The 5G Technology Ecosystem. Dr. Taro Eichler Dr. Corbett Rowell

Size: px
Start display at page:

Download "The 5G Technology Ecosystem. Dr. Taro Eichler Dr. Corbett Rowell"

Transcription

1 The 5G Technology Ecosystem Dr. Taro Eichler Dr. Corbett Rowell

2 Application scenarios that shall be supported by 5G technology High spectral efficiency Low latency High density device deployment Improved link budget Low device complexity Long battery life Low packet error rate Low packet loss rate Low latency Source: IMT Vision Framework and overall objectives of the future development of IMT for 2020 and beyond (June 19, 2015)

3 5G - Continuing the Success of LTE Evolution Service: Data +Voice Mobile Broadband (MBB) embb / mmtc / URLLC eicic MTC Cat0 CAT M1 PSM NB- IoT 20 MHz MIMO OFDM Voice MBMS CA 8x8 MIMO CoMP WLAN offload CA enh. CA FDD + TDD DC 256 QAM D2D LAA D2D enh. LWIP LWA SC- PTM V2X Rel8 Rel9 Rel10 Rel11 Rel12 Rel13 Rel / Commercial operation

4 embb: How to Improve System Capacity? Problem: Shannon Channel Capacity Capacity (bits/second) G vs. 4G Capacity Comparison C W log 2 Signal BW (Hz) 1 SNR (S/N) Solution: Signal Bandwidth & SNR Use additional frequency bands in mmwave spectrum (3010 GHz, > 6GHz) for increased signal bandwidth up to 2 GHz Increase spectral and energy efficiency of 5G waveforms and multiple access Implement Massive MIMO with multiple channels and beamforming to improve SNR Energy Efficiency (bits/j) LTE Pico-Cell Curve Current LTE Pico-Cell Point Current LTE Macro-Cell Point LTE Macro-Cell Curve GSM Curve Current GSM Point Spectral Efficiency (bps/hz) Easiest ways to improve capacity: MIMO and Signal BW

5 5G: Required Radio Technologies Waveforms mmwave Radio IoT P f Multiple Access Massive MIMO t Fiber Interconnect

6 3GPP 5G Standardization Update Timeline after RAN #73 (Sept 2016) Today LTE Advanced Pro 5G NR Phase 1 5G NR Phase 2 Release 13 Release 14 Release 15 Release 16 3GPP 5G Workshop 5G NR Scope and Requirements 5G NR Work Items Phase 1 5G NR Work Items Phase 2 Channel modeling > 6 GHz TR finalized TSG-RAN #78, December 2017: Stage 3 freeze of L1/L2 for common aspects of NSA (focused on licensed bands) and SA NR; Principles agreed for SA-specific L1/L2 components. TSG #80, June 2018: Release 15 stage 3 freeze for NR and NexGen, including Standalone. TR NR: New Radio SA: Standalone NSA: Non Standalone 6

7 3GPP 5G Standardization Update RAN Specifications 3GPP RAN naming convention: 3.xG = UTRAN, 4.xG = E-UTRAN, 5G = NR (New Radio) New 3GPP RAN specification series TR 38.xxx: Spec Number Title 3GPP WG TR Study on New Radio Access Technology: RAN Architecture and Interfaces RAN3 TR Study on New Radio Access Technology: Physical Layer Aspects RAN1 TR TR for Study on New Radio Access Technology: RF and co-existence aspects RAN4 TR TR for Study on New Radio Access Technology: Radio Interface Protocol Aspects RAN2 TR TR TR Study on channel model for frequency spectrum above 6 GHz Study on New Radio Access Technology Study on Scenarios and Requirements for Next Generation Access Technology Source: 7

8 Technical report for 3GPP for channel modelling available SI proposed by Samsung, Nokia 03/2015. Was finished in June To be used for RAN1 system simulations. Eventually adopted in RAN4 for performance tests, not decided yet. Different scenarios defined for >6 GHz: Urban Micro (UMi): street canyon, open square. Urban Macro (UMa) with outdoor/indoor UE. Indoor: Office (Open, Mixed), Shopping Mall. Source: 8

9 3GPP 5G Standardization Update Use Cases and Applications Massive IoT A diverse ecosystem (operators, manufacturers, local authorities, certification only for some technologies) Mix of technologies (GSM, Lora, Zigbee, WLAN, Bluetooth, Cat M, NB-IoT,) It s all about cost efficiency and massive connectivity Massive IoT enhanced Mobile Broadband embb the known playground Established ecosystem (operators, manufacturers, certification of devices) Evolution from existing technologies (LTE-A, ad) and revolutionary additions (cm- / mm-wave) It s all about data (speed and capacity) Ultra reliable & low latency communication URLLC A significantly enhanced and diverse ecosystem (operators (?), manufacturers, verticals, certification not existing (yet)) Existing technologies do not provide sufficient performance It s all about reliability and security (data and capacity) 14 Oct G Congress Tokyo / Japan 9

10 Global 5G Trial Activities Network Operators Verizon SK Telecom Korea Telecom NTT DoCoMo AT&T TeliaSonera Optus China Mobile Vodafone Dt. Telekom TIM Orange Telefonica 2017, US (Verizon): commercial operation for fixed wireless access 5G Open Trial Specification Alliance OEMs 2018, South Korea (SKT/KT): commercial operation for Winter Olympics Ericsson 2020, Japan (NTT DoCoMo): commercial operation for Summer Olympics Harmonization of 5G specification is driven by the four operators Verizon, SKT, KT and NTT DoCoMo Intel Nokia Samsung Cicso Qualcomm Huawei Samsung ZTE NEC Fujitsu Oct G Forum

11 5G Trials and Network Deployments Use Cases Fixed Wireless Access (FWA) Focus of 5G trials and early network deployments is on enhanced Mobile Broadband Mobile Networks embb pre-5g NR / SA pre-5g NR SA 5G NR NSA 11

12 5G Trials and Network Deployments Timeline 2016 Today LTE Advanced Pro 5G NR Phase 1 5G NR Phase 2 5G NR Evolution Release Release 15 Release 16 Release 17 Technology Trials Spec published Field Trials Network Launch 5G Network (pre-3gpp, FWA) 5G NR Phase 1 Specification approved Technology Trials Samsung KT, SKT Technology Trials Japanese Operators Field Trials 5G Network (pre-3gpp, SA) Field Trials (pre-3gpp) Network Launch Field Trials (3GPP 5G NR) 3GPP compliant 5G NR Network (NSA, LTE interworking) Network Launch 12

13 5G Spectrum Availability WRC5 Considered frequency ranges and bands to be studied for 5G: to 27.5 GHz 31.8 to 33.4 GHz 37.0 to 43.5 GHz 45.4 to 50.2 GHz 50.4 to 52.6 GHz 66 to 76 GHz 81 to 86 GHz Total available bandwidth: ~ 30 GHz Carrier BW Cell Size 28 GHz band is not fully covered, however of high interest for deployment in US and Korea Sub-6GHz Coverage Mobility Reliability cave: GHz mm Wave: GHz High Capacity Massive Throughput Ultra-Dense Networks n x 20 MHz n x 100 MHz 1-2 GHz Macro Small Ultra-small Recommended Bands < 6GHz (Europe) Sub 700MHz MHz L-Band MHz MHz TD-LTE GHz C-Band GHz GHz Total available bandwidth: 1.3 GHz 13

14 5G Trials and Network Deployments 28 GHz Spectrum in US FCC adds additional spectrum for 5G wireless by an anonymously vote on July 14, 2016 Total of GHz will be made available: 28 GHz: 27.5 to GHz 37 GHz: 37.0 to 38.6 GHz Licensed 39 GHz: 38.6 to 40 GHz 64 to 71 GHz. Unlicensed 2x 425 MHz blocks for the 28 GHz band, country-wide available. Remaining licensed bands are organized as 200 MHz blocks. Source: Dedicated to Shared Spectrum Use f in GHz 200 MHz 14

15 5G Trials and Network Deployments Verizon 5G Specifications Verizon has published their 5G specifications in July 2016 Based on 3GPP LTE Advanced Rel2 specifications with several changes and adaptations: OFDM(A) also used in UL Beamforming, e.g. BRS = Beam Reference Signals PHY, MAC, RLC adaptations supporting new capabilities Higher layer protocol extensions, e.g. beam measurements Source: 15

16 5G Trials and Network Deployments Verizon 5G Specifications Based on 3GPP LTE Advanced Specifications Physical Layer and Spectrum Usage 16

17 5G A(nother) new air interface LTE air interface will not support all use cases In particular low latency requirements require redesign Many different use cases suggest more than a single air interface Discussed candidates comprise: UFMC: Universal Filtered Multi-Carrier FBMC: Filter-Bank Multi-Carrier GFDM: Generalized Frequency Division Multiplexing f-ofdm: Filtered-OFDM SCMA: Sparse Code Multiple Access NOMA: Non-Orthogonal Multiple Access Common advantages at the cost of higher complexity: Better robustness against imperfect synchronism Reduced out-of-band emission Common key parameters: FFT size, number of active subcarriers, subcarrier spacing reduced out of band emissions Number of symbols per subcarrier, symbol source Ideal: waveform is fully orthogonal in time & frequency. No inter carrier interference ICI & well known localization in time & frequency But: reality is different (real world channel conditions)! freq no need to be synchronized + better spectral efficiency 17

18 5G waveform candidates some design aspects Overhead Resistance to Interference Out of Band Emissions Rx Power (db) Time Frequency Spectral Efficiency Flexibility Receiver/MIMO Complexity 18

19 f-ofdm Filtered OFDM f-ofdm applies subband specific filtering, various characteristics possible Sub-band 1 Sub-band 2 Sub-band N ifft 1 e.g. 256 ifft 2 e.g. 256 ifft N e.g CP 1 e.g. 1/10 CP 2 e.g. 1/16 CP N e.g. 1/32 Filter 1 Filter 2 Filter N Σ Based on OFDM numerology Completely different parameter set for each sub-band Sub-carrier spacing, FFT-size, filter, cyclic prefix length 19

20 Basic principles: Downlink and Uplink xpdcch xpdsch Phase Noise Compensation Reference Signal (DL PNCRS),, Extended Synchronization Signal (ESS) Phase Noise Compensation Reference Signal (PNCRS) xpbch, epbch xpucch xprach xpusch

21 Comparison LTE and Verizon Wireless 5G PHY parameterization (2/2) Aggregation of up to 8 carriers 100 MHz each. LTE: 3GPP Rel.102: only 5 carriers 20 MHz each. LTE: 3GPP Rel.13: 32 carriers up to 20 MHz each. Dynamic switch on a subframe basis from downlink to uplink transmission. 4 possibilities: New PHY signals and new or modified PHY channels, supporting additional capabilities. 21

22 Old and new synchronization signals /, Extended Synchronization Signal (ESS) time Subframe #0 Subframe #1 Subframe #2. Subframe #24 Subframe #25 Subframe #26.. Subframe #49 Subframe #0 1 Subframe = 0.2 ms (TTI) Radio Frame (10 ms) OFDM Symbol #0... OFDM Symbol #13 OFDM Symbol #0... OFDM Symbol #13 OFDM Symbol #0... OFDM Symbol #13 Subcarrier #708 Subcarrier #634 Subcarrier #563 PRB #58 Subcarrier #704 Subcarrier #703 Subcarrier #632 Subcarrier #631 Subcarrier #559 Subcarrier #558 ESS ESS ESS ESS ESS ESS ESS ESS ESS PRB #53 Subcarrier #642 Subcarrier #641 PRB #47 Subcarrier #569 Subcarrier #568 PRB #41 Subcarrier #496 Subcarrier #495 ESS ESS ESS ESS ESS ESS Subcarrier #636 Subcarrier #564 Subcarrier #492 22

23 xpbch, epbch Where are the broadcast channels transmitted? Subframe #0 and # ms 41 PRB 18 PRB (PRB41 to PRB58) 41 PRB xpbch, BRS xpbch, BRS ESS SFN [8 bit] BRS transmission period epbch periodicity even numbered subblocks with complex-valued symbols odd numbered subblocks with complex-valued symbols Bit epbch periodicity T epbch 00 OFF N/A ms ms ms 16 xpbch transmitted on 4 consecutive radio frames. Occupies subframe #0, #25 with //ESS and BRS; BRS are used to demod xpbch. Transmitted info (MIB): SFN (8 bits), BRS period, epbch transmission periodicity. epbch carries System Information Block (xsib) and is transmitted on pre-defined or configured subframe. Subframe depends on BRS transmission period. Periodicity is (none, 4, 8, 16) radio frames (xpbch). BRS transmission period # of subframes Subframes within radio frame 1 slot < 5 ms 1 49 th 1 subframe = 5 ms 2 48 th, 49 th 2 subframes = 10 ms 4 46 th, 47 th, 48 th, 49 th 4 subframes = 20 ms 8 42 nd,43 th,...,48 th,49 th

24 xpbch, Beamforming Reference Signal (BRS) 41 PRB Subframe #0 and # ms xpbch, BRS 1 PRB 0.2 ms l = BRS Scrambling (OCC) depends on antenna port: 713 p = k= 709 xpbch Used as Demodulation Reference Signal (DMRS) 24

25 Verizon 5G specification Some Details on the Air Interface - Testplan The present document establishes a test plan for the air interface of the 5G trial systems. In this specification, a single 5G NB shall operate with a single 5G UE in a lab environment. Beamforming is an essential part of any commercial radio access networks that are deployed on a higher frequency in order to provide a sufficient coverage. Members of Verizon 5G TF have agreed on adopting hybrid beamforming for its advantage in relatively flexible beamforming at a reasonable implementation cost, as well as ability to support both SU-MIMO and MU-MIMO. 25

26 Rohde&Schwarz R&S SMW200A Vector Signal Generator with Software Option SMW-K114 provides the required 5G capabilities f-ofdm: with Filter Length = 1 and Subband = 1 generic OFDM signals can be generated. Set FFT size Set subcarrier spacing CP Y/N? Occupied Bandwidth # of Symbols 26

27 Demodulating Verizon Wireless 5G signal (Example: Downlink) 27

28 Rohde & Schwarz supports V5G signal generation/analysis based on Verizon 5G open trial specifications 100 MHz single carrier or multi-carrier signals 800 MHz

29 Current RAN1#85 (May 2016) Discussion on NR Numerology Scaling for subcarrier spacing: f SC = f 0 *2 m with m = 1, 2,, z or f SC = f 0 *M with M = 1, 2,, z. Current working assumption (WA) based on RAN1#85 is that f 0 = 15 khz and scaling factor is 2 m. Additional proposals: (1) f 0 = N/D*15 khz for small values of N, D, (2) Non-power-of-2 FFT size or (3) allow a subcarrier spacing of 75 khz. Agreement for WA to be achieved until RAN1#86 (08/2016). Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set z Subcarrier Spacing [khz] Component Carrier BW [MHz] X 2X 4X 8X 16X 32X 64X Symbol Length [μs] Cyclic Prefix Length [μs] Subframe Length [ms] Radio Frame Length [ms] Note TBD after identifying detailed scheduling operations in NR. To be defined At least it is necessary to cover X=20, and it is beneficial to cover X=40, wider bandwidths for FFS Source: R Views on numerology for NR, NTT DoCoMo [May 2016]

30 R&S 5G Test Solution Overview Wideband Signal Testing R&S SMW200 Spectrum Analyzer DUT Signal generator UP < 40 GHz > 40 GHz R&S FSW85 I 40 GHz signal generation I 85 GHz signal analysis I 2 GHz bandwidth support Channel Sounding Solution R&S SMW200 Signal generator I fast measurement in time domain I support for in- and outdoor sounding I very high dynamic range New 5G PHY Candidates R&S SMW200 K114 R&S FS-K196 R&S FSW85 R&S TS-5GCS Component Characterization R&S ZVA Spectrum Analyzer Data Analysis Software Network Analyzer Direct measurements up to 110 GHz Massive MIMO - Beamforming R&S SMW200+ 6x R&S SGT100 R&S ZNBT I Phase-coherent RF generation I Multi-port VNA E2e Application Testing CONTEST CMWrun R&S NGMO DUT R&S CMW500 Analyze application behavior like signaling load, delay, power etc. 30

31 If you want to go fast, go alone. If you want to go far, go together! African proverb 31

5G Technology Introduction, Market Status Overview and Worldwide Trials. Dr. Taro Eichler Technology Manager Wireless Communication

5G Technology Introduction, Market Status Overview and Worldwide Trials. Dr. Taro Eichler Technology Manager Wireless Communication 5G Technology Introduction, Market Status Overview and Worldwide Trials Dr. Taro Eichler Technology Manager Wireless Communication Mobile World Congress 2017 Barcelona (It not Smartphones anymore) Automation

More information

5G Overview Mobile Technologies and the Way to 5G. Arnd Sibila, Rohde & Schwarz Technology Marketing Mobile Network Testing

5G Overview Mobile Technologies and the Way to 5G. Arnd Sibila, Rohde & Schwarz Technology Marketing Mobile Network Testing 5G Overview Mobile Technologies and the Way to 5G Arnd Sibila, Rohde & Schwarz Technology Marketing Mobile Network Testing Contents LTE and evolution (IOT and unlicensed) 5G use cases (incl. first deployments)

More information

Enhanced Mobile Broadband (embb)

Enhanced Mobile Broadband (embb) Flexible Signal Generation and Analysis for 5G by Andreas Roessler, Technology Manager, North America - Rohde & Schwarz Enhanced Mobile Broadband (embb) is among the possible application scenarios for

More information

C O M PAN Y R E S T R I C T E D

C O M PAN Y R E S T R I C T E D What is 5G? It s a paradigm shift 1G~1985 2G1992 3G2001 4G2010 5G2020 Transition from analog to digital www Define use case Analyze requirements Define technology embb www Define technology framework Find

More information

5G New Radio. Ian Wong, Ph.D. Senior Manager, Advanced Wireless Research. ni.com NI CONFIDENTIAL

5G New Radio. Ian Wong, Ph.D. Senior Manager, Advanced Wireless Research. ni.com NI CONFIDENTIAL 5G New Radio Ian Wong, Ph.D. Senior Manager, Advanced Wireless Research ni.com ITU Vision for IMT-2020 and Beyond > 10 Gbps Peak rates > 1M / km 2 Connections < 1 ms Latency New ITU Report on IMT-2020

More information

When technology meets spectrum: Bring 5G vision into Reality

When technology meets spectrum: Bring 5G vision into Reality When technology meets spectrum: Bring 5G vision into Reality 5G India 2018, 2 nd international conference (May 17-18, 2018) WU Yong www.huawei.com 5G Vision: Enabling a full connected world Enhance Mobile

More information

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc.

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. 5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. Yinan Qi Samsung Electronics R&D Institute UK, Staines, Middlesex TW18 4QE,

More information

5G NR network deployment is now let s test!

5G NR network deployment is now let s test! 5G NR network deployment is now let s test! Jibran Siddiqui Technology and Application Engineer Mobile Network Testing Shakil Ahmed Regional Director Mobile Network Testing Contents Market drivers and

More information

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better 5G New Radio Design Expanding the human possibilities of technology to make our lives better Fall VTC-2017, Panel September 25 th, 2017 Dr. Amitabha Ghosh Head of Small Cell Research, Nokia Fellow, IEEE

More information

Pre-5G and 5G: Will The mmwave Link Work? Communications

Pre-5G and 5G: Will The mmwave Link Work? Communications Pre-5G and 5G: Will The mmwave Link Work? Andreas Roessler Rohde & Schwarz, Munich, Germany Smart Home/Building Smart City Any next-generation mobile communications technology has to provide better performance

More information

5G new radio architecture and challenges

5G new radio architecture and challenges WHITE PAPER 5G new radio architecture and challenges By Dr Paul Moakes, CTO, CommAgility www.commagility.com 5G New Radio One of the key enabling technologies for 5G will be New Radio (NR). 5G NR standardization

More information

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM LTE and NB-IoT Luca Feltrin RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna Telecom Italia Mobile S.p.a. - TIM Index Ø 3GPP and LTE Specifications Ø LTE o Architecture o PHY Layer o Procedures

More information

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT.

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT. Evolution of cellular wireless systems from 2G to 5G 5G overview 6-13 th October 2017 Enrico Buracchini TIM INNOVATION DEPT. Up to now.we are here. Source : Qualcomm presentation @ 5G Tokyo Bay Summit

More information

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test M A R C H 2 6, 2 0 1 8 Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies 1 5G Market Trends 5G New Radio Specification and Implications New Measurement Challenges and Redefining Test Summary

More information

5G Massive MIMO and mmw Design and Test Solution

5G Massive MIMO and mmw Design and Test Solution 5G Massive MIMO and mmw Design and Test Solution Jan. 2017 Philip Chang Senior Project Manager 1 Agenda Communications Page 2 Overview of 5G Technologies 5G Key Radio Technologies mmwave Massive MIMO Keysight

More information

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies //08 K E Y N O T E S P E E C H Jeffrey Chen Jeffrey-cy_chen@keysight.com 08.0. Deputy General Manager / Keysight Technologies M O R E S P E E D, L E S S P O W E R, P E R F E C T A C C U R A C Y NETWORKS/CLOUD

More information

TS 5G.201 v1.0 (2016-1)

TS 5G.201 v1.0 (2016-1) Technical Specification KT PyeongChang 5G Special Interest Group (); KT 5th Generation Radio Access; Physical Layer; General description (Release 1) Ericsson, Intel Corp., Nokia, Qualcomm Technologies

More information

5G NR Update and UE Validation

5G NR Update and UE Validation 5G NR Update and UE Validation Sr. Project Manager/ Keysight JianHua Wu 3GPP Status Update 2 5G Scenarios and Use Cases B R O A D R A N G E O F N E W S E R V I C E S A N D PA R A D I G M S Amazingly fast

More information

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Lectio praecursoria Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Author: Junquan Deng Supervisor: Prof. Olav Tirkkonen Department of Communications and Networking Opponent:

More information

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent 3GPP: Evolution of Air Interface and IP Network for IMT-Advanced Francois COURAU TSG RAN Chairman Alcatel-Lucent 1 Introduction Reminder of LTE SAE Requirement Key architecture of SAE and its impact Key

More information

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology 5G - The multi antenna advantage Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology Content What is 5G? Background (theory) Standardization roadmap 5G trials & testbeds 5G product releases

More information

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G ICTC 2015 Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G Juho Lee Samsung Electronics Presentation Outline LTE/LTE-Advanced evolution: an overview LTE-Advanced in Rel-13 Expectation for LTE-Advanced

More information

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li 3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li Mar. 4, 2016 1 Agenda Status Overview of RAN1 Working/Study Items Narrowband Internet of Things (NB-IoT) (Rel-13)

More information

Radio Interface and Radio Access Techniques for LTE-Advanced

Radio Interface and Radio Access Techniques for LTE-Advanced TTA IMT-Advanced Workshop Radio Interface and Radio Access Techniques for LTE-Advanced Motohiro Tanno Radio Access Network Development Department NTT DoCoMo, Inc. June 11, 2008 Targets for for IMT-Advanced

More information

3G Evolution HSPA and LTE for Mobile Broadband Part II

3G Evolution HSPA and LTE for Mobile Broadband Part II 3G Evolution HSPA and LTE for Mobile Broadband Part II Dr Stefan Parkvall Principal Researcher Ericsson Research stefan.parkvall@ericsson.com Outline Series of three seminars I. Basic principles Channel

More information

Requirements on 5G Development Device manufacturer s perspective

Requirements on 5G Development Device manufacturer s perspective Requirements on 5G Development Device manufacturer s perspective ECC 5G Mobile Communications Workshop Mainz, Nov. 2 4 2016 Quan Yu, Chief Strategy Officer, Huawei Wireless Product Line 1 Europe s 5G Action

More information

RF exposure impact on 5G rollout A technical overview

RF exposure impact on 5G rollout A technical overview RF exposure impact on 5G rollout A technical overview ITU Workshop on 5G, EMF & Health Warsaw, Poland, 5 December 2017 Presentation: Kamil BECHTA, Nokia Mobile Networks 5G RAN Editor: Christophe GRANGEAT,

More information

5G Outlook Test and Measurement Aspects Mark Bailey

5G Outlook Test and Measurement Aspects Mark Bailey 5G Outlook Test and Measurement Aspects Mark Bailey mark.bailey@rohde-schwarz.com Application Development Rohde & Schwarz Outline ı Introduction ı Prospective 5G requirements ı Global 5G activities and

More information

THE USE OF MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES

THE USE OF MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES THE USE OF 3300-3800 MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES 5G Spectrum and Policy Forum 29 June 2017, GSMA MWC Shanghai Global mobile Suppliers Association Hu Wang (wanghu.wanghu@huawei.com)

More information

K E Y S I G H T I N 5 G. Mombasawala Mohmedsaaed General Manager (Applications)

K E Y S I G H T I N 5 G. Mombasawala Mohmedsaaed General Manager (Applications) K E Y S I G H T I N 5 G Mombasawala Mohmedsaaed 18.05.2018 General Manager (Applications) EPC 1 e M B B m M T C u R L C C CP+ UP UP The first NR specification (3GPP Release 15) supports increased data

More information

5G Standardization Status in 3GPP

5G Standardization Status in 3GPP As the radio interface of mobile phones has evolved, it has typically been changed about every ten years, and the 5G (5th Generation) interface is expected to start being used in the 2020s. Similar to

More information

Components for 5G what is new? Markus Loerner, Market Segment Manager RF & microwave component test

Components for 5G what is new? Markus Loerner, Market Segment Manager RF & microwave component test Components for 5G what is new? Markus Loerner, Market Segment Manager RF & microwave component test Agenda ı 5G NR a very brief introduction ı From technology to component ı Test solutions - conducted

More information

FANTASTIC-5G: Novel, flexible air interface for enabling efficient multiservice coexistence for 5G below 6GHz

FANTASTIC-5G: Novel, flexible air interface for enabling efficient multiservice coexistence for 5G below 6GHz FANTASTIC-5G: Novel, flexible air interface for enabling efficient multiservice coexistence for 5G below 6GHz Frank Schaich with support from the whole consortium January 28. 2016 1 Agenda Introduction

More information

New Radio for 5G. The future of mobile broadband

New Radio for 5G. The future of mobile broadband New Radio for 5G The future of mobile broadband Table of Contents Abstract...3 1 5G Mobile Communications... 4 1.1 Capabilities and Requirements...5 1.2 IMT-2020 Requirements and Usage Scenarios...5 1.3

More information

Impact of mm-wave Range and Large Bandwidth on RF System Design. R&S Taiwan Feiyu Chen

Impact of mm-wave Range and Large Bandwidth on RF System Design. R&S Taiwan Feiyu Chen Impact of mm-wave Range and Large Bandwidth on RF System Design R&S Taiwan Feiyu Chen Simplified RF Architecture ı ITU Band 11 (Extremely High Frequency) 30 to 300 GHz ı Wavelength range 1 to 10 mm Digital

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

Path to 5G Radio Access Network

Path to 5G Radio Access Network Path to 5G Radio Access Network Eduardo Inzunza RF-Test Market Development Dec-2017 2016 2017 Viavi Solutions Inc. 1 Topics 5G RAN Introduction 5G Evolution 5G Revolution 2 Cellular evolution APPS 10101

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

The path from 4G to 5G: Technology development from the test & measurement perspective. Dr. Taro Eichler. 5G Tokyo Bay Summit July 23 rd, 2015

The path from 4G to 5G: Technology development from the test & measurement perspective. Dr. Taro Eichler. 5G Tokyo Bay Summit July 23 rd, 2015 The path from 4G to 5G: Technology development from the test & measurement perspective Dr. Taro Eichler 5G Tokyo Bay Summit July 23 rd, 2015 5G Use cases: Much more than only Mobile Broadband Scenarios

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

Towards a flexible harmonised 5G air interface with multi service, multi connectivity support

Towards a flexible harmonised 5G air interface with multi service, multi connectivity support ETSI Workshop on Future Radio Technologies: Air Interfaces Sophia Antipolis, 27 28 Jan 2016 Towards a flexible harmonised 5G air interface with multi service, multi connectivity support M. Tesanovic (Samsung),

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

Overcoming Key OTA Test Challenges from 4G to 5G

Overcoming Key OTA Test Challenges from 4G to 5G Overcoming Key OTA Test Challenges from 4G to 5G Raja N. Mir 5G MN Products Nokia - US/Irving 1 Contents 1 2 3 4 5 5G Overview 4G Vs 5G Radio, What Changed? OTA Changes impacting Measurement OTA Changes

More information

OAI UE 5G NR FEATURE PLAN AND ROADMAP

OAI UE 5G NR FEATURE PLAN AND ROADMAP OAI UE 5G NR FEATURE PLAN AND ROADMAP Fabrice Nabet BUPT OpenAir Workshop, April 28 2017, Beijing TCL Communication Technology Holdings Ltd. 5G Spirit From OAI LTE to 5G NR LTE UE basic functionalities

More information

5G Synchronization Aspects

5G Synchronization Aspects 5G Synchronization Aspects Michael Mayer Senior Staff Engineer Huawei Canada Research Centre WSTS, San Jose, June 2016 Page 1 Objective and outline Objective: To provide an overview and summarize the direction

More information

Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless

Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless Jin Bains Vice President R&D, RF Products, National Instruments 1 We live in a Hyper Connected World Data rate

More information

Contents. Introduction Why 5G? What are the 4G limitations? Key consortium and Research centers for the 5G

Contents. Introduction Why 5G? What are the 4G limitations? Key consortium and Research centers for the 5G Contents Introduction Why 5G? What are the 4G limitations? Key consortium and Research centers for the 5G Technical requirements & Timelines Technical requirements Key Performance Indices (KPIs) 5G Timelines

More information

Top 5 Challenges for 5G New Radio Device Designers

Top 5 Challenges for 5G New Radio Device Designers WHITE PAPER Top 5 Challenges for 5G New Radio Device Designers 5G New Radio (NR) Release-15, introduced in December 2017, lays the foundation for ultra-fast download speeds, reliable low latency connections,

More information

3GPP TSG RA WG1 Meeting #86bis R Lisbon, Portugal, October 10-14, 2016

3GPP TSG RA WG1 Meeting #86bis R Lisbon, Portugal, October 10-14, 2016 1 TSG RA WG1 Meeting #86bis R1-1610446 Lisbon, Portugal, October 10-14, 2016 Source: Cohere Technologies Title: OTFS PAPR Analysis Agenda item: 8.1.1.1 Document for: Discussion 1. Introduction In the context

More information

5G deployment below 6 GHz

5G deployment below 6 GHz 5G deployment below 6 GHz Ubiquitous coverage for critical communication and massive IoT White Paper There has been much attention on the ability of new 5G radio to make use of high frequency spectrum,

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

The Blueprint of 5G A Global Standard

The Blueprint of 5G A Global Standard The Blueprint of 5G A Global Standard Dr. Wen Tong Huawei Fellow, CTO, Huawei Wireless May 23 rd, 2017 Page 1 5G: One Network Infrastructure Serving All Industry Sectors Automotive HD Video Smart Manufacturing

More information

Wireless Networks: An Introduction

Wireless Networks: An Introduction Wireless Networks: An Introduction Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Cellular Networks WLAN WPAN Conclusions Wireless Networks:

More information

The results in the next section show that OTFS outperforms OFDM and is especially well suited for the high-mobility use case.

The results in the next section show that OTFS outperforms OFDM and is especially well suited for the high-mobility use case. 1 TSG RA WG1 Meeting #85 R1-165053 Nanjing, China, May 23-27, 2016 Source: Cohere Technologies Title: Performance Results for OTFS Modulation Agenda item: 7.1.3.1 Document for: Discussion 1. Introduction

More information

WINNER+ IMT-Advanced Evaluation Group

WINNER+ IMT-Advanced Evaluation Group IEEE L802.16-10/0064 WINNER+ IMT-Advanced Evaluation Group Werner Mohr, Nokia-Siemens Networks Coordinator of WINNER+ project on behalf of WINNER+ http://projects.celtic-initiative.org/winner+/winner+

More information

Radio Access Techniques for LTE-Advanced

Radio Access Techniques for LTE-Advanced Radio Access Techniques for LTE-Advanced Mamoru Sawahashi Musashi Institute of of Technology // NTT DOCOMO, INC. August 20, 2008 Outline of of Rel-8 LTE (Long-Term Evolution) Targets for IMT-Advanced Requirements

More information

LTE Aida Botonjić. Aida Botonjić Tieto 1

LTE Aida Botonjić. Aida Botonjić Tieto 1 LTE Aida Botonjić Aida Botonjić Tieto 1 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High data rates at high speed Low latency Packet optimized radio access

More information

5G: implementation challenges and solutions

5G: implementation challenges and solutions 5G: implementation challenges and solutions University of Bristol / Cambridge Wireless 18 th September 2018 Matthew Baker Nokia Bell-Labs Head of Radio Physical Layer & Coexistence Standardisation Higher

More information

Millimeter wave: An excursion in a new radio interface for 5G

Millimeter wave: An excursion in a new radio interface for 5G Millimeter wave: An excursion in a new radio interface for 5G Alain Mourad Cambridge Wireless, London 03 February 2015 Creating the Living Network Outline 5G radio interface outlook Millimeter wave A new

More information

3GPP 5G 無線インターフェース検討状況

3GPP 5G 無線インターフェース検討状況 3GPP 5G 無線インターフェース検討状況 エリクソン ジャパン ( 株 ) ノキアソリューションズ & ネットワークス ( 株 ) 2017 年 12 月 22 日 1 Disclaimers This presentation is based on the draft 3GPP specifications to be approved in RAN#78 meeting in Dec/2017.

More information

NB IoT RAN. Srđan Knežević Solution Architect. NB-IoT Commercial in confidence Uen, Rev A Page 1

NB IoT RAN. Srđan Knežević Solution Architect. NB-IoT Commercial in confidence Uen, Rev A Page 1 NB IoT RAN Srđan Knežević Solution Architect NB-IoT Commercial in confidence 20171110-1 Uen, Rev A 2017-11-10 Page 1 Massive Iot market outlook M2M (TODAY) IOT (YEAR 2017 +) 15 Billion PREDICTED IOT CONNECTED

More information

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany 3G/4G Mobile Communications Systems Dr. Stefan Brück Qualcomm Corporate R&D Center Germany Chapter VI: Physical Layer of LTE 2 Slide 2 Physical Layer of LTE OFDM and SC-FDMA Basics DL/UL Resource Grid

More information

Panel Workshop Starts at 4:30 pm

Panel Workshop Starts at 4:30 pm Panel Discussion @NoMA Workshop Starts at 4:30 pm www.huawei.com Outline of the Panel Discussion Building connections between academic and industry DL NoMA in 3GPP UL NoMA in 3GPP Some thinking towards

More information

3GPP ProSe/D2D and its proposed extensions to other topics such as V2X, Wearable devices RAN Aspects. ICL 蔡華龍 (Hua-Lung Tsai) 105 年 09 月 12 日

3GPP ProSe/D2D and its proposed extensions to other topics such as V2X, Wearable devices RAN Aspects. ICL 蔡華龍 (Hua-Lung Tsai) 105 年 09 月 12 日 3GPP ProSe/D2D and its proposed extensions to other topics such as V2X, Wearable devices RAN Aspects ICL 蔡華龍 (Hua-Lung Tsai) 105 年 09 月 12 日 Outline Introduce LTE-A ProSe (D2D) in Rel. 12/13 Further Enhancements

More information

FUTURE SPECTRUM WHITE PAPER DRAFT

FUTURE SPECTRUM WHITE PAPER DRAFT FUTURE SPECTRUM WHITE PAPER DRAFT FUTURE SPECTRUM WHITE PAPER Version: Deliverable Type Draft Version Procedural Document Working Document Confidential Level Open to GTI Operator Members Open to GTI Partners

More information

Part I Evolution. ZTE All rights reserved

Part I Evolution. ZTE All rights reserved Part I Evolution 2 ZTE All rights reserved 4G Standard Evolution, LTE-A in 3GPP LTE(R8/R9) DL: 100Mbps, UL: 50Mbps MIMO, BF,LCS, embms LTE-A (R10/R11) DL: 1Gbps, UL: 500Mbps CA, Relay, Het-Net CoMP, emimo

More information

5G New Radio (NR) : Physical Layer Overview and Performance

5G New Radio (NR) : Physical Layer Overview and Performance 5G New Radio (NR) : Physical Layer Overview and Performance IEEE Communication Theory Workshop - 2018 Amitabha Ghosh Nokia Fellow and Head, Radio Interface Group Nokia Bell Labs May 15 th, 2018 1 5G New

More information

5G Toolbox. Model, simulate, design and test 5G systems with MATLAB

5G Toolbox. Model, simulate, design and test 5G systems with MATLAB 5G Toolbox Model, simulate, design and test 5G systems with MATLAB Houman Zarrinkoub, PhD. Product Manager 5G, Communications, LTE and WLAN Toolboxes Signal Processing & Communications houmanz@mathworks.com

More information

3GPP Long Term Evolution LTE

3GPP Long Term Evolution LTE Chapter 27 3GPP Long Term Evolution LTE Slides for Wireless Communications Edfors, Molisch, Tufvesson 630 Goals of IMT-Advanced Category 1 2 3 4 5 peak data rate DL / Mbit/s 10 50 100 150 300 max DL modulation

More information

Progress on LAA and its relationship to LTE-U and MulteFire. Qualcomm Technologies, Inc. February 22, 2016

Progress on LAA and its relationship to LTE-U and MulteFire. Qualcomm Technologies, Inc. February 22, 2016 Progress on LAA and its relationship to LTE-U and MulteFire Qualcomm Technologies, Inc. February 22, 2016 Making best use of 5 GHz unlicensed band LTE-U/LAA, LWA, MulteFire and will coexist in 5 GHz Enterprises

More information

LTE Release 14 Outlook

LTE Release 14 Outlook LTE Release 14 Outlook Christian Hoymann, David Astely, Magnus Stattin, Gustav Wikström, Jung-Fu (Thomas) Cheng, Henning Wiemann, Niklas Johansson, Mattias Frenne, Ricardo Blasco, Joerg Huschke, Andreas

More information

On the Threshold of 5G Commercialization. Kailash Narayanan Vice President & General Manager

On the Threshold of 5G Commercialization. Kailash Narayanan Vice President & General Manager On the Threshold of 5G Commercialization Kailash Narayanan Vice President & General Manager By 2022, mobile augmented reality revenues will reach Source: MarketsAndMarkets By 2021, mobile will comprise

More information

Test strategy towards Massive MIMO

Test strategy towards Massive MIMO Test strategy towards Massive MIMO Using LTE-Advanced Pro efd-mimo Shatrughan Singh, Technical Leader Subramaniam H, Senior Technical Leader Jaison John Puliyathu Mathew, Senior Engg. Project Manager Abstract

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

LTE-Advanced research in 3GPP

LTE-Advanced research in 3GPP LTE-Advanced research in 3GPP GIGA seminar 8 4.12.28 Tommi Koivisto tommi.koivisto@nokia.com Outline Background and LTE-Advanced schedule LTE-Advanced requirements set by 3GPP Technologies under investigation

More information

Massive MIMO for the New Radio Overview and Performance

Massive MIMO for the New Radio Overview and Performance Massive MIMO for the New Radio Overview and Performance Dr. Amitabha Ghosh Nokia Bell Labs IEEE 5G Summit June 5 th, 2017 What is Massive MIMO ANTENNA ARRAYS large number (>>8) of controllable antennas

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

GTI Proof of Concept of 5G System White Paper

GTI Proof of Concept of 5G System White Paper GTI Proof of Concept of 5G System White Paper http://www.gtigroup.org Page 0 White Paper of Proof of Concept of 5G System V 1.0 Version V1.0 Deliverable Type Confidential Level Program Name Working Group

More information

5G India Demystifying 5G, Massive MIMO and Challenges

5G India Demystifying 5G, Massive MIMO and Challenges Demystifying 5G, Massive MIMO and Challenges 5G India 2017 Ramarao Anil Head Product Support, Development & Applications Rohde & Schwarz India Pvt. Ltd. COMPANY RESTRICTED Agenda ı 5G Vision ı Why Virtualization

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

Prototyping Next-Generation Communication Systems with Software-Defined Radio

Prototyping Next-Generation Communication Systems with Software-Defined Radio Prototyping Next-Generation Communication Systems with Software-Defined Radio Dr. Brian Wee RF & Communications Systems Engineer 1 Agenda 5G System Challenges Why Do We Need SDR? Software Defined Radio

More information

Test Range Spectrum Management with LTE-A

Test Range Spectrum Management with LTE-A Test Resource Management Center (TRMC) National Spectrum Consortium (NSC) / Spectrum Access R&D Program Test Range Spectrum Management with LTE-A Bob Picha, Nokia Corporation of America DISTRIBUTION STATEMENT

More information

RF Channel Characterization with Multiple Antenna Systems for LTE

RF Channel Characterization with Multiple Antenna Systems for LTE RF Channel Characterization with Multiple Antenna Systems for LTE Leonhard Korowajczuk CEO/CTO CelPlan Technologies leonhard@celplan.com www.celplan.com 703-259-4022 9/18/2012 Copyright CelPlan Technologies,

More information

From 2G to 4G UE Measurements from GSM to LTE. David Hall RF Product Manager

From 2G to 4G UE Measurements from GSM to LTE. David Hall RF Product Manager From 2G to 4G UE Measurements from GSM to LTE David Hall RF Product Manager Agenda: Testing 2G to 4G Devices The progression of standards GSM/EDGE measurements WCDMA measurements LTE Measurements LTE theory

More information

Configurable 5G Air Interface for High Speed Scenario

Configurable 5G Air Interface for High Speed Scenario Configurable 5G Air Interface for High Speed Scenario Petri Luoto, Kari Rikkinen, Pasi Kinnunen, Juha Karjalainen, Kari Pajukoski, Jari Hulkkonen, Matti Latva-aho Centre for Wireless Communications University

More information

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany;

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; Proceedings of SDR'11-WInnComm-Europe, 22-24 Jun 2011 LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; meik.kottkamp@rohde-schwarz.com) ABSTRACT From 2009 onwards

More information

5G: New Air Interface and Radio Access Virtualization. HUAWEI WHITE PAPER April 2015

5G: New Air Interface and Radio Access Virtualization. HUAWEI WHITE PAPER April 2015 : New Air Interface and Radio Access Virtualization HUAWEI WHITE PAPER April 2015 5 G Contents 1. Introduction... 1 2. Performance Requirements... 2 3. Spectrum... 3 4. Flexible New Air Interface... 4

More information

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact:

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact: TT 1608: LTE Air Interface Foundations Explained Contact: hello@techtrained.com 469-619-7419 918-908-0336 Course Overview: If you are trying to learn LTE and don t know where to start. You or your technical

More information

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable!

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable! Innovating Telecoms Training Very informative, instructor was engaging and knowledgeable! Watch our course intro video. LTE Air Interface Course Description With the introduction of LTE came the development

More information

5G Technologies and Advances, Part I

5G Technologies and Advances, Part I 5G Technologies and Advances, Part I 5G New Radio An Overview Borching Su 1 1 Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan August 6, 2018 Graduate Institute

More information

802.11ax introduction and measurement solution

802.11ax introduction and measurement solution 802.11ax introduction and measurement solution Agenda IEEE 802.11ax 802.11ax overview & market 802.11ax technique / specification 802.11ax test items Keysight Product / Solution Demo M9421A VXT for 802.11ax

More information

4G TDD MIMO OFDM Network

4G TDD MIMO OFDM Network 4G TDD MIMO OFDM Network 4G TDD 移动通信网 Prof. TAO Xiaofeng Wireless Technology Innovation Institute (WTI) Beijing University of Posts & Telecommunications (BUPT) Beijing China 北京邮电大学无线新技术研究所陶小峰 1 Background:

More information

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 OFDMA PHY for EPoC: a Baseline Proposal Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 Supported by Jorge Salinger (Comcast) Rick Li (Cortina) Lup Ng (Cortina) PAGE 2 Outline OFDM: motivation

More information

Capacity Enhancement Techniques for LTE-Advanced

Capacity Enhancement Techniques for LTE-Advanced Capacity Enhancement Techniques for LTE-Advanced LG 전자 윤영우연구위원 yw.yun@lge.com 1/28 3GPP specification releases 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 GSM/GPRS/EDGE enhancements

More information

3G long-term evolution

3G long-term evolution 3G long-term evolution by Stanislav Nonchev e-mail : stanislav.nonchev@tut.fi 1 2006 Nokia Contents Radio network evolution HSPA concept OFDM adopted in 3.9G Scheduling techniques 2 2006 Nokia 3G long-term

More information

Wiley-IEEE Press Sampler. Communications Technology Power and Energy

Wiley-IEEE Press Sampler. Communications Technology Power and Energy Wiley-IEEE Press Sampler Communications Technology Power and Energy Contents 5G STANDARD DEVELOPMENT: TECHNOLOGY AND ROADMAP By Juho Lee and Yongjun Kwak Chapter 23 of Signal Processing for 5G: Algorithms

More information

LTE systems: overview

LTE systems: overview LTE systems: overview Luca Reggiani LTE overview 1 Outline 1. Standard status 2. Signal structure 3. Signal generation 4. Physical layer procedures 5. System architecture 6. References LTE overview 2 Standard

More information

5G Frame Structure. August 2017 Frank Kowalewski, Eiko Seidel Nomor Research GmbH, Munich, Germany

5G Frame Structure. August 2017 Frank Kowalewski, Eiko Seidel Nomor Research GmbH, Munich, Germany 5G Frame Structure August 2017 Frank Kowalewski, Eiko Seidel Nomor Research GmbH, Munich, Germany Summary 3GPP is currently defining physical layer technologies for 5G cellular communications. New 5G services

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information