3G Evolution HSPA and LTE for Mobile Broadband Part II

Size: px
Start display at page:

Download "3G Evolution HSPA and LTE for Mobile Broadband Part II"

Transcription

1 3G Evolution HSPA and LTE for Mobile Broadband Part II Dr Stefan Parkvall Principal Researcher Ericsson Research

2 Outline Series of three seminars I. Basic principles Channel and traffic behavior Link adapation, scheduling, hybrid-arq Evolving 3G, inclusion of basic principles in WCDMA II. LTE First step into 4G Path towards IMT-Advanced III. Standardization How are HSPA and LTE created? 3GPP, ITU,...

3 Recap from First session Radio channel quality is time varying Traffic pattern is time varying Adapt to and exploit variations in the radio channel quality variations in the traffic pattern instead of combating them!

4 Recap from First session Shared channel transmission Channel-dependent scheduling Rate control Hybrid-ARQ with soft combining

5 Recap from First session Shared channel transmission Channel-dependent scheduling Hybrid ARQ HSPA ( Turbo-3G ) Packet-data add-on to WCDMA First version ~2002, still evolving Using principles from first session Rate control 5 MHz 5 MHz 10 MHz f Multi-carrier transmission Multi-antenna support

6 LTE Long-Term Evolution WCDMA HSDPA HSPA HSPA+ LTE

7 HSPA and LTE = Mobile Broadband HSPA High-Speed Packet Access ( Turbo-3G ) Gradually improved performance at a low additional cost LTE Long-Term Evolution ( 4G ) Significantly higher performance in a wide range of spectrum allocations Downlink up to 300 Mbit/s Uplink up to 75 Mbit/s Reduced latency 10 ms RTT Packet-switched services only WCDMA HSDPA HSPA HSPA evolution LTE Stefan Parkvall Requirements Studies Spec s

8 LTE 4G Mobile Broadband From early studies Testbed 2007, 20 MHz, 2x2 MIMO LTE Testbed 2007 via trials m to commercial operation!

9 Spectrum Flexibility Operation in differently-sized spectrum allocations Core specifications support any bandwidth from 1.4 to 20 MHz Radio requirements defined for a limited set of spectrum allocations 1.4 MHz 3 MHz 5 MHz 6 RB ( 1.4 MHz) 10 MHz 15 MHz 20 MHz 100 RB ( 20 MHz) Support for paired and unpaired spectrum allocations with a single radio-access technology economy-of-scale Uplink Downlink frequency frequency frequency FDD time Half-duplex FDD (terminal-side only) time TDD time

10 Transmission Scheme Downlink OFDM Parallel transmission on large number of narrowband subcarriers Uplink DFTS-OFDM DFT-precoded OFDM DFT precoder OFDM modulator IFFT Cyclic-prefix insertion DFT IFFT Cyclic-prefix insertion Benefits: Avoid own-cell interference Robust to time dispersion Main drawback Power-amplifier efficiency Tx signal has single-carrier properties Improved power-amplifier efficiency Improved battery life Reduced PA cost Critical for uplink Equalizer needed Rx Complexity Not critical for uplink

11 Time Dispersion and OFDM Time dispersion inter-symbol interference Requires receiver-side processing (equalization) OFDM transmission uses multiple narrowband subcarriers Including of cyclic prefix completely mitigates time dispersion (up to CP) at the cost of additional overhead simple receiver Single carrier Detect symbol n OFDM Detect symbol n Path 1 n-2 n-1 n n+1 Path 2 n-2 n-1 n n+1 (delayed copy)

12 Downlink OFDM Δf 0 Block of M symbols Size-N IFFT M subcarriers CP insertion 0 T u = 1/Δf T CP T u T CP-E T u Parallel transmission using a large number of narrowband sub-carriers Multi-carrier transmission Typically implemented with FFT Insertion of cyclic prefix prior to transmission Improved robustness in time-dispersive channels requires CP > delay spread Spectral efficiency loss Configuration, Δf CP length Symbols per slot Normal 15 khz 4.7 μs 7 Extended 15 khz 16.7 μs khz 33.3 μs 3

13 Uplink DFT-spread OFDM ( SC-FDMA ) Single-carrier uplink transmission efficient power-amplifier operation improved coverage OFDM requires larger back-off than single-carrier DFT-spread OFDM OFDM with DFT precoder to reduce PAR Uplink numerology aligned with downlink numerology Terminal A DFT (M 1 ) 0 IFFT CP insertion M 1 > M 2 Terminal B DFT (M 2 ) 0 IFFT CP insertion

14 Time-domain Structure FDD Uplink and downlink separated in frequency domain One subframe, T subframe = 1 ms One radio frame, T frame = 10 ms UL DL f U L fd L Subframe #0 #1 #2 #3 #4 #5 #6 #7 #8 #9 TDD Uplink and downlink separated in time domain special subframe Same numerology etc as FDD economy of scale (special subframe) (special subframe) UL DL f DL/UL DwPTS GP UpPTS

15 Physical Resources One frame (10 ms) One subframe (1 ms) One resource element 12 sub-carriers One slot (0.5 ms) T CP T u

16 Protocol Architecture User #i User #j SAE bearers MAC MAC scheduler Payload selection Priority handling, payload selection Retransmission control Modulation scheme Antenna and resource assignment PDCP RLC MAC PHY Header Compr. Ciphering Segmentation, ARQ MAC multiplexing Hybrid ARQ Hybrid ARQ Coding + RM Coding Data modulation Modulation Antenna and resrouce Antenna and resource mapping mapping PDCP PDCP Packet Data Header Compr. Convergence Protocol Radio Bearers RLC Radio RLC Link Control Logical Channels MAC MAC demultiplexing MAC Medium Access Control Transport Channel Hybrid Hybrid ARQ ARQ Multiplexing of radio bearers PHY Coding + RM Decoding Data modulation Coding, Modulation Demodulation Redundancy version Packet Data Convergence Protocol Header compression to reduce overhead Ciphering for security Header compression to reduce overhead Deciphering Ciphering for security Segmentation/concatenation Reassembly, ARQ RLC retransmissions In-sequence delivery Hybrid-ARQ retransmissions PHY Physical Layer Multi-antenna Antenna and resrouce Antenna and processing resource mapping demapping Resource mapping Radio Link Control Segmentation/concatenation RLC retransmissions In-sequence delivery Medium Access Control Multiplexing of radio bearers Hybrid-ARQ retransmissions Physical Layer Coding, Modulation Multi-antenna processing Resource mapping

17 Data Flow in LTE SAE bearer 1 SAE bearer 1 SAE bearer 2 header Payload header Payload header Payload PDCP hdr Payload hdr Payload hdr Payload PDCP header PDCP header PDCP header RLC RLC SDU RLC SDU RLC SDU RLC header RLC header RLC header MAC MAC header MAC SDU MAC header MAC SDU PHY Transport Block CRC Transport Block CRC

18 Architecture Core network evolved in parallel to LTE EPC Evolved Packet Core Flat architecture, single RAN node, the enodeb Compare HSPA, which has an RNC Internet PSTN Internet Core Network Core Network RNC RNC to other Node Bs to other Node Bs Dedicated channels enodeb UE NodeB UE LTE HSPA

19 Channel-dependent Scheduling LTE channel-dependent scheduling in time and frequency domain HSPA adaptation in time-domain only Time-frequency fading, user #1 data1 data2 data3 data4 Time-frequency fading, user #2 User #1 scheduled User #2 scheduled 1 ms Time Frequency 180 khz

20 Uplink Scheduling Base station mandates data rate of terminal Unlike HSPA where terminal selects data rate [limited by scheduler] Motivated by orthgonal LTE uplink vs non-orthgonal HSPA uplink enodeb enodeb RLC buffer RLC buffer Scheduler MAC multiplexing Scheduler Uplink channel quality Modulation, coding Channelstatus Buffer Status TF selection UE UE Modulation, coding Downlink channel quality Priority handling MAC multiplexing RLC buffer RLC buffer Downlink Uplink

21 Hybrid-ARQ with Soft Combining Parallel stop-and-wait processes 8 processes 8 ms roundtrip time To RLC for in-sequence delivery Block 2 Block 3 Block 4 Block 5 Block 1 Hybrid-ARQ protocol Process #7 Process #1 Process #0 Process #2 Process transport block 3 Process transport block 5 Process transport block 2 Process transport block 4 Process transport block 1 Process transport block 1 Process transport block

22 Interaction with RLC Why two transmission mechanisms, RLC and hybrid-arq? Retransmission protocols need feedback Hybrid ARQ [with soft combining] Fast retransmission, feedback every 1 ms interval Frequent feedback need low overhead, single bit Single, uncoded bit errors in feedback (~10-3 ) RLC Reliable feedback (sent in same manner as data) Multi-bit feedback less frequent Hybrid-ARQ and RLC complement each other

23 Multi-antenna transmission techniques Diversity for improved system peformance Beam-forming for improved coverage (less cells to cover a given area) SDMA for improved capacity (more users per cell) Multi-layer transmisson ( MIMO ) for higher data rates in a given bandwidth The multi-antenna technique to use depends on what to achieve

24 Scheduling and Interference Handling Scheduling strategy strongly influences system behavior Trade-off between capacity and uniform service provisioning Can take inter-cell interference into account Improve cell-edge data rates...at the cost of system throughput Autonomous handling complemented by exchange of coordination messages between base stations Cell A Cell B

25 data1 data2 data3 data4 LTE Continuous Evolution OFDM transmission Multi-antenna support ICIC Dual-layer beamforming Multi-antenna extensions N W E S Channel-dependent scheduling Hybrid ARQ Positioning Relaying Bandwidth flexibility FDD and TDD support MBMS Carrier Aggregation Rel-8 Rel-9 Rel Basic LTE functionality Enhancements & extensions Further extensions IMT-Advanced compliant

26 MBSFN Operation Rel-9 Multicast-Broadcast Single Frequency Network Synchronized transmission from multiple cells Seen as multipath propagation by terminal combining gain for free MBSFN for content known to have many viewers News, sport events, On demand Personalized content Big events Known in advance to have many users

27 Carrier Aggregation Rel-10 Multiple component carriers operating in parallel Rel-8 one component carrier Rel-10 up to five component carriers Rel-8 Rel-10 Use cases Bandwidths beyond 20 MHz higher data rates Exploitation of fragmented spectrum Straight-forward baseband challenging RF implementation Intra-band aggregation, contiguous component carriers Frequency band A Frequency band B Intra-band aggregation, non-contiguous component carriers Frequency band A Frequency band B Inter-band aggregation Frequency band A Frequency band B

28 backhaul link access link Relaying Rel-10 Repeater Possible already in Rel-8, simply amplifies and retransmits received signal Relaying (added in Rel-10) Relay = small base station connected to RAN using LTE radio resources Interesting if fiber/microwave is more expensive than using LTE spectrum Donor cell Relay cell

29 Non-uniform Deployments Improved Support in Rel-10 What? Low power nodes placed throughout a macro-cell layout Hierarchical Cell Structures an old idea revisited Why? High data rates dense infrastructure...but non-uniform user distribution Macro for coverage, pico for high data rates How? Conventional Independent pico cells Relay Independent relay cells Relay connected to macro RRU Remote pico antenna, processing in macro No new pico cells

30 Beyond Rel-10 CoMP CoMP Coordinated Multi-point transmission/reception Tx/Rx from single point at a time Scheduling coordination to avoid severe interference situations Tx/Rx from multiple points at a time Joint transmission to improve SINR Coordination Coordinated precoding/beamforming Requires spatial information about channels to non-serving cells Coherent or non-coherent transmission Coherent requires accurate tracking of relative phases between points CoMP emerging technology, studied in 3GPP not part of Rel-10

31 LTE Rel-8 - Summary FDD and TDD support IFFT Bandwidth flexibility Fundamental principle: adapt to and exploit variations in Transmission scheme DL OFDM, UL DFTS-OFDM data1 data2 data3 data4 radio channel quality traffic pattern Channel-dependent scheduling ICIC Multi-antenna support Hybrid ARQ

32 data1 data2 data3 data4 LTE Rel-9 - Refinements LTE Rel-9 N MBSFN LTE Rel-8 W E S Positioning Dual-stream Beamforming

33 data1 data2 data3 data4 LTE Rel-10 IMT-Advanced LTE Rel-10 Carrier Aggregation LTE Rel-9 N W E MIMO extensions Up to 4x4 UL and 8x8 DL LTE Rel-8 S Enhanced HetNet support Relaying

34 For Further information Open the 3GPP specifications......or read The Book! Available in English, Chinese, Korean and Japanese.

35

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

LTE systems: overview

LTE systems: overview LTE systems: overview Luca Reggiani LTE overview 1 Outline 1. Standard status 2. Signal structure 3. Signal generation 4. Physical layer procedures 5. System architecture 6. References LTE overview 2 Standard

More information

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent 3GPP: Evolution of Air Interface and IP Network for IMT-Advanced Francois COURAU TSG RAN Chairman Alcatel-Lucent 1 Introduction Reminder of LTE SAE Requirement Key architecture of SAE and its impact Key

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany 3G/4G Mobile Communications Systems Dr. Stefan Brück Qualcomm Corporate R&D Center Germany Chapter VI: Physical Layer of LTE 2 Slide 2 Physical Layer of LTE OFDM and SC-FDMA Basics DL/UL Resource Grid

More information

LTE-Advanced and Release 10

LTE-Advanced and Release 10 LTE-Advanced and Release 10 1. Carrier Aggregation 2. Enhanced Downlink MIMO 3. Enhanced Uplink MIMO 4. Relays 5. Release 11 and Beyond Release 10 enhances the capabilities of LTE, to make the technology

More information

4G Mobile Broadband LTE

4G Mobile Broadband LTE 4G Mobile Broadband LTE Part I Dr Stefan Parkvall Principal Researcher Ericson Research Data overtaking Voice Data is overtaking voice......but previous cellular systems designed primarily for voice Rapid

More information

LTE Aida Botonjić. Aida Botonjić Tieto 1

LTE Aida Botonjić. Aida Botonjić Tieto 1 LTE Aida Botonjić Aida Botonjić Tieto 1 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High data rates at high speed Low latency Packet optimized radio access

More information

References. What is UMTS? UMTS Architecture

References. What is UMTS? UMTS Architecture 1 References 2 Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications Magazine, February

More information

CHAPTER 14 4 TH GENERATION SYSTEMS AND LONG TERM EVOLUTION

CHAPTER 14 4 TH GENERATION SYSTEMS AND LONG TERM EVOLUTION CHAPTER 14 4 TH GENERATION SYSTEMS AND LONG TERM EVOLUTION These slides are made available to faculty in PowerPoint form. Slides can be freely added, modified, and deleted to suit student needs. They represent

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

(COMPUTER NETWORKS & COMMUNICATION PROTOCOLS) Ali kamil Khairullah Number:

(COMPUTER NETWORKS & COMMUNICATION PROTOCOLS) Ali kamil Khairullah Number: (COMPUTER NETWORKS & COMMUNICATION PROTOCOLS) Ali kamil Khairullah Number: 15505071 22-12-2016 Downlink transmission is based on Orthogonal Frequency Division Multiple Access (OFDMA) which converts the

More information

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II BASICS & CHALLENGES Dr Konstantinos Dimou Senior Research Engineer Ericsson Research konstantinos.dimou@ericsson.com Overview Introduction Definition Vision

More information

Long Term Evolution (LTE)

Long Term Evolution (LTE) 1 Lecture 13 LTE 2 Long Term Evolution (LTE) Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications

More information

LTE Long Term Evolution. Dibuz Sarolta

LTE Long Term Evolution. Dibuz Sarolta LTE Long Term Evolution Dibuz Sarolta History of mobile communication 1G ~1980s analog traffic digital signaling 2G ~1990s (GSM, PDC) TDMA, SMS, circuit switched data transfer 9,6kbps 2.5 G ~ 2000s (GPRS,

More information

3GPP Long Term Evolution LTE

3GPP Long Term Evolution LTE Chapter 27 3GPP Long Term Evolution LTE Slides for Wireless Communications Edfors, Molisch, Tufvesson 630 Goals of IMT-Advanced Category 1 2 3 4 5 peak data rate DL / Mbit/s 10 50 100 150 300 max DL modulation

More information

LTE-Advanced research in 3GPP

LTE-Advanced research in 3GPP LTE-Advanced research in 3GPP GIGA seminar 8 4.12.28 Tommi Koivisto tommi.koivisto@nokia.com Outline Background and LTE-Advanced schedule LTE-Advanced requirements set by 3GPP Technologies under investigation

More information

Test Range Spectrum Management with LTE-A

Test Range Spectrum Management with LTE-A Test Resource Management Center (TRMC) National Spectrum Consortium (NSC) / Spectrum Access R&D Program Test Range Spectrum Management with LTE-A Bob Picha, Nokia Corporation of America DISTRIBUTION STATEMENT

More information

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany;

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; Proceedings of SDR'11-WInnComm-Europe, 22-24 Jun 2011 LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; meik.kottkamp@rohde-schwarz.com) ABSTRACT From 2009 onwards

More information

Addressing Future Wireless Demand

Addressing Future Wireless Demand Addressing Future Wireless Demand Dave Wolter Assistant Vice President Radio Technology and Strategy 1 Building Blocks of Capacity Core Network & Transport # Sectors/Sites Efficiency Spectrum 2 How Do

More information

Low latency in 4.9G/5G

Low latency in 4.9G/5G Low latency in 4.9G/5G Solutions for millisecond latency White Paper The demand for mobile networks to deliver low latency is growing. Advanced services such as robotics control, autonomous cars and virtual

More information

LTE: The Evolution of Mobile Broadband

LTE: The Evolution of Mobile Broadband LTE PART II: 3GPP RELEASE 8 LTE: The Evolution of Mobile Broadband David Astély, Erik Dahlman, Anders Furuskär, Ylva Jading, Magnus Lindström, and Stefan Parkvall, Ericsson Research ABSTRACT This article

More information

Voice over IP Realized for the 3GPP Long Term Evolution

Voice over IP Realized for the 3GPP Long Term Evolution Voice over IP Realized for the 3GPP Long Term Evolution Fredrik Persson Ericsson Research Ericsson AB, SE-164 80 Stockholm, Sweden fredrik.f.persson@ericsson.com Abstract The paper outlines voice over

More information

UMTS Radio Access Techniques for IMT-Advanced

UMTS Radio Access Techniques for IMT-Advanced Wireless Signal Processing & Networking Workshop at Tohoku University UMTS Radio Access Techniques for IMT-Advanced M. M. Sawahashi,, Y. Y. Kishiyama,, and H. H. Taoka Musashi Institute of of Technology

More information

Radio Access Techniques for LTE-Advanced

Radio Access Techniques for LTE-Advanced Radio Access Techniques for LTE-Advanced Mamoru Sawahashi Musashi Institute of of Technology // NTT DOCOMO, INC. August 20, 2008 Outline of of Rel-8 LTE (Long-Term Evolution) Targets for IMT-Advanced Requirements

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable!

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable! Innovating Telecoms Training Very informative, instructor was engaging and knowledgeable! Watch our course intro video. LTE Air Interface Course Description With the introduction of LTE came the development

More information

Radio Interface and Radio Access Techniques for LTE-Advanced

Radio Interface and Radio Access Techniques for LTE-Advanced TTA IMT-Advanced Workshop Radio Interface and Radio Access Techniques for LTE-Advanced Motohiro Tanno Radio Access Network Development Department NTT DoCoMo, Inc. June 11, 2008 Targets for for IMT-Advanced

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

Introduction to WiMAX Dr. Piraporn Limpaphayom

Introduction to WiMAX Dr. Piraporn Limpaphayom Introduction to WiMAX Dr. Piraporn Limpaphayom 1 WiMAX : Broadband Wireless 2 1 Agenda Introduction to Broadband Wireless Overview of WiMAX and Application WiMAX: PHY layer Broadband Wireless Channel OFDM

More information

3GPP Long Term Evolution eutran

3GPP Long Term Evolution eutran 3GPP Long Term Evolution eutran Matúš Turcsány turcsany@ktl.elf.stuba.sk KTL FEI STU 2009 Agenda OFDM vs. CDMA LTE candidates Details of LTE design SAE/EPC LTE-Advanced CDMA vs. OFDM 2003 2007 Ramjee Prasad,

More information

TS 5G.201 v1.0 (2016-1)

TS 5G.201 v1.0 (2016-1) Technical Specification KT PyeongChang 5G Special Interest Group (); KT 5th Generation Radio Access; Physical Layer; General description (Release 1) Ericsson, Intel Corp., Nokia, Qualcomm Technologies

More information

(LTE Fundamental) LONG TERMS EVOLUTION

(LTE Fundamental) LONG TERMS EVOLUTION (LTE Fundamental) LONG TERMS EVOLUTION 1) - LTE Introduction 1.1: Overview and Objectives 1.2: User Expectation 1.3: Operator expectation 1.4: Mobile Broadband Evolution: the roadmap from HSPA to LTE 1.5:

More information

DOWNLINK AIR-INTERFACE...

DOWNLINK AIR-INTERFACE... 1 ABBREVIATIONS... 10 2 FUNDAMENTALS... 14 2.1 INTRODUCTION... 15 2.2 ARCHITECTURE... 16 2.3 INTERFACES... 18 2.4 CHANNEL BANDWIDTHS... 21 2.5 FREQUENCY AND TIME DIVISION DUPLEXING... 22 2.6 OPERATING

More information

LTE Network Architecture, Interfaces and Radio Access

LTE Network Architecture, Interfaces and Radio Access LTE Network Architecture, Interfaces and Radio Access Sanne STIJVE Business Development Manager, Mobile Broadband Ericsson 1 LTE/EPC Architecture & Terminology S1 enodeb MME X2 X2 P/S GW X2 enodeb EPC

More information

RADIO RESOURCE MANAGEMENT

RADIO RESOURCE MANAGEMENT DESIGN AND PERFORMANCE EVALUATION OF RADIO RESOURCE MANAGEMENT IN OFDMA NETWORKS Javad Zolfaghari Institute for Theoretical Information Technology RWTH Aachen University DESIGN AND PERFORMANCE EVALUATION

More information

MIMO-OFDM for LTE 최수용. 연세대학교전기전자공학과

MIMO-OFDM for LTE 최수용.   연세대학교전기전자공학과 MIMO-OFDM for LTE 최수용 csyong@yonsei.ac.kr http://web.yonsei.ac.kr/sychoi/ 연세대학교전기전자공학과 LTE 시스템의특징 : Architecture LTE(Long Term Evolution) (=E-UTRAN) SAE(System Architecture Evolution) (=EPC) EPS(Evolved

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

High Performance LTE Technology: The Future of Mobile Broadband Technology

High Performance LTE Technology: The Future of Mobile Broadband Technology High Performance LTE Technology: The Future of Mobile Broadband Technology 1 Ekansh Beniwal, 2 Devesh Pant, 3 Aman Jain, 4 Ravi Ahuja 1,2,3,4 Electronics and Communication Engineering Dronacharya College

More information

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM LTE and NB-IoT Luca Feltrin RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna Telecom Italia Mobile S.p.a. - TIM Index Ø 3GPP and LTE Specifications Ø LTE o Architecture o PHY Layer o Procedures

More information

3G long-term evolution

3G long-term evolution 3G long-term evolution by Stanislav Nonchev e-mail : stanislav.nonchev@tut.fi 1 2006 Nokia Contents Radio network evolution HSPA concept OFDM adopted in 3.9G Scheduling techniques 2 2006 Nokia 3G long-term

More information

Fading & OFDM Implementation Details EECS 562

Fading & OFDM Implementation Details EECS 562 Fading & OFDM Implementation Details EECS 562 1 Discrete Mulitpath Channel P ~ 2 a ( t) 2 ak ~ ( t ) P a~ ( 1 1 t ) Channel Input (Impulse) Channel Output (Impulse response) a~ 1( t) a ~2 ( t ) R a~ a~

More information

LTE-Advanced Evolving LTE towards IMT-Advanced

LTE-Advanced Evolving LTE towards IMT-Advanced LTE-Advanced Evolving LTE towards IMT-Advanced Stefan Parkvall, Erik Dahlman, Anders Furuskär, Ylva Jading, Magnus Olsson, Stefan Wänstedt, Kambiz Zangi Ericsson Research 68 Stockholm, Sweden Stefan.Parkvall@ericsson.com

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

BASIC CONCEPTS OF HSPA

BASIC CONCEPTS OF HSPA 284 23-3087 Uen Rev A BASIC CONCEPTS OF HSPA February 2007 White Paper HSPA is a vital part of WCDMA evolution and provides improved end-user experience as well as cost-efficient mobile/wireless broadband.

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact:

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact: TT 1608: LTE Air Interface Foundations Explained Contact: hello@techtrained.com 469-619-7419 918-908-0336 Course Overview: If you are trying to learn LTE and don t know where to start. You or your technical

More information

C O M PAN Y R E S T R I C T E D

C O M PAN Y R E S T R I C T E D What is 5G? It s a paradigm shift 1G~1985 2G1992 3G2001 4G2010 5G2020 Transition from analog to digital www Define use case Analyze requirements Define technology embb www Define technology framework Find

More information

Part 7. B3G and 4G Systems

Part 7. B3G and 4G Systems Part 7. B3G and 4G Systems p. 1 Roadmap HSDPA HSUPA HSPA+ LTE AIE IMT-Advanced (4G) p. 2 HSPA Standardization 3GPP Rel'99: does not manage the radio spectrum efficiently when dealing with bursty traffic

More information

ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ (MOBILE NETWORKS)

ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ (MOBILE NETWORKS) ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ (MOBILE NETWORKS) Δρ. Χριστόφορος Χριστοφόρου Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής 3GPP Long Term Evolution (LTE) Topics Discussed 1 LTE Motivation and Goals Introduction

More information

3GPP TR V9.0.0 ( )

3GPP TR V9.0.0 ( ) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Feasibility study for Further Advancements for E-UTRA (LTE-Advanced) (Release 9) The present document

More information

LTE-A Carrier Aggregation Enhancements in Release 11

LTE-A Carrier Aggregation Enhancements in Release 11 LTE-A Carrier Aggregation Enhancements in Release 11 Eiko Seidel, Chief Technical Officer NOMOR Research GmbH, Munich, Germany August, 2012 Summary LTE-Advanced standardisation in Release 10 was completed

More information

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis,

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, mobilegt, PowerQUICC, Processor Expert, QorIQ, Qorivva, StarCore,

More information

5G NR Update and UE Validation

5G NR Update and UE Validation 5G NR Update and UE Validation Sr. Project Manager/ Keysight JianHua Wu 3GPP Status Update 2 5G Scenarios and Use Cases B R O A D R A N G E O F N E W S E R V I C E S A N D PA R A D I G M S Amazingly fast

More information

4G TDD MIMO OFDM Network

4G TDD MIMO OFDM Network 4G TDD MIMO OFDM Network 4G TDD 移动通信网 Prof. TAO Xiaofeng Wireless Technology Innovation Institute (WTI) Beijing University of Posts & Telecommunications (BUPT) Beijing China 北京邮电大学无线新技术研究所陶小峰 1 Background:

More information

Architecture Overview NCHU CSE LTE - 1

Architecture Overview NCHU CSE LTE - 1 Architecture Overview NCHU CSE LTE - 1 System Architecture Evolution (SAE) Packet core networks are also evolving to the flat System Architecture Evolution (SAE) architecture. This new architecture optimizes

More information

HSPA & HSPA+ Introduction

HSPA & HSPA+ Introduction HSPA & HSPA+ Introduction www.huawei.com Objectives Upon completion of this course, you will be able to: Understand the basic principle and features of HSPA and HSPA+ Page1 Contents 1. HSPA & HSPA+ Overview

More information

All rights reserved. Mobile Developments. Presented by Philippe Reininger, Chairman of 3GPP RAN WG3

All rights reserved.  Mobile Developments. Presented by Philippe Reininger, Chairman of 3GPP RAN WG3 http://eustandards.in/ Mobile Developments Presented by Philippe Reininger, Chairman of 3GPP RAN WG3 Introduction 3GPP RAN has started a new innovation cycle which will be shaping next generation cellular

More information

LTE & LTE-A PROSPECTIVE OF MOBILE BROADBAND

LTE & LTE-A PROSPECTIVE OF MOBILE BROADBAND International Journal of Recent Innovation in Engineering and Research Scientific Journal Impact Factor - 3.605 by SJIF e- ISSN: 2456 2084 LTE & LTE-A PROSPECTIVE OF MOBILE BROADBAND G.Madhusudhan 1 and

More information

Broadcast Operation. Christopher Schmidt. University of Erlangen-Nürnberg Chair of Mobile Communications. January 27, 2010

Broadcast Operation. Christopher Schmidt. University of Erlangen-Nürnberg Chair of Mobile Communications. January 27, 2010 Broadcast Operation Seminar LTE: Der Mobilfunk der Zukunft Christopher Schmidt University of Erlangen-Nürnberg Chair of Mobile Communications January 27, 2010 Outline 1 Introduction 2 Single Frequency

More information

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Lectio praecursoria Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Author: Junquan Deng Supervisor: Prof. Olav Tirkkonen Department of Communications and Networking Opponent:

More information

UNIVERSITY OF SUSSEX

UNIVERSITY OF SUSSEX UNIVERSITY OF SUSSEX OFDMA in 4G Mobile Communications Candidate Number: 130013 Supervisor: Dr. Falah Ali Submitted for the degree of MSc. in Digital Communication Systems School of Engineering and Informatics

More information

From 2G to 4G UE Measurements from GSM to LTE. David Hall RF Product Manager

From 2G to 4G UE Measurements from GSM to LTE. David Hall RF Product Manager From 2G to 4G UE Measurements from GSM to LTE David Hall RF Product Manager Agenda: Testing 2G to 4G Devices The progression of standards GSM/EDGE measurements WCDMA measurements LTE Measurements LTE theory

More information

3GPP TS V ( )

3GPP TS V ( ) TS 36.201 V10.0.0 (2010-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); LTE physical

More information

Technical Documentation Visualization of LTE cellular networks in a JAVA-based radio network simulator

Technical Documentation Visualization of LTE cellular networks in a JAVA-based radio network simulator Technical Documentation Visualization of LTE cellular networks in a JAVA-based radio network simulator Version 0.4 Author: Martin Krisell Date: December 20, 2011 in a JAVA-based radio network simulator

More information

K E Y S I G H T I N 5 G. Mombasawala Mohmedsaaed General Manager (Applications)

K E Y S I G H T I N 5 G. Mombasawala Mohmedsaaed General Manager (Applications) K E Y S I G H T I N 5 G Mombasawala Mohmedsaaed 18.05.2018 General Manager (Applications) EPC 1 e M B B m M T C u R L C C CP+ UP UP The first NR specification (3GPP Release 15) supports increased data

More information

3G Long-Term Evolution (LTE) and System Architecture Evolution (SAE)

3G Long-Term Evolution (LTE) and System Architecture Evolution (SAE) 3G Long-Term Evolution (LTE) and System Architecture Evolution (SAE) Background System Architecture Radio Interface Radio Resource Management LTE-Advanced 3GPP Evolution Background 3G Long-Term Evolution

More information

5G Synchronization Aspects

5G Synchronization Aspects 5G Synchronization Aspects Michael Mayer Senior Staff Engineer Huawei Canada Research Centre WSTS, San Jose, June 2016 Page 1 Objective and outline Objective: To provide an overview and summarize the direction

More information

3GPP TR V7.2.0 ( )

3GPP TR V7.2.0 ( ) TR 25.912 V7.2.0 (2007-06) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Feasibility study for evolved Universal Terrestrial Radio Access (UTRA)

More information

Analytical Evaluation of the Cell Spectral Efficiency of a Beamforming Enhanced IEEE m System

Analytical Evaluation of the Cell Spectral Efficiency of a Beamforming Enhanced IEEE m System Analytical Evaluation of the Cell Spectral Efficiency of a Beamforming Enhanced IEEE 802.16m System Benedikt Wolz, Afroditi Kyrligkitsi Communication Networks (ComNets) Research Group Prof. Dr.-Ing. Bernhard

More information

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document. Mansor, Z. B., Nix, A. R., & McGeehan, J. P. (2011). PAPR reduction for single carrier FDMA LTE systems using frequency domain spectral shaping. In Proceedings of the 12th Annual Postgraduate Symposium

More information

Performance of Repeaters in 3GPP LTE ANTO SIHOMBING

Performance of Repeaters in 3GPP LTE ANTO SIHOMBING Performance of Repeaters in 3GPP LTE ANTO SIHOMBING Master of Science Thesis Stockholm, Sweden 9 Performance of Repeaters in 3GPP LTE ANTO SIHOMBING Master of Science Thesis performed at the Radio Communication

More information

RAN and Key technologies in 5G NR

RAN and Key technologies in 5G NR RAN and Key technologies in 5G NR Zhixi Wang Huawei Technology September,2018 Agenda NR Overall Architecture and Network Interfaces Physical Layer Layer 2 and RRC Deployment Architecture and Scenarios

More information

White paper. Long Term HSPA Evolution Mobile broadband evolution beyond 3GPP Release 10

White paper. Long Term HSPA Evolution Mobile broadband evolution beyond 3GPP Release 10 White paper Long Term HSPA Evolution Mobile broadband evolution beyond 3GPP Release 10 HSPA has transformed mobile networks Contents 3 Multicarrier and multiband HSPA 4 HSPA and LTE carrier 5 HSDPA multipoint

More information

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs Performance Studies on LTE Advanced in the Easy-C Project 19.06.2008 Andreas Weber, Alcatel Lucent Bell Labs All Rights Reserved Alcatel-Lucent 2007 Agenda 1. Introduction 2. EASY C 3. LTE System Simulator

More information

An LTE compatible massive MIMO testbed based on OpenAirInterface. Xiwen JIANG, Florian Kaltenberger EURECOM

An LTE compatible massive MIMO testbed based on OpenAirInterface. Xiwen JIANG, Florian Kaltenberger EURECOM An LTE compatible massive MIMO testbed based on OpenAirInterface Xiwen JIANG, Florian Kaltenberger EURECOM Testbed Overview Open source platform Based on OAI hardware and software 3GPP LTE compatible Incorporate

More information

Frequency Hopping in LTE Uplink

Frequency Hopping in LTE Uplink MEE09:23 Frequency Hopping in LTE Uplink Tariku Temesgen Mehari This thesis is presented as part of Degree of Master of Science in Electrical Engineering Blekinge Institute of Technology March 2009 Blekinge

More information

ARIB STD-T V Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer - General Description (Release 8)

ARIB STD-T V Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer - General Description (Release 8) ARIB STD-T63-36.201 V8.3.0 Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer - General Description () Refer to Industrial Property Rights (IPR) in the preface of ARIB STD-T63 for

More information

LTE and the Evolution to LTE-Advanced Fundamentals

LTE and the Evolution to LTE-Advanced Fundamentals LTE and the Evolution to LTE-Advanced Fundamentals Based on the 2 nd Edition book LTE and the Evolution to 4G Wireless Design and Measurement Challenges Presented by: Agilent Technologies Agenda Introduction

More information

One Cell Reuse OFDM/TDMA using. broadband wireless access systems

One Cell Reuse OFDM/TDMA using. broadband wireless access systems One Cell Reuse OFDM/TDMA using subcarrier level adaptive modulation for broadband wireless access systems Seiichi Sampei Department of Information and Communications Technology, Osaka University Outlines

More information

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc.

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. 5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. Yinan Qi Samsung Electronics R&D Institute UK, Staines, Middlesex TW18 4QE,

More information

NR Radio Access Network 2019 Training Programs. Catalog of Course Descriptions

NR Radio Access Network 2019 Training Programs. Catalog of Course Descriptions NR Radio Access Network 2019 Training Programs Catalog of Course Descriptions Catalog of Course Descriptions INTRODUCTION...3 5G RAN CONCEPTS - WBL...3 5G RAN NR AIR INTERFACE...3 5G RAN NR N18 FUNCTIONALITY...3

More information

Testing of Early Applied LTE-Advanced Technologies on Current LTE Service to overcome Real Network Problem and to increase Data Capacity

Testing of Early Applied LTE-Advanced Technologies on Current LTE Service to overcome Real Network Problem and to increase Data Capacity Testing of Early Applied LTE-Advanced Technologies on Current LTE Service to overcome Real Network Problem and to increase Data Capacity Seung-Chul SHIN*, Young-Poong LEE** *Electronic Measurement Group,

More information

The Next Generation Broadband Wireless Communication Network 3GPP-LTE - (Advanced)

The Next Generation Broadband Wireless Communication Network 3GPP-LTE - (Advanced) The Next Generation Broadband Wireless Communication Network 3GPP-LTE - (Advanced) NCC 2012 Dr. Suvra Sekhar Das G.S. Sanyal of School of Telecommunications & Department of Electronics and Electrical Communications

More information

New Radio for 5G. The future of mobile broadband

New Radio for 5G. The future of mobile broadband New Radio for 5G The future of mobile broadband Table of Contents Abstract...3 1 5G Mobile Communications... 4 1.1 Capabilities and Requirements...5 1.2 IMT-2020 Requirements and Usage Scenarios...5 1.3

More information

OAI UE 5G NR FEATURE PLAN AND ROADMAP

OAI UE 5G NR FEATURE PLAN AND ROADMAP OAI UE 5G NR FEATURE PLAN AND ROADMAP Fabrice Nabet BUPT OpenAir Workshop, April 28 2017, Beijing TCL Communication Technology Holdings Ltd. 5G Spirit From OAI LTE to 5G NR LTE UE basic functionalities

More information

Radio Performance of 4G-LTE Terminal. Daiwei Zhou

Radio Performance of 4G-LTE Terminal. Daiwei Zhou Radio Performance of 4G-LTE Terminal Daiwei Zhou Course Objectives: Throughout the course the trainee should be able to: 1. get a clear overview of the system architecture of LTE; 2. have a logical understanding

More information

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 OFDMA PHY for EPoC: a Baseline Proposal Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 Supported by Jorge Salinger (Comcast) Rick Li (Cortina) Lup Ng (Cortina) PAGE 2 Outline OFDM: motivation

More information

High-Speed Downlink Packet Access (HSDPA)

High-Speed Downlink Packet Access (HSDPA) High-Speed Downlink Packet Access (HSDPA) HSDPA Background & Basics Principles: Adaptive Modulation, Coding, HARQ Channels/ UTRAN Architecture Resource Management: Fast Scheduling, Mobility Performance

More information

ComNets. Prof. Dr.-Ing. Bernhard Walke. Communication Networks Research Group RWTH Aachen University, Germany

ComNets. Prof. Dr.-Ing. Bernhard Walke. Communication Networks Research Group RWTH Aachen University, Germany NGMN Evolution towards LTE-A Systems Prof. Dr.-Ing. Bernhard Walke Communication Networks Research Group RWTH Aachen University, Germany FFV2 Workshop 2010 @ Bremen, August 2010 The Problem of Cellular

More information

Lecture 13 UMTS Long Term Evolution. I. Tinnirello

Lecture 13 UMTS Long Term Evolution. I. Tinnirello Lecture 13 UMTS Long Term Evolution Beyond 3G International Mobile Telecommunications (IMT)-2000 introduced global standard for 3G Systems beyond IMT-2000 (IMT-Advanced) are set to introduce evolutionary

More information

Multi-Carrier HSPA Evolution and Its Performance Evaluation with Emphasis on the Downlink

Multi-Carrier HSPA Evolution and Its Performance Evaluation with Emphasis on the Downlink MEE05:30 Multi-Carrier HSPA Evolution and Its Performance Evaluation with Emphasis on the Downlink Mohammad Humayun Kabir Syed Adnan ur Rahman This thesis is presented as part of Degree of Master of Science

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Department of Computer Science Institute for System Architecture, Chair for Computer Networks Department of Computer Science Institute for System Architecture, Chair for Computer Networks LTE, WiMAX and 4G Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

More information

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better 5G New Radio Design Expanding the human possibilities of technology to make our lives better Fall VTC-2017, Panel September 25 th, 2017 Dr. Amitabha Ghosh Head of Small Cell Research, Nokia Fellow, IEEE

More information

Performance Evaluation of Packet Scheduling Algorithms for LTE Downlink

Performance Evaluation of Packet Scheduling Algorithms for LTE Downlink Master Thesis Electrical Engineering Thesis no: MEEyy:xx September2011 Performance Evaluation of Packet Scheduling Algorithms for LTE Downlink Ömer ARSLAN Olufemi Emmanuel ANJORIN School of Engineering

More information

Improving Peak Data Rate in LTE toward LTE-Advanced Technology

Improving Peak Data Rate in LTE toward LTE-Advanced Technology Improving Peak Data Rate in LTE toward LTE-Advanced Technology A. Z. Yonis 1, M.F.L.Abdullah 2, M.F.Ghanim 3 1,2,3 Department of Communication Engineering, Faculty of Electrical and Electronic Engineering

More information

Chapter 6 Applications. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30

Chapter 6 Applications. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30 Chapter 6 Applications 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Chapter 6 Applications 6.1 3G (UMTS and WCDMA) 2 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30

More information

ETSI TS V8.1.0 ( ) Technical Specification

ETSI TS V8.1.0 ( ) Technical Specification TS 136 201 V8.1.0 (2008-11) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Long Term Evolution (LTE) physical layer; General description (3GPP TS 36.201 version 8.1.0

More information