voltage transistors. These circuits were simulated and compared to a binary equivalent circuit. The circuit had proven the high performance and low power consumption with a low area overhead when compared with the equivalent binary circuit Table 3,Table 4,Table 5. The proposed technique can be used to develop extremely low energy circuits, while sustaining the high performance required for many applications. The comparative analysis of gates with different logic system is given in the table shown below. With the help of this basic circuit we can designed full adder, carry look-ahead adder, ripple carry adder, carry select adder. Figure 11. Quaternary D-latch Figure 12. Simulation result of Quaternary D-latch 400

9 TABLE II. THREE DIFFERENT VT (THRESHOLD VOLTAGE) T1 T2 T3 T4 T5 T6 V T Trans PMOS NMOS PMOS NMOS PMOS NMOS Type Circuit type TABLE III. COMPARATIVE ANALYSIS OF DELAY Delay(ns) Binary Ternary Quaternary Inverter Min Max Nmin Nmax TABLE IV. COMPARATIVE ANALYSIS OF POWER CONSUMPTION Circuit type Power Consumption Binary Ternary Quaternary Inverter 0.1nw 0.2nw 27.1pw Min 38.9uw 0.5mw 2.1uw Max 67.1uw 0.68mw 0.4uw Nmin 11.5nw 0.54mw 0.1nw Nmax 67.1uw 0.54mw 0.28uw TABLE V.COMPARISION OF POWER CONSUMPTION Circuit type Quaternary 4:1 Mux 4.96u Binary 8:1 Mux 84 uw Power Consumption Quaternary D-Latch Binary D-Latch 87.9uw 230uw REFERENCES [1] K. C. Smith, The prospects for multi-valued logic: A technology and applications view, IEEE Trans. Computers, vol. C-30, no. 9, pp , Sep [2] K. C. Smith, Multiple-valued logic: a tutorial and appreciation, IEEE Computer, vol.21, pp ,Apr [3] Ricardo Cunha, Henri Boudinov and Luigi Carro Quaternary Look-up Tables Using Voltage-Mode CMOS Logic Design Proceedings of the 37th International Symposium on Multiple-Valued Logic (ISMVL'07)pp.56-56, 2007, May, [4] Vasundara Patel K. S. Quaternary CMOS Combinational Logic Circuits 2009 International Conference on Information and Multimedia Technology [5] Ricardo Cunha G. da Silva, Henri Boudinov, and Luigi Carro, A Novel Voltage-Mode CMOS Quaternary Logic Design IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 6, JUNE 2006 [6] Ricardo Cunha G. da Silva, A Novel Voltage Mode CMOS Quaternary Logic Design, IEEE Transactions on Electron Devices, vol.53, no. 6, June [7] D.Etiemble and M.Israel, Comparison of Binary and Multivalued ICs according to VLSI criteria, Computers, vol. 21, pp , April 1988 [8] E. Dubrova, Multiple-Valued Logic in VLSI: Challenges and Opportunities, Proceedings of NORCHIP'99, pp ,

10 [9] Y. Berg, S. Aunet, O. Mirmotahari, and M. Høvin, Novel Recharge. Semi-Floating-Gate CMOS Logic For Multiple-Valued Systems, proc. of the IEEE International Symposium on Circuits and Systems (ISCAS), May [10] A. Schmid, Y. Leblebici. Realisation of multiple-valued functions using the capacitive threshold logic gate, Proc. Of IEE Computer and Digital Techniques, v. 151, n. 6, pp ,

Comparative Analysis of Multiplier in Quaternary logic

Comparative Analysis of Multiplier in Quaternary logic IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 3, Ver. I (May - Jun. 2015), PP 06-11 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Comparative Analysis of Multiplier

More information

Design of Low Power CMOS Ternary Logic Gates

Design of Low Power CMOS Ternary Logic Gates IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) ISSN: 2278-2834, ISBN: 2278-8735, PP: 55-59 www.iosrjournals.org Design of Low Power CMOS Ternary Logic Gates 1 Savitri Vanjol, 2 Pradnya

More information

Design Low Power Quaternary Adder Using Multi-Value Logic

Design Low Power Quaternary Adder Using Multi-Value Logic Design Low Power Quaternary Adder Using Multi-Value Logic 1, Vaibhav Jane, 2, Prof. Sanjay Tembhurne 1, 2, Electronics & Communication Engineering GHRAET, RTMN University Nagpur, India ABSTRACT: This paper

More information

Implementation of Efficient Adder using Multi Value Logic Technique

Implementation of Efficient Adder using Multi Value Logic Technique Journal for Research Volume 02 Issue 01 March 2016 ISSN: 2395-7549 Implementation of Efficient Adder using Prof Abhijit Kalbande Associate Professor Department of Electronic & Telecommunication Engineering

More information

Figure 1: Quaternary D Latch

Figure 1: Quaternary D Latch REALISATION OF STATIC RANDOM ACCESS MEMORY USING QUATERNARY DLATCH Ch.Chandini, A.Maria Jossy Dept. of ECE, SRM University, Kattankulathur-603203 chandinichatrathi@gmail.com, jossydeepan@gmail.com Abstract

More information

Multi-Valued Logic Concept for Galois Field Arithmetic Logic Unit

Multi-Valued Logic Concept for Galois Field Arithmetic Logic Unit 2016 IJSRSET Volume 2 Issue 2 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Multi-Valued Logic Concept for Galois Field Arithmetic Logic Unit T. R. Harinkhede,

More information

ISSN (PRINT): , (ONLINE): , VOLUME-3, ISSUE-8,

ISSN (PRINT): , (ONLINE): , VOLUME-3, ISSUE-8, DESIGN OF SEQUENTIAL CIRCUITS USING MULTI-VALUED LOGIC BASED ON QDGFET Chetan T. Bulbule 1, S. S. Narkhede 2 Department of E&TC PICT Pune India chetanbulbule7@gmail.com 1, ssn_pict@yahoo.com 2 Abstract

More information

II. QUATERNARY CONVERTER CIRCUITS

II. QUATERNARY CONVERTER CIRCUITS Application of Galois Field in VLSI Using Multi-Valued Logic Ankita.N.Sakhare 1, M.L.Keote 2 1 Dept of Electronics and Telecommunication, Y.C.C.E, Wanadongri, Nagpur, India 2 Dept of Electronics and Telecommunication,

More information

Design of Arithmetic Logic Unit using Complementary Metal Oxide Semiconductor Galois Field

Design of Arithmetic Logic Unit using Complementary Metal Oxide Semiconductor Galois Field IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 08 January 2016 ISSN (online): 2349-6010 Design of Arithmetic Logic Unit using Complementary Metal Oxide Semiconductor

More information

A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates

A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates Anil Kumar 1 Kuldeep Singh 2 Student Assistant Professor Department of Electronics and Communication Engineering Guru Jambheshwar

More information

Gdi Technique Based Carry Look Ahead Adder Design

Gdi Technique Based Carry Look Ahead Adder Design IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 6, Ver. I (Nov - Dec. 2014), PP 01-09 e-issn: 2319 4200, p-issn No. : 2319 4197 Gdi Technique Based Carry Look Ahead Adder Design

More information

QUATERNARY LOGIC LOOK UP TABLE FOR CMOS CIRCUITS

QUATERNARY LOGIC LOOK UP TABLE FOR CMOS CIRCUITS QUATERNARY LOGIC LOOK UP TABLE FOR CMOS CIRCUITS Anu Varghese 1,Binu K Mathew 2 1 Department of Electronics and Communication Engineering, Saintgits College Of Engineering, Kottayam 2 Department of Electronics

More information

Low Power Adiabatic Logic Design

Low Power Adiabatic Logic Design IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 1, Ver. III (Jan.-Feb. 2017), PP 28-34 www.iosrjournals.org Low Power Adiabatic

More information

Design of high performance Quaternary adders

Design of high performance Quaternary adders 2011 41st IEEE International Symposium on Multiple-Valued Logic Design of high performance Quaternary adders Vasundara Patel K S Dept of ECE, MSCE MS College of Engg, VTU angalore, India e-mail: vasundara.rs@gmail.com

More information

Design of Low Power Flip Flop Based on Modified GDI Primitive Cells and Its Implementation in Sequential Circuits

Design of Low Power Flip Flop Based on Modified GDI Primitive Cells and Its Implementation in Sequential Circuits Design of Low Power Flip Flop Based on Modified GDI Primitive Cells and Its Implementation in Sequential Circuits Dr. Saravanan Savadipalayam Venkatachalam Principal and Professor, Department of Mechanical

More information

Available online at International Journal of Current Research Vol. 7, Issue, 04, pp , April, 2015

Available online at   International Journal of Current Research Vol. 7, Issue, 04, pp , April, 2015 z Available online at http://www.journalcra.com International Journal of Current Research Vol. 7, Issue, 04, pp.15026-15030, April, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH ISSN: 0975-833X RESEARCH

More information

Available online at International Journal of Current Research Vol. 7, Issue, 05, pp , May, 2015 REVIEW ARTICLE

Available online at   International Journal of Current Research Vol. 7, Issue, 05, pp , May, 2015 REVIEW ARTICLE z Available online at http://www.journalcra.com International Journal of Current Research Vol. 7, Issue, 05, pp.15615-15620, May, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH ISSN: 0975-833X REVIEW ARTICLE

More information

A High Performance Asynchronous Counter using Area and Power Efficient GDI T-Flip Flop

A High Performance Asynchronous Counter using Area and Power Efficient GDI T-Flip Flop Indian Journal of Science and Technology, Vol 8(7), 622 628, April 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 DOI: 10.17485/ijst/2015/v8i7/62847 A High Performance Asynchronous Counter using

More information

A New Quaternary FPGA Based on a Voltage-mode Multi-valued Circuit

A New Quaternary FPGA Based on a Voltage-mode Multi-valued Circuit A New Quaternary FPGA Based on a Voltage-mode Multi-valued Circuit Cristiano Lazzari INESC-ID Lisbon, Portugal Email: lazzari@inesc-id.pt Paulo Flores, José Monteiro INESC-ID / IST, TU Lisbon Lisbon, Portugal

More information

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): 2321-0613 Implementation of Ternary Logic Gates using CNTFET Rahul A. Kashyap 1 1 Department of

More information

Design of Parallel Analog to Digital Converters for Ternary CMOS Digital Systems

Design of Parallel Analog to Digital Converters for Ternary CMOS Digital Systems IX Symposium Industrial Electronics INDEL 212, Banja Luka, November 13, 212 Design of Parallel Analog to Digital onverters for Ternary Digital Systems Zlatko Bundalo Faculty of Electrical Engineering Ferid

More information

12-nm Novel Topologies of LPHP: Low-Power High- Performance 2 4 and 4 16 Mixed-Logic Line Decoders

12-nm Novel Topologies of LPHP: Low-Power High- Performance 2 4 and 4 16 Mixed-Logic Line Decoders 12-nm Novel Topologies of LPHP: Low-Power High- Performance 2 4 and 4 16 Mixed-Logic Line Decoders Mr.Devanaboina Ramu, M.tech Dept. of Electronics and Communication Engineering Sri Vasavi Institute of

More information

RECENT technology trends have lead to an increase in

RECENT technology trends have lead to an increase in IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 9, SEPTEMBER 2004 1581 Noise Analysis Methodology for Partially Depleted SOI Circuits Mini Nanua and David Blaauw Abstract In partially depleted silicon-on-insulator

More information

A Novel Low-Power Scan Design Technique Using Supply Gating

A Novel Low-Power Scan Design Technique Using Supply Gating A Novel Low-Power Scan Design Technique Using Supply Gating S. Bhunia, H. Mahmoodi, S. Mukhopadhyay, D. Ghosh, and K. Roy School of Electrical and Computer Engineering, Purdue University, West Lafayette,

More information

Design of Low-Power High-Performance 2-4 and 4-16 Mixed-Logic Line Decoders

Design of Low-Power High-Performance 2-4 and 4-16 Mixed-Logic Line Decoders Design of Low-Power High-Performance 2-4 and 4-16 Mixed-Logic Line Decoders B. Madhuri Dr.R. Prabhakar, M.Tech, Ph.D. bmadhusingh16@gmail.com rpr612@gmail.com M.Tech (VLSI&Embedded System Design) Vice

More information

A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI)

A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI) A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI) Mahendra Kumar Lariya 1, D. K. Mishra 2 1 M.Tech, Electronics and instrumentation Engineering, Shri G. S. Institute of Technology

More information

Improved Two Phase Clocked Adiabatic Static CMOS Logic Circuit

Improved Two Phase Clocked Adiabatic Static CMOS Logic Circuit Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2017, 4 (5): 319-325 Research Article ISSN: 2394-658X Improved Two Phase Clocked Adiabatic Static CMOS Logic Circuit

More information

[Deepika* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Deepika* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY A COMPARATIVE STUDY AND ANALYSIS OF FULL ADDER Deepika*, Ankur Gupta, Ashwani Panjeta * (Department of Electronics & Communication,

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2190 Biquad Infinite Impulse Response Filter Using High Efficiency Charge Recovery Logic K.Surya 1, K.Chinnusamy

More information

Power Optimization for Ripple Carry Adder with Reduced Transistor Count

Power Optimization for Ripple Carry Adder with Reduced Transistor Count e-issn 2455 1392 Volume 2 Issue 5, May 2016 pp. 146-154 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Power Optimization for Ripple Carry Adder with Reduced Transistor Count Swarnalika

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK QUATERNARY ARITHMETIC LOGIC UNIT BASED ON QSD TECHNIQUE PRAJAKTA V. DESHMUKH, MUKESH

More information

Adiabatic Logic Circuits for Low Power, High Speed Applications

Adiabatic Logic Circuits for Low Power, High Speed Applications IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 10 April 2017 ISSN (online): 2349-784X Adiabatic Logic Circuits for Low Power, High Speed Applications Satyendra Kumar Ram

More information

Design of Low Power Low Voltage Circuit using CMOS Ternary Logic

Design of Low Power Low Voltage Circuit using CMOS Ternary Logic Design of Low Power Low Voltage Circuit using CMOS Ternary Logic C.S.NANDURKAR 1, K.N.KASAT 2 1 PG, Dept of EEE, PRMCEAM, Badnera, Amravati, MS, India 2 Assistant Professor, Dept of EXTC, PRMCEAM, Badnera,

More information

Design and Implementation of combinational circuits in different low power logic styles

Design and Implementation of combinational circuits in different low power logic styles IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. II (Nov -Dec. 2015), PP 01-05 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Design and Implementation of

More information

Gates and Circuits 1

Gates and Circuits 1 1 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the behavior

More information

IMPLEMENTATION OF POWER GATING TECHNIQUE IN CMOS FULL ADDER CELL TO REDUCE LEAKAGE POWER AND GROUND BOUNCE NOISE FOR MOBILE APPLICATION

IMPLEMENTATION OF POWER GATING TECHNIQUE IN CMOS FULL ADDER CELL TO REDUCE LEAKAGE POWER AND GROUND BOUNCE NOISE FOR MOBILE APPLICATION International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol.2, Issue 3 Sep 2012 97-108 TJPRC Pvt. Ltd., IMPLEMENTATION OF POWER

More information

Reduction Of Leakage Current And Power In CMOS Circuits Using Stack Technique

Reduction Of Leakage Current And Power In CMOS Circuits Using Stack Technique International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Reduction Of Leakage Current And Power In CMOS Circuits Using Stack Technique Mansi Gangele 1, K.Pitambar Patra 2 *(Department Of

More information

Cmos Full Adder and Multiplexer Based Encoder for Low Resolution Flash Adc

Cmos Full Adder and Multiplexer Based Encoder for Low Resolution Flash Adc IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 2, Ver. II (Mar.-Apr. 2017), PP 20-27 www.iosrjournals.org Cmos Full Adder and

More information

Design of 32-bit Carry Select Adder with Reduced Area

Design of 32-bit Carry Select Adder with Reduced Area Design of 32-bit Carry Select Adder with Reduced Area Yamini Devi Ykuntam M.V.Nageswara Rao G.R.Locharla ABSTRACT Addition is the heart of arithmetic unit and the arithmetic unit is often the work horse

More information

Comparative Study on CMOS Full Adder Circuits

Comparative Study on CMOS Full Adder Circuits Comparative Study on CMOS Full Adder Circuits Priyanka Rathore and Bhavna Jharia Abstract The Presented paper focuses on the comparison of seven full adders. The comparison is based on the power consumption

More information

ISSN:

ISSN: 343 Comparison of different design techniques of XOR & AND gate using EDA simulation tool RAZIA SULTANA 1, * JAGANNATH SAMANTA 1 M.TECH-STUDENT, ECE, Haldia Institute of Technology, Haldia, INDIA ECE,

More information

ESTIMATION OF LEAKAGE POWER IN CMOS DIGITAL CIRCUIT STACKS

ESTIMATION OF LEAKAGE POWER IN CMOS DIGITAL CIRCUIT STACKS ESTIMATION OF LEAKAGE POWER IN CMOS DIGITAL CIRCUIT STACKS #1 MADDELA SURENDER-M.Tech Student #2 LOKULA BABITHA-Assistant Professor #3 U.GNANESHWARA CHARY-Assistant Professor Dept of ECE, B. V.Raju Institute

More information

High-Performance of Domino Logic Circuit for Wide Fan-In Gates Using Mentor Graphics Tools

High-Performance of Domino Logic Circuit for Wide Fan-In Gates Using Mentor Graphics Tools IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. II (Nov -Dec. 2015), PP 06-15 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org High-Performance of Domino Logic

More information

CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS

CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS 70 CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS A novel approach of full adder and multipliers circuits using Complementary Pass Transistor

More information

Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique

Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique Ch. Mohammad Arif 1, J. Syamuel John 2 M. Tech student, Department of Electronics Engineering, VR Siddhartha Engineering College,

More information

Design And Implementation Of Arithmetic Logic Unit Using Modified Quasi Static Energy Recovery Adiabatic Logic

Design And Implementation Of Arithmetic Logic Unit Using Modified Quasi Static Energy Recovery Adiabatic Logic IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 7, Issue 3, Ver. I (May. - June. 2017), PP 27-34 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Design And Implementation Of

More information

Implementation of High Performance Carry Save Adder Using Domino Logic

Implementation of High Performance Carry Save Adder Using Domino Logic Page 136 Implementation of High Performance Carry Save Adder Using Domino Logic T.Jayasimha 1, Daka Lakshmi 2, M.Gokula Lakshmi 3, S.Kiruthiga 4 and K.Kaviya 5 1 Assistant Professor, Department of ECE,

More information

DESIGN OF MODIFY WILSON CURRENT MIRROR CIRCUIT BASED LEVEL SHIFTERS USING STACK TECHNIQUES

DESIGN OF MODIFY WILSON CURRENT MIRROR CIRCUIT BASED LEVEL SHIFTERS USING STACK TECHNIQUES DESIGN OF MODIFY WILSON CURRENT MIRROR CIRCUIT BASED LEVEL SHIFTERS USING STACK TECHNIQUES M.Ragulkumar 1, Placement Officer of MikrosunTechnology, Namakkal, ragulragul91@gmail.com 1. Abstract Wide Range

More information

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications 1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications Ashish Raman and R. K. Sarin Abstract The monograph analysis a low power voltage controlled ring oscillator, implement using

More information

Design and Implementation of Complex Multiplier Using Compressors

Design and Implementation of Complex Multiplier Using Compressors Design and Implementation of Complex Multiplier Using Compressors Abstract: In this paper, a low-power high speed Complex Multiplier using compressor circuit is proposed for fast digital arithmetic integrated

More information

LEAKAGE POWER REDUCTION IN CMOS CIRCUITS USING LEAKAGE CONTROL TRANSISTOR TECHNIQUE IN NANOSCALE TECHNOLOGY

LEAKAGE POWER REDUCTION IN CMOS CIRCUITS USING LEAKAGE CONTROL TRANSISTOR TECHNIQUE IN NANOSCALE TECHNOLOGY LEAKAGE POWER REDUCTION IN CMOS CIRCUITS USING LEAKAGE CONTROL TRANSISTOR TECHNIQUE IN NANOSCALE TECHNOLOGY B. DILIP 1, P. SURYA PRASAD 2 & R. S. G. BHAVANI 3 1&2 Dept. of ECE, MVGR college of Engineering,

More information

Implementation of Carry Select Adder using CMOS Full Adder

Implementation of Carry Select Adder using CMOS Full Adder Implementation of Carry Select Adder using CMOS Full Adder Smitashree.Mohapatra Assistant professor,ece department MVSR Engineering College Nadergul,Hyderabad-510501 R. VaibhavKumar PG Scholar, ECE department(es&vlsid)

More information

The entire range of digital ICs is fabricated using either bipolar devices or MOS devices or a combination of the two. Bipolar Family DIODE LOGIC

The entire range of digital ICs is fabricated using either bipolar devices or MOS devices or a combination of the two. Bipolar Family DIODE LOGIC Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem - IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 10 Lecture Title:

More information

A Low-Power High-speed Pipelined Accumulator Design Using CMOS Logic for DSP Applications

A Low-Power High-speed Pipelined Accumulator Design Using CMOS Logic for DSP Applications International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume. 1, Issue 5, September 2014, PP 30-42 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org

More information

Design a Low Power CNTFET-Based Full Adder Using Majority Not Function

Design a Low Power CNTFET-Based Full Adder Using Majority Not Function Design a Low Power CNTFET-Based Full Adder Using Majority Not Function Seyedehsomayeh Hatefinasab * Department of Electrical and Computer Engineering, Payame Noor University, Sari, Iran. *Corresponding

More information

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY Jasbir kaur 1, Neeraj Singla 2 1 Assistant Professor, 2 PG Scholar Electronics and Communication

More information

Power-Area trade-off for Different CMOS Design Technologies

Power-Area trade-off for Different CMOS Design Technologies Power-Area trade-off for Different CMOS Design Technologies Priyadarshini.V Department of ECE Sri Vishnu Engineering College for Women, Bhimavaram dpriya69@gmail.com Prof.G.R.L.V.N.Srinivasa Raju Head

More information

IC Layout Design of 4-bit Universal Shift Register using Electric VLSI Design System

IC Layout Design of 4-bit Universal Shift Register using Electric VLSI Design System IC Layout Design of 4-bit Universal Shift Register using Electric VLSI Design System 1 Raj Kumar Mistri, 2 Rahul Ranjan, 1,2 Assistant Professor, RTC Institute of Technology, Anandi, Ranchi, Jharkhand,

More information

Modelling Of Adders Using CMOS GDI For Vedic Multipliers

Modelling Of Adders Using CMOS GDI For Vedic Multipliers Modelling Of Adders Using CMOS GDI For Vedic Multipliers 1 C.Anuradha, 2 B.Govardhana, 3 Madanna, 1 PG Scholar, Dept Of VLSI System Design, Geetanjali College Of Engineering And Technology, 2 Assistant

More information

COMPARATIVE ANALYSIS OF PULSE TRIGGERED FLIP FLOP DESIGN FOR LOW POWER CONSUMPTION

COMPARATIVE ANALYSIS OF PULSE TRIGGERED FLIP FLOP DESIGN FOR LOW POWER CONSUMPTION DOI: 10.21917/ijme.2018.0102 COMPARATIVE ANALYSIS OF PULSE TRIGGERED FLIP FLOP DESIGN FOR LOW POWER CONSUMPTION S. Bhuvaneshwari and E. Kamalavathi Department of Electronics and Communication Engineering,

More information

Ultra Low Power Consumption Military Communication Systems

Ultra Low Power Consumption Military Communication Systems Ultra Low Power Consumption Military Communication Systems Sagara Pandu Assistant Professor, Department of ECE, Gayatri College of Engineering Visakhapatnam-530048. ABSTRACT New military communications

More information

A Comparative Analysis of Low Power and Area Efficient Digital Circuit Design

A Comparative Analysis of Low Power and Area Efficient Digital Circuit Design A Comparative Analysis of Low Power and Area Efficient Digital Circuit Design 1 B. Dilli Kumar, 2 A. Chandra Babu, 2 V. Prasad 1 Assistant Professor, Dept. of ECE, Yoganada Institute of Technology & Science,

More information

CML Current mode full adders for 2.5-V power supply

CML Current mode full adders for 2.5-V power supply CML Current full adders for 2.5-V power supply. Kazeminejad, K. Navi and D. Etiemble. LI - U 410 CNS at 490, Université Paris Sud 91405 Orsay Cedex, France bstract We present the basic structure and performance

More information

Enhancement of Design Quality for an 8-bit ALU

Enhancement of Design Quality for an 8-bit ALU ABHIYANTRIKI An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol. 3, No. 5 (May, 2016) http://www.aijet.in/ eissn: 2394-627X Enhancement of Design Quality for an

More information

LEVEL SHIFTER DESIGN FOR LOW POWER APPLICATIONS

LEVEL SHIFTER DESIGN FOR LOW POWER APPLICATIONS LEVEL SHIFTER DESIGN FOR LOW POWER APPLICATIONS Manoj Kumar 1, Sandeep K. Arya 1, Sujata Pandey 2 1 Department of Electronics & Communication Engineering Guru Jambheshwar University of Science & Technology,

More information

DESIGN AND ANALYSIS OF LOW POWER ADDERS USING SUBTHRESHOLD ADIABATIC LOGIC S.Soundarya 1, MS.S.Anusooya 2, V.Jean Shilpa 3 1

DESIGN AND ANALYSIS OF LOW POWER ADDERS USING SUBTHRESHOLD ADIABATIC LOGIC S.Soundarya 1, MS.S.Anusooya 2, V.Jean Shilpa 3 1 DESIGN AND ANALYSIS OF LOW POWER ADDERS USING SUBTHRESHOLD ADIABATIC LOGIC S.Soundarya 1, MS.S.Anusooya 2, V.Jean Shilpa 3 1 PG student, VLSI and Embedded systems, 2,3 Assistant professor of ECE Dept.

More information

MACGDI: Low Power MAC Based Filter Bank Using GDI Logic for Hearing Aid Applications

MACGDI: Low Power MAC Based Filter Bank Using GDI Logic for Hearing Aid Applications International Journal of Electronics and Electrical Engineering Vol. 5, No. 3, June 2017 MACGDI: Low MAC Based Filter Bank Using GDI Logic for Hearing Aid Applications N. Subbulakshmi Sri Ramakrishna Engineering

More information

High Speed Low Power Noise Tolerant Multiple Bit Adder Circuit Design Using Domino Logic

High Speed Low Power Noise Tolerant Multiple Bit Adder Circuit Design Using Domino Logic High Speed Low Power Noise Tolerant Multiple Bit Adder Circuit Design Using Domino Logic M.Manikandan 2,Rajasri 2,A.Bharathi 3 Assistant Professor, IFET College of Engineering, Villupuram, india 1 M.E,

More information

Design and Implementation of High Speed Area Efficient Carry Select Adder Using Spanning Tree Adder Technique

Design and Implementation of High Speed Area Efficient Carry Select Adder Using Spanning Tree Adder Technique 2018 IJSRST Volume 4 Issue 11 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology DOI : https://doi.org/10.32628/ijsrst184114 Design and Implementation of High Speed Area

More information

POWER EFFICIENT DESIGN OF COUNTER ON.12 MICRON TECHNOLOGY

POWER EFFICIENT DESIGN OF COUNTER ON.12 MICRON TECHNOLOGY Volume-, Issue-, March 2 POWER EFFICIENT DESIGN OF COUNTER ON.2 MICRON TECHNOLOGY Simmy Hirkaney, Sandip Nemade, Vikash Gupta Abstract As chip manufacturing technology is suddenly on the threshold of major

More information

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012 Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Propagation Delay, Circuit Timing & Adder Design

Propagation Delay, Circuit Timing & Adder Design Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

An Efficient and High Speed 10 Transistor Full Adders with Lector Technique

An Efficient and High Speed 10 Transistor Full Adders with Lector Technique IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 5, Ver. II (Sep.- Oct. 2017), PP 68-73 www.iosrjournals.org An Efficient and

More information

AN EFFICIENT APPROACH TO MINIMIZE POWER AND AREA IN CARRY SELECT ADDER USING BINARY TO EXCESS ONE CONVERTER

AN EFFICIENT APPROACH TO MINIMIZE POWER AND AREA IN CARRY SELECT ADDER USING BINARY TO EXCESS ONE CONVERTER AN EFFICIENT APPROACH TO MINIMIZE POWER AND AREA IN CARRY SELECT ADDER USING BINARY TO EXCESS ONE CONVERTER K. RAMAMOORTHY 1 T. CHELLADURAI 2 V. MANIKANDAN 3 1 Department of Electronics and Communication

More information

Performance Evaluation of CNTFET Based Ternary Basic Gates and Half Adder

Performance Evaluation of CNTFET Based Ternary Basic Gates and Half Adder Performance Evaluation of CNTFET Based Ternary Basic Gates and Half Adder Gaurav Agarwal 1, Amit Kumar 2 1, 2 Department of Electronics, Institute of Engineering and Technology, Lucknow Abstract: The shrinkage

More information

Comparative Analysis of Low Power Adiabatic Logic Circuits in DSM Technology

Comparative Analysis of Low Power Adiabatic Logic Circuits in DSM Technology Comparative Analysis of Low Power Adiabatic Logic Circuits in DSM Technology Shaefali Dixit #1, Ashish Raghuwanshi #2, # PG Student [VLSI], Dept. of ECE, IES college of Eng. Bhopal, RGPV Bhopal, M.P. dia

More information

NOVEL 11-T FULL ADDER IN 65NM CMOS TECHNOLOGY

NOVEL 11-T FULL ADDER IN 65NM CMOS TECHNOLOGY NOVEL 11-T FULL ADDER IN 65NM CMOS TECHNOLOGY C. M. R. Prabhu, Tan Wee Xin Wilson and Thangavel Bhuvaneswari Faculty of Engineering and Technology Multimedia University Melaka, Malaysia E-Mail: c.m.prabu@mmu.edu.my

More information

Design Of Arthematic Logic Unit using GDI adder and multiplexer 1

Design Of Arthematic Logic Unit using GDI adder and multiplexer 1 Design Of Arthematic Logic Unit using GDI adder and multiplexer 1 M.Vishala, 2 Maddana, 1 PG Scholar, Dept of VLSI System Design, Geetanjali college of engineering & technology, 2 HOD Dept of ECE, Geetanjali

More information

ASIC Implementation of High Speed Area Efficient Arithmetic Unit using GDI based Vedic Multiplier

ASIC Implementation of High Speed Area Efficient Arithmetic Unit using GDI based Vedic Multiplier INTERNATIONAL JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY ISSN 2519-5115 RESEARCH ARTICLE ASIC Implementation of High Speed Area Efficient Arithmetic Unit using GDI based Vedic Multiplier 1 M. Sangeetha

More information

Design of Delay-Power Efficient Carry Select Adder using 3-T XOR Gate

Design of Delay-Power Efficient Carry Select Adder using 3-T XOR Gate Adv. Eng. Tec. Appl. 5, No. 1, 1-6 (2016) 1 Advanced Engineering Technology and Application An International Journal http://dx.doi.org/10.18576/aeta/050101 Design of Delay-Power Efficient Carry Select

More information

Design and Implementation of an Ultra-Low Power High Speed CMOS Logic using Cadence

Design and Implementation of an Ultra-Low Power High Speed CMOS Logic using Cadence Design and Implementation of an Ultra-Low Power High Speed CMOS Logic using Cadence L.Vasanth 1, D. Yokeshwari 2 1 Assistant Professor, 2 PG Scholar, Department of ECE Tejaa Shakthi Institute of Technology

More information

Design and Performance Analysis of Low Power RF Operational Amplifier using CMOS and BiCMOS Technology

Design and Performance Analysis of Low Power RF Operational Amplifier using CMOS and BiCMOS Technology Proc. of Int. Conf. on Recent Trends in Information, Telecommunication and Computing, ITC Design and Performance Analysis of Low Power RF Operational Amplifier using CMOS and BiCMOS Technology A. Baishya

More information

ISSN: [Kumar* et al., 6(5): May, 2017] Impact Factor: 4.116

ISSN: [Kumar* et al., 6(5): May, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IMPROVEMENT IN NOISE AND DELAY IN DOMINO CMOS LOGIC CIRCUIT Ankit Kumar*, Dr. A.K. Gautam * Student, M.Tech. (ECE), S.D. College

More information

A Low Power High Speed Adders using MTCMOS Technique

A Low Power High Speed Adders using MTCMOS Technique International Journal of Computational Engineering & Management, Vol. 13, July 2011 www..org 65 A Low Power High Speed Adders using MTCMOS Technique Uma Nirmal 1, Geetanjali Sharma 2, Yogesh Misra 3 1,2,3

More information

Design of High Performance Arithmetic and Logic Circuits in DSM Technology

Design of High Performance Arithmetic and Logic Circuits in DSM Technology Design of High Performance Arithmetic and Logic Circuits in DSM Technology Salendra.Govindarajulu 1, Dr.T.Jayachandra Prasad 2, N.Ramanjaneyulu 3 1 Associate Professor, ECE, RGMCET, Nandyal, JNTU, A.P.Email:

More information

II. Previous Work. III. New 8T Adder Design

II. Previous Work. III. New 8T Adder Design ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: High Performance Circuit Level Design For Multiplier Arun Kumar

More information

Comparative Analysis of Adiabatic Logic Techniques

Comparative Analysis of Adiabatic Logic Techniques Comparative Analysis of Adiabatic Logic Techniques Bhakti Patel Student, Department of Electronics and Telecommunication, Mumbai University Vile Parle (west), Mumbai, India ABSTRACT Power Consumption being

More information

Faster and Low Power Twin Precision Multiplier

Faster and Low Power Twin Precision Multiplier Faster and Low Twin Precision V. Sreedeep, B. Ramkumar and Harish M Kittur Abstract- In this work faster unsigned multiplication has been achieved by using a combination High Performance Multiplication

More information

Design of an Energy Efficient, Low Power Dissipation Full Subtractor Using GDI Technique

Design of an Energy Efficient, Low Power Dissipation Full Subtractor Using GDI Technique Design of an Energy Efficient, Low Power Dissipation Full Subtractor Using GDI Technique ABSTRACT: Rammohan Kurugunta M.Tech Student, Department of ECE, Intel Engineering College, Anantapur, Andhra Pradesh,

More information

DESIGN AND ANALYSIS OF LOW POWER 10- TRANSISTOR FULL ADDERS USING NOVEL X-NOR GATES

DESIGN AND ANALYSIS OF LOW POWER 10- TRANSISTOR FULL ADDERS USING NOVEL X-NOR GATES DESIGN AND ANALYSIS OF LOW POWER 10- TRANSISTOR FULL ADDERS USING NOVEL X-NOR GATES Basil George 200831005 Nikhil Soni 200830014 Abstract Full adders are important components in applications such as digital

More information

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1 Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1. Introduction 2. Metal Oxide Semiconductor (MOS) logic 2.1. Enhancement and depletion mode 2.2. NMOS and PMOS inverter

More information

ISSN Vol.04, Issue.05, May-2016, Pages:

ISSN Vol.04, Issue.05, May-2016, Pages: ISSN 2322-0929 Vol.04, Issue.05, May-2016, Pages:0332-0336 www.ijvdcs.org Full Subtractor Design of Energy Efficient, Low Power Dissipation Using GDI Technique M. CHAITANYA SRAVANTHI 1, G. RAJESH 2 1 PG

More information

LOW POWER CMOS CELL STRUCTURES BASED ON ADIABATIC SWITCHING

LOW POWER CMOS CELL STRUCTURES BASED ON ADIABATIC SWITCHING LOW POWER CMOS CELL STRUCTURES BASED ON ADIABATIC SWITCHING Uday Kumar Rajak Electronics & Telecommunication Dept. Columbia Institute of Engineering and Technology,Raipur (India) ABSTRACT The dynamic power

More information

Low Power High Performance 10T Full Adder for Low Voltage CMOS Technology Using Dual Threshold Voltage

Low Power High Performance 10T Full Adder for Low Voltage CMOS Technology Using Dual Threshold Voltage Low Power High Performance 10T Full Adder for Low Voltage CMOS Technology Using Dual Threshold Voltage Surbhi Kushwah 1, Shipra Mishra 2 1 M.Tech. VLSI Design, NITM College Gwalior M.P. India 474001 2

More information

Power Efficient adder Cell For Low Power Bio MedicalDevices

Power Efficient adder Cell For Low Power Bio MedicalDevices IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 2, Ver. III (Mar-Apr. 2014), PP 39-45 e-issn: 2319 4200, p-issn No. : 2319 4197 Power Efficient adder Cell For Low Power Bio MedicalDevices

More information

POWER DELAY PRODUCT AND AREA REDUCTION OF FULL ADDERS USING SYSTEMATIC CELL DESIGN METHODOLOGY

POWER DELAY PRODUCT AND AREA REDUCTION OF FULL ADDERS USING SYSTEMATIC CELL DESIGN METHODOLOGY This work by IJARBEST is licensed under Creative Commons Attribution 4.0 International License. Available at https://www.ijarbest.com ISSN (ONLINE): 2395-695X POWER DELAY PRODUCT AND AREA REDUCTION OF

More information

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Design A Power Efficient Compressor Using Adders Abstract

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Design A Power Efficient Compressor Using Adders Abstract Design A Power Efficient Compressor Using Adders Vibha Mahilang 1, Ravi Tiwari 2 1 PG Student [VLSI Design], Dept. of ECE, SSTC, Shri Shankracharya Group of Institutions, Bhilai, CG, India 2 Assistant

More information

Energy Efficient and High Speed Charge-Pump Phase Locked Loop

Energy Efficient and High Speed Charge-Pump Phase Locked Loop Energy Efficient and High Speed Charge-Pump Phase Locked Loop Sherin Mary Enosh M.Tech Student, Dept of Electronics and Communication, St. Joseph's College of Engineering and Technology, Palai, India.

More information

Study and Analysis of CMOS Carry Look Ahead Adder with Leakage Power Reduction Approaches

Study and Analysis of CMOS Carry Look Ahead Adder with Leakage Power Reduction Approaches Indian Journal of Science and Technology, Vol 9(17), DOI: 10.17485/ijst/2016/v9i17/93111, May 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Study and Analysis of CMOS Carry Look Ahead Adder with

More information

Investigation on Performance of high speed CMOS Full adder Circuits

Investigation on Performance of high speed CMOS Full adder Circuits ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Investigation on Performance of high speed CMOS Full adder Circuits 1 KATTUPALLI

More information