Wireless Networks: An Introduction

Size: px
Start display at page:

Download "Wireless Networks: An Introduction"

Transcription

1 Wireless Networks: An Introduction Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria

2 Contents Introduction Cellular Networks WLAN WPAN Conclusions Wireless Networks: An Introduction 0/16

3 Basic model Data in Channel Encoder Interleaver I/Q Symbol Mapper Baseband filters Up-Conv. RF TX Channel Noise Fading Interference Frequency, phase, symbol & timing recovery RF RX Down Conv. I/Q demod Symbol, Bit recovery Deinterleaver Channel Decoder Data out System resources: frequency, time, space (MIMO), codes (CDMA), power,... Figures of merit: BER, SER, FER, PER, SNR, SINR, QoS,... Wireless Networks: An Introduction 1/16

4 Capacity (bps/hz) Fundamental Limits (AWGN) 10 Shaping gain (1.53 db) 8 6 Gaussian inputs log(1+snr) 64-QAM 4 16-QAM 2 4-QAM (QPSK) 0 Pe (symbol) = 10-6 (uncoded) SNR db Nowadays, the use of power channel encoders (e.g. LDPC or turbo codes) allows us to operate close to capacity in AWGN channels Wireless Networks: An Introduction 2/16

5 Wireless Technologies Wireless Networks: An Introduction 3/16

6 1 Gbps UWB 100 Mbps n WiMax a/g 10 Mbps 4G (LTE, LTE-A) 1 Mbps Bluetooth/Zigbee b c 3G (UMTS) c 2.5 G 2G (GSM) 1 m 10 m 100 m km Communication range Wireless Networks: An Introduction 4/16

7 Cellular Networks Wireless Networks: An Introduction 5/16

8 Evolution 1 1 Reprinted from Huawei Technologies Wireless Networks: An Introduction 6/16

9 Radio Access Technologies 2G-GSM Two frequency bands of 25 MHz each ( MHz uplink, MHz downlink) Channel spacing 200 khz, 124 channels per frequency band Modulation format: Gaussian Minimun Shift Keying (GMSK) Multiple Access Technique: Time Division Multiple Access (TDMA) 3G-UMTS Frequency band: GHz Bandwidth: 1.25, 5 or 20 MHz Modulation format: Spread Spectrum, chip rate: 3.84 Mchips/s, orthogonal variable spreading factor codes (OVSF), spreading factor Multiple Access Technique: Code Division Multiple Access (DS-CDMA), Duplexing (uplink/downlink): Frequency Division Duplex (FDD), Time Division Duplex (TDD) Wireless Networks: An Introduction 7/16

10 4G-LTE Frequency band: 2-8 GHz Bandwidth: up to 100 MHz via carrier aggregation Modulation format: OFDM Multiple Access Technique: Orthogonal Frequency Division Multiple Access (OFDMA) 5G: technologies under discussion New Waveforms (filtered OFDM, FBMC, GFDM,...) New spectrum sharing (NOMA or Non-Orthogonal Multiple Access Techniques) New radio frame design (e.g., Short TTI) New L1/L2 control signaling design (Low latency HARQ, decouple data TTI with control channel, fully dynamic resource assignment,...) Full Duplex Transceivers Massive MIMO data transmission Wireless Networks: An Introduction 8/16

11 LTE Frame Structure Generic frame used in FDD for both Downlink and Uplink LTE frame are 10 ms in duration They are divided in 10 subframes (Transmission Time Interval: shortest decodable transmission) Each subframe is further divided in two slots Slots consist of either 6 or 7 OFDM symbols Wireless Networks: An Introduction 9/16

12 Available Downlink Bandwidth is Divided into Physical Resource Blocks LTE Reference Signals are Interspersed Among Resource Elements [source: 3GPP TR ] Wireless Networks: An Introduction 10/16

13 LTE OFDM modulation parameters (BW = 20 MHz) Total Subcarriers (N FFT ) 2048 Payload subcarriers 1200 Subcarrier spacing f 15 khz Sampling frequency (f s ) MHz ( f N FFT ) OFDM Symbol duration T s 66.7 µs Normal cyclic prefix (T Gn ) 4.7 µs Extended cyclic prefix (T Ge ) 16.7 µs Occupied Bandwidth 18 MHz Wireless Networks: An Introduction 11/16

14 WiFi Networks IEEE denotes a set of WLAN standards developed by the Working Group 11 of the IEEE LAN/MAN Committee Parameter a/g n ac Air rate 54 Mbps 200+ Mbps 500+ Mbps Range 30 m 50 m 50 m Frequency 5 GHz 2.4/5 GHz 5 GHz Bandwidth 20 MHz 20/40 MHz 80/160 MHz Modulation OFDM OFDM+MIMO OFDM+MIMO Spatial streams 1 1,2,3,4 up to 8 WiGig: Multi-Gigabit per second transmissions over the unlicensed 60 GHz band (also OFDM based) Wireless Networks: An Introduction 12/16

15 802.11a OFDM modulation parameters Total Subcarriers (N FFT ) 64 Payload subcarriers 48 Subcarrier spacing f khz Sampling frequency (f s ) 20 MHz ( f N FFT ) Pilot subcarriers 4 OFDM Symbol duration T s 4 µs Cyclic prefix (T G ) 800 ns Occupied Bandwidth MHz 10x0.8=8μs 2x0.8+2x3.2=8μs =4μs =4μs =4μs t1 t2 t3 t4 t5 t6 t7 t8 t9 t0 GI2 LT1 LT2 GI Signal GI Data 1 GI Data n Short Training Symbols: Frame detect, AGC, Time and coarse Freq. Sync. Long Training Symbols: Channel Estimation Frequency offset correction Signal Field: rate + length DATA Field: SERVICE + PSDU + TAIL + PAD Wireless Networks: An Introduction 13/16

16 Modulation and Coding Scheme (MCS) a provides 8 PHY layer modes with different modulation schemes and different convolutional coding rates Mode Modulation Channel Coding Data rate 1 BPSK 1/2 6 Mbps 2 BPSK 3/4 9 Mbps 3 QPSK 1/2 12 Mbps 4 QPSK 3/4 18 Mbps 5 16-QAM 1/2 24 Mbps 6 16-QAM 3/4 36 Mbps 7 64-QAM 2/3 48 Mbps 8 64-QAM 3/4 54 Mbps Wireless Networks: An Introduction 14/16

17 Wireless Personal Area Networks IEEE wireless personal area standars Bluetooth ( ) Communications between multiple electronic devices within 10m each other 2.4 GHz frequency band Frequency Hopping- Spread Spectrum (FHSS) Rate: 1-3 Mbps Nodes/Master 7 ZigBee( ) Range m Intended for Wireless Sensor Networks (thousands of devices) Low cost/low power consumption 868 MHz band/ 915 MHz band Rate: 250 kbps, 40 kbps, 20 kpbs Modulation format: Offset quadrature phase-shift keying(oqpsk)and DSSS (Direct Sequence Spread Spectrum) Wireless Networks: An Introduction 15/16

18 Conclusions Range, coverage and mobility are key aspects defining the various types of wireless networks Cellular Networks: 2G (GSM), 3G (UMTS, GPRS, EDGE, HSDPA,...), 4G (LTE, LTE-A), and 5G soon WLAN networks: standards WPAN networks: Bluetooth, ZigBee Wireless Networks: An Introduction 16/16

From 2G to 4G UE Measurements from GSM to LTE. David Hall RF Product Manager

From 2G to 4G UE Measurements from GSM to LTE. David Hall RF Product Manager From 2G to 4G UE Measurements from GSM to LTE David Hall RF Product Manager Agenda: Testing 2G to 4G Devices The progression of standards GSM/EDGE measurements WCDMA measurements LTE Measurements LTE theory

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Lecture 3 Cellular Systems

Lecture 3 Cellular Systems Lecture 3 Cellular Systems I-Hsiang Wang ihwang@ntu.edu.tw 3/13, 2014 Cellular Systems: Additional Challenges So far: focus on point-to-point communication In a cellular system (network), additional issues

More information

4G TDD MIMO OFDM Network

4G TDD MIMO OFDM Network 4G TDD MIMO OFDM Network 4G TDD 移动通信网 Prof. TAO Xiaofeng Wireless Technology Innovation Institute (WTI) Beijing University of Posts & Telecommunications (BUPT) Beijing China 北京邮电大学无线新技术研究所陶小峰 1 Background:

More information

Chapter 6 Applications. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30

Chapter 6 Applications. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30 Chapter 6 Applications 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Chapter 6 Applications 6.1 3G (UMTS and WCDMA) 2 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30

More information

Performance Analysis of n Wireless LAN Physical Layer

Performance Analysis of n Wireless LAN Physical Layer 120 1 Performance Analysis of 802.11n Wireless LAN Physical Layer Amr M. Otefa, Namat M. ElBoghdadly, and Essam A. Sourour Abstract In the last few years, we have seen an explosive growth of wireless LAN

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

Wireless LANs/data networks

Wireless LANs/data networks RADIO SYSTEMS - ETIN15 Lecture no: 12 Wireless LANs/data networks Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2015-05-13 Ove Edfors - ETIN15 1 Centralized and

More information

Major Leaps in Evolution of IEEE WLAN Technologies

Major Leaps in Evolution of IEEE WLAN Technologies Major Leaps in Evolution of IEEE 802.11 WLAN Technologies Thomas A. KNEIDEL Rohde & Schwarz Product Management Mobile Radio Tester WLAN Mayor Player in Wireless Communications Wearables Smart Homes Smart

More information

WiMAX Experiences and Visions

WiMAX Experiences and Visions WiMAX Experiences and Visions Dr. Wolfgang Wendler wolfgang.wendler@rsd.rohde-schwarz.com 1 Introduction to the Market 2 Mobility Wireless Landscape Fixed Walk Vehicle GSM GPRS DECT ZigBee RFID / NFC Datarates

More information

3G long-term evolution

3G long-term evolution 3G long-term evolution by Stanislav Nonchev e-mail : stanislav.nonchev@tut.fi 1 2006 Nokia Contents Radio network evolution HSPA concept OFDM adopted in 3.9G Scheduling techniques 2 2006 Nokia 3G long-term

More information

Performance Analysis of LTE System in term of SC-FDMA & OFDMA Monika Sehrawat 1, Priyanka Sharma 2 1 M.Tech Scholar, SPGOI Rohtak

Performance Analysis of LTE System in term of SC-FDMA & OFDMA Monika Sehrawat 1, Priyanka Sharma 2 1 M.Tech Scholar, SPGOI Rohtak Performance Analysis of LTE System in term of SC-FDMA & OFDMA Monika Sehrawat 1, Priyanka Sharma 2 1 M.Tech Scholar, SPGOI Rohtak 2 Assistant Professor, ECE Deptt. SPGOI Rohtak Abstract - To meet the increasing

More information

3GPP Long Term Evolution LTE

3GPP Long Term Evolution LTE Chapter 27 3GPP Long Term Evolution LTE Slides for Wireless Communications Edfors, Molisch, Tufvesson 630 Goals of IMT-Advanced Category 1 2 3 4 5 peak data rate DL / Mbit/s 10 50 100 150 300 max DL modulation

More information

Fading & OFDM Implementation Details EECS 562

Fading & OFDM Implementation Details EECS 562 Fading & OFDM Implementation Details EECS 562 1 Discrete Mulitpath Channel P ~ 2 a ( t) 2 ak ~ ( t ) P a~ ( 1 1 t ) Channel Input (Impulse) Channel Output (Impulse response) a~ 1( t) a ~2 ( t ) R a~ a~

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany 3G/4G Mobile Communications Systems Dr. Stefan Brück Qualcomm Corporate R&D Center Germany Chapter VI: Physical Layer of LTE 2 Slide 2 Physical Layer of LTE OFDM and SC-FDMA Basics DL/UL Resource Grid

More information

Block Error Rate and UE Throughput Performance Evaluation using LLS and SLS in 3GPP LTE Downlink

Block Error Rate and UE Throughput Performance Evaluation using LLS and SLS in 3GPP LTE Downlink Block Error Rate and UE Throughput Performance Evaluation using LLS and SLS in 3GPP LTE Downlink Ishtiaq Ahmad, Zeeshan Kaleem, and KyungHi Chang Electronic Engineering Department, Inha University Ishtiaq001@gmail.com,

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

VST 6 GHz RF Vector Signal Transceiver (VST)

VST 6 GHz RF Vector Signal Transceiver (VST) VST 6 GHz RF Vector Signal Transceiver (VST) 2016 Datasheet The most important thing we build is trust Key features Vector signal analyser and generator in a single 3U x 3 slot wide PXIe module 65 MHz

More information

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1 : Advanced Digital Communications (EQ2410) 1 Monday, Mar. 7, 2016 15:00-17:00, B23 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Overview 1 2 3 4 2 / 15 Equalization Maximum

More information

EE 577: Wireless and Personal Communications

EE 577: Wireless and Personal Communications EE 577: Wireless and Personal Communications Dr. Salam A. Zummo Lecture 1: Introduction 1 Common Applications of Wireless Systems AM/FM Radio Broadcast VHF and UHF TV Broadcast Cordless Phones (e.g., DECT)

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012. Zhu, X., Doufexi, A., & Koçak, T. (2012). A performance enhancement for 60 GHz wireless indoor applications. In ICCE 2012, Las Vegas Institute of Electrical and Electronics Engineers (IEEE). DOI: 10.1109/ICCE.2012.6161865

More information

[Insert Document Title Here]

[Insert Document Title Here] [Insert Document Title Here] IEEE 802.16 Presentation Submission Template (Rev. 8) Document Number: IEEE 802.16.3p-00/33 Date Submitted: 2000-11-13 Source: Yossi Segal Voice: 972-3-9528440 RunCom Technologies

More information

One Cell Reuse OFDM/TDMA using. broadband wireless access systems

One Cell Reuse OFDM/TDMA using. broadband wireless access systems One Cell Reuse OFDM/TDMA using subcarrier level adaptive modulation for broadband wireless access systems Seiichi Sampei Department of Information and Communications Technology, Osaka University Outlines

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

Wireless Medium Access Control and CDMA-based Communication Lesson 14 CDMA2000

Wireless Medium Access Control and CDMA-based Communication Lesson 14 CDMA2000 Wireless Medium Access Control and CDMA-based Communication Lesson 14 CDMA2000 1 CDMA2000 400 MHz, 800 MHz, 900 MHz, 1700 MHz, 1800 MHz, 1900 MHz, and 2100 MHz Compatible with the cdmaone standard A set

More information

IEEE c-00/40. IEEE Broadband Wireless Access Working Group <

IEEE c-00/40. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted Source(s) IEEE 802.16 Broadband Wireless Access Working Group Initial PHY Layer System Proposal for Sub 11 GHz BWA 2000-10-30 Anader Benyamin-Seeyar

More information

References. What is UMTS? UMTS Architecture

References. What is UMTS? UMTS Architecture 1 References 2 Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications Magazine, February

More information

VIAVI VST. Data Sheet. 6 GHz RF Vector Signal Transceiver (VST)

VIAVI VST. Data Sheet. 6 GHz RF Vector Signal Transceiver (VST) Data Sheet VIAVI 6 GHz RF Vector Signal Transceiver () VIAVI Solutions The Vector Signal Transceiver () is an essential building block in RF communications test solutions supplied by VIAVI Solutions. Overview

More information

Further Vision on TD-SCDMA Evolution

Further Vision on TD-SCDMA Evolution Further Vision on TD-SCDMA Evolution LIU Guangyi, ZHANG Jianhua, ZHANG Ping WTI Institute, Beijing University of Posts&Telecommunications, P.O. Box 92, No. 10, XiTuCheng Road, HaiDian District, Beijing,

More information

Link Adaptation in Mobile Communication Networks

Link Adaptation in Mobile Communication Networks Link Adaptation in Mobile Communication Networks Assoc. prof. Vladimír Wieser, PhD. Department of Telecommunication and Multimedia University of Zilina (vladimir.wieser@fel.uniza.sk) Department of Telecommunications

More information

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access NTT DoCoMo Technical Journal Vol. 8 No.1 Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access Kenichi Higuchi and Hidekazu Taoka A maximum throughput

More information

IEEE Broadband Wireless Access Working Group < Initial PHY Layer System Proposal for Sub 11 GHz BWA

IEEE Broadband Wireless Access Working Group <  Initial PHY Layer System Proposal for Sub 11 GHz BWA Project Title Date Submitted Source(s) Re: Abstract Purpose Notice Release Patent Policy and Procedures IEEE 802.16 Broadband Wireless Access Working Group Initial PHY Layer System

More information

R&S CMW100 Communications Manufacturing Test Set Specifications

R&S CMW100 Communications Manufacturing Test Set Specifications R&S CMW100 Communications Manufacturing Test Set Specifications Data Sheet Version 02.00 CONTENTS Definitions... 6 General technical specifications... 7 RF generator... 8 Modulation source: arbitrary waveform

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

Rashad Irshad. MSC Radio and Mobile Communications. University of Hertfordshire, UK

Rashad Irshad. MSC Radio and Mobile Communications. University of Hertfordshire, UK SC-FDMA Technique for LTE Systems Rashad Irshad MSC Radio and Mobile Communications University of Hertfordshire, UK Abstract:- Due to the requirements of high speed and low delays it is very difficult

More information

R&S CMW100 Communications Manufacturing Test Set Specifications

R&S CMW100 Communications Manufacturing Test Set Specifications R&S CMW100 Communications Manufacturing Test Set Specifications R&S CMW100 model.k06 Data Sheet Version 03.00 CONTENTS Definitions... 4 General technical specifications... 5 RF generator... 6 RF analyzer...

More information

LTE Aida Botonjić. Aida Botonjić Tieto 1

LTE Aida Botonjić. Aida Botonjić Tieto 1 LTE Aida Botonjić Aida Botonjić Tieto 1 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High data rates at high speed Low latency Packet optimized radio access

More information

Basic idea: divide spectrum into several 528 MHz bands.

Basic idea: divide spectrum into several 528 MHz bands. IEEE 802.15.3a Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Overview of Multi-band OFDM Basic idea: divide spectrum into several

More information

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Amr Shehab Amin 37-20200 Abdelrahman Taha 31-2796 Yahia Mobasher 28-11691 Mohamed Yasser

More information

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Kenichi Higuchi (1) and Hidekazu Taoka (2) (1) Tokyo University of Science (2)

More information

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2) 192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

More information

A Simulation Tool for Third Generation CDMA Systems Presentation to IEEE Sarnoff Symposium

A Simulation Tool for Third Generation CDMA Systems Presentation to IEEE Sarnoff Symposium A Simulation Tool for Third Generation CDMA Systems Presentation to IEEE Sarnoff Symposium March 22, 2000 Fakhrul Alam, William Tranter, Brian Woerner Mobile and Portable Radio Research Group () e-mail:

More information

Long Term Evolution (LTE)

Long Term Evolution (LTE) 1 Lecture 13 LTE 2 Long Term Evolution (LTE) Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

Optimizing future wireless communication systems

Optimizing future wireless communication systems Optimizing future wireless communication systems "Optimization and Engineering" symposium Louvain-la-Neuve, May 24 th 2006 Jonathan Duplicy (www.tele.ucl.ac.be/digicom/duplicy) 1 Outline History Challenges

More information

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM LTE and NB-IoT Luca Feltrin RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna Telecom Italia Mobile S.p.a. - TIM Index Ø 3GPP and LTE Specifications Ø LTE o Architecture o PHY Layer o Procedures

More information

Wireless Transmission in Cellular Networks

Wireless Transmission in Cellular Networks Wireless Transmission in Cellular Networks Frequencies Signal propagation Signal to Interference Ratio Channel capacity (Shannon) Multipath propagation Multiplexing Spatial reuse in cellular systems Antennas

More information

Improving the Data Rate of OFDM System in Rayleigh Fading Channel Using Spatial Multiplexing with Different Modulation Techniques

Improving the Data Rate of OFDM System in Rayleigh Fading Channel Using Spatial Multiplexing with Different Modulation Techniques 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore Improving the Data Rate of OFDM System in Rayleigh Fading Channel

More information

Test Range Spectrum Management with LTE-A

Test Range Spectrum Management with LTE-A Test Resource Management Center (TRMC) National Spectrum Consortium (NSC) / Spectrum Access R&D Program Test Range Spectrum Management with LTE-A Bob Picha, Nokia Corporation of America DISTRIBUTION STATEMENT

More information

The Next Generation Broadband Wireless Communication Network 3GPP-LTE - (Advanced)

The Next Generation Broadband Wireless Communication Network 3GPP-LTE - (Advanced) The Next Generation Broadband Wireless Communication Network 3GPP-LTE - (Advanced) NCC 2012 Dr. Suvra Sekhar Das G.S. Sanyal of School of Telecommunications & Department of Electronics and Electrical Communications

More information

Lecture 8. Spread Spectrum and OFDM

Lecture 8. Spread Spectrum and OFDM Lecture 8 Spread Spectrum and OFDM Time Domain View (Sieve) 2 Channel Direct Sequence Spread Spectrum Spread Spectrum 3 n Usually the spectrum of a signal is related to the data (symbol) rate n The null-to-null

More information

Radio Interface and Radio Access Techniques for LTE-Advanced

Radio Interface and Radio Access Techniques for LTE-Advanced TTA IMT-Advanced Workshop Radio Interface and Radio Access Techniques for LTE-Advanced Motohiro Tanno Radio Access Network Development Department NTT DoCoMo, Inc. June 11, 2008 Targets for for IMT-Advanced

More information

A REVIEW OF RESOURCE ALLOCATION TECHNIQUES FOR THROUGHPUT MAXIMIZATION IN DOWNLINK LTE

A REVIEW OF RESOURCE ALLOCATION TECHNIQUES FOR THROUGHPUT MAXIMIZATION IN DOWNLINK LTE A REVIEW OF RESOURCE ALLOCATION TECHNIQUES FOR THROUGHPUT MAXIMIZATION IN DOWNLINK LTE 1 M.A. GADAM, 2 L. MAIJAMA A, 3 I.H. USMAN Department of Electrical/Electronic Engineering, Federal Polytechnic Bauchi,

More information

Ammar Abu-Hudrouss Islamic University Gaza

Ammar Abu-Hudrouss Islamic University Gaza Wireless Communications n Ammar Abu-Hudrouss Islamic University Gaza ١ Course Syllabus References 1. A. Molisch,, Wiely IEEE, 2nd Edition, 2011. 2. Rappaport, p : Principles and Practice, Prentice Hall

More information

R&S CMW500 Wideband Radio Communication Tester Specifications

R&S CMW500 Wideband Radio Communication Tester Specifications R&S CMW500 Wideband Radio Communication Tester Specifications Test & Measurement Data Sheet 06.00 CONTENTS General technical specifications... 6 RF generator...6 Modulation source: arbitrary waveform generator

More information

IEEE ax / OFDMA

IEEE ax / OFDMA #WLPC 2018 PRAGUE CZECH REPUBLIC IEEE 802.11ax / OFDMA WFA CERTIFIED Wi-Fi 6 PERRY CORRELL DIR. PRODUCT MANAGEMENT 1 2018 Aerohive Networks. All Rights Reserved. IEEE 802.11ax Timeline IEEE 802.11ax Passed

More information

Path to 5G Radio Access Network

Path to 5G Radio Access Network Path to 5G Radio Access Network Eduardo Inzunza RF-Test Market Development Dec-2017 2016 2017 Viavi Solutions Inc. 1 Topics 5G RAN Introduction 5G Evolution 5G Revolution 2 Cellular evolution APPS 10101

More information

Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless

Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless Jin Bains Vice President R&D, RF Products, National Instruments 1 We live in a Hyper Connected World Data rate

More information

Interleaved spread spectrum orthogonal frequency division multiplexing for system coexistence

Interleaved spread spectrum orthogonal frequency division multiplexing for system coexistence University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2008 Interleaved spread spectrum orthogonal frequency division

More information

Chapter 1 Acknowledgment:

Chapter 1 Acknowledgment: Chapter 1 Acknowledgment: This material is based on the slides formatted by Dr Sunilkumar S. Manvi and Dr Mahabaleshwar S. Kakkasageri, the authors of the textbook: Wireless and Mobile Networks, concepts

More information

Page 1. Outline : Wireless Networks Lecture 6: Final Physical Layer. Direct Sequence Spread Spectrum (DSSS) Spread Spectrum

Page 1. Outline : Wireless Networks Lecture 6: Final Physical Layer. Direct Sequence Spread Spectrum (DSSS) Spread Spectrum Outline 18-759 : Wireless Networks Lecture 6: Final Physical Layer Peter Steenkiste Dina Papagiannaki Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/ Peter A. Steenkiste 1 RF introduction Modulation

More information

ECS455: Chapter 6 Applications

ECS455: Chapter 6 Applications ECS455: Chapter 6 Applications 6.2 WiMAX 1 Dr.Prapun Suksompong prapun.com/ecs455 Office Hours: BKD 3601-7 Wednesday 15:30-16:30 Friday 9:30-10:30 Advanced Mobile Wirless Systems (IEEE) (Ultra Mobile Broadband)

More information

ENHANCING BER PERFORMANCE FOR OFDM

ENHANCING BER PERFORMANCE FOR OFDM RESEARCH ARTICLE OPEN ACCESS ENHANCING BER PERFORMANCE FOR OFDM Amol G. Bakane, Prof. Shraddha Mohod Electronics Engineering (Communication), TGPCET Nagpur Electronics & Telecommunication Engineering,TGPCET

More information

UNIK4230: Mobile Communications. Abul Kaosher

UNIK4230: Mobile Communications. Abul Kaosher UNIK4230: Mobile Communications Abul Kaosher abul.kaosher@nsn.com Multiple Access Multiple Access Introduction FDMA (Frequency Division Multiple Access) TDMA (Time Division Multiple Access) CDMA (Code

More information

Improving ax Performance in Real World by Comprehensive Test Solution

Improving ax Performance in Real World by Comprehensive Test Solution Improving 802.11ax Performance in Real World by Comprehensive Test Solution Brian Su, Sr. Project Manager Ben Ling, Business Development, Keysight Dense Wi-Fi deployments Public access & offloading Outdoor

More information

CDMA & WCDMA (UMTS) AIR INTERFACE. ECE 2526-WIRELESS & CELLULAR COMMUNICATION SYSTEMS Monday, June 25, 2018

CDMA & WCDMA (UMTS) AIR INTERFACE. ECE 2526-WIRELESS & CELLULAR COMMUNICATION SYSTEMS Monday, June 25, 2018 CDMA & WCDMA (UMTS) AIR INTERFACE ECE 2526-WIRELESS & CELLULAR COMMUNICATION SYSTEMS Monday, June 25, 2018 SPREAD SPECTRUM OPTIONS (1) Fast Frequency Hopping (FFSH) Advantages: Has higher anti-jamming

More information

With a lot of material from Rich Nicholls, CTL/RCL and Kurt Sundstrom, of unknown whereabouts

With a lot of material from Rich Nicholls, CTL/RCL and Kurt Sundstrom, of unknown whereabouts Signal Processing for OFDM Communication Systems Eric Jacobsen Minister of Algorithms, Intel Labs Communication Technology Laboratory/ Radio Communications Laboratory July 29, 2004 With a lot of material

More information

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM)

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM) Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM) 1 4G File transfer at 10 Mbps High resolution 1024 1920 pixel hi-vision picture

More information

Nutaq OFDM Reference

Nutaq OFDM Reference Nutaq OFDM Reference Design FPGA-based, SISO/MIMO OFDM PHY Transceiver PRODUCT SHEET QUEBEC I MONTREAL I NEW YORK I nutaq.com Nutaq OFDM Reference Design SISO/2x2 MIMO Implementation Simulation/Implementation

More information

Baseline Proposal for EPoC PHY Layer

Baseline Proposal for EPoC PHY Layer Baseline Proposal for EPoC PHY Layer AVI KLIGER, BROADCOM LEO MONTREUIL, BROADCOM ED BOYD, BROADCOM NOTE This presentation includes results based on an in house Channel Models When an approved Task Force

More information

Forschungszentrum Telekommunikation Wien

Forschungszentrum Telekommunikation Wien Forschungszentrum Telekommunikation Wien OFDMA/SC-FDMA Basics for 3GPP LTE (E-UTRA) T. Zemen April 24, 2008 Outline Part I - OFDMA and SC/FDMA basics Multipath propagation Orthogonal frequency division

More information

T325 Summary T305 T325 B BLOCK 3 4 PART III T325. Session 11 Block III Part 3 Access & Modulation. Dr. Saatchi, Seyed Mohsen.

T325 Summary T305 T325 B BLOCK 3 4 PART III T325. Session 11 Block III Part 3 Access & Modulation. Dr. Saatchi, Seyed Mohsen. T305 T325 B BLOCK 3 4 PART III T325 Summary Session 11 Block III Part 3 Access & Modulation [Type Dr. Saatchi, your address] Seyed Mohsen [Type your phone number] [Type your e-mail address] Prepared by:

More information

Evaluation of the Impact of Higher Order Modulation and MIMO for LTE Downlink

Evaluation of the Impact of Higher Order Modulation and MIMO for LTE Downlink Australian Journal of Basic and Applied Sciences, 4(9): 4499-4508, 2010 ISSN 1991-8178 Evaluation of the Impact of Higher Order Modulation and MIMO for LTE Downlink 1 2 1 1 1 Shahzad A. Malik, Madad Ali

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates? Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 7: Physical Layer OFDM Peter Steenkiste Carnegie Mellon University RF introduction Modulation and multiplexing Channel capacity Antennas

More information

L-DACS1/2 Data Link Analysis Part I: Functional Analysis

L-DACS1/2 Data Link Analysis Part I: Functional Analysis L-DACS1/2 Data Link Analysis Part I: Functional Analysis Raj Jain Jain@ACM.ORG Presentation to Boeing February 4, 2010 1 Overview Application Aeronautical Datalink Evolution Spectrum Implications of Channel

More information

4G Technologies Myths and Realities

4G Technologies Myths and Realities 4G Technologies Myths and Realities Leonhard Korowajczuk CEO/CTO CelPlan International, Inc. www.celplan.com leonhard@celplan.com 1-703-259-4022 29 th CANTO - Aruba Caribbean Association of National Telecommunications

More information

Performance Analysis of WiMAX Physical Layer Model using Various Techniques

Performance Analysis of WiMAX Physical Layer Model using Various Techniques Volume-4, Issue-4, August-2014, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Available at: www.ijemr.net Page Number: 316-320 Performance Analysis of WiMAX Physical

More information

Addressing Design and Test Challenges for new LTE-Advanced Standard

Addressing Design and Test Challenges for new LTE-Advanced Standard Addressing Design and Test Challenges for new LTE-Advanced Standard Sheri DeTomasi Modular Program Manager LTE-A Multi-channel Apps Updated December 15, 2014 The Data Challenge Internet Email Navigation

More information

UNIK4230: Mobile Communications

UNIK4230: Mobile Communications UNIK4230: Mobile Communications Spring 2015 Per Hjalmar Lehne per-hjalmar.lehne@telenor.com Mobile: 916 94 909 Multiple Access Chapter 6.1-6.3 + extra distributed material 26 March 2015 2 UNIK4230 - Mobile

More information

CPET 565/499 Mobile Computing Systems. Mobile Wireless Networking Infrastructure & Technologies

CPET 565/499 Mobile Computing Systems. Mobile Wireless Networking Infrastructure & Technologies CPET 565/499 Mobile Computing Systems Lecture 2 Mobile Networking Communication Infrastructures and Technologies Fall 202 A Specialty Course for Purdue University s M.S. in Technology Graduate Program

More information

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 OFDMA PHY for EPoC: a Baseline Proposal Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 Supported by Jorge Salinger (Comcast) Rick Li (Cortina) Lup Ng (Cortina) PAGE 2 Outline OFDM: motivation

More information

Performance Analysis of Concatenated RS-CC Codes for WiMax System using QPSK

Performance Analysis of Concatenated RS-CC Codes for WiMax System using QPSK Performance Analysis of Concatenated RS-CC Codes for WiMax System using QPSK Department of Electronics Technology, GND University Amritsar, Punjab, India Abstract-In this paper we present a practical RS-CC

More information

Evolution of Cellular Systems. Challenges for Broadband Wireless Systems. Convergence of Wireless, Computing and Internet is on the Way

Evolution of Cellular Systems. Challenges for Broadband Wireless Systems. Convergence of Wireless, Computing and Internet is on the Way International Technology Conference, 14~15 Jan. 2003, Hong Kong Technology Drivers for Tomorrow Challenges for Broadband Systems Fumiyuki Adachi Dept. of Electrical and Communications Engineering, Tohoku

More information

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document. Mansor, Z. B., Nix, A. R., & McGeehan, J. P. (2011). PAPR reduction for single carrier FDMA LTE systems using frequency domain spectral shaping. In Proceedings of the 12th Annual Postgraduate Symposium

More information

Multiple Access Techniques

Multiple Access Techniques Multiple Access Techniques EE 442 Spring Semester Lecture 13 Multiple Access is the use of multiplexing techniques to provide communication service to multiple users over a single channel. It allows for

More information

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis,

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, mobilegt, PowerQUICC, Processor Expert, QorIQ, Qorivva, StarCore,

More information

Pilot Aided Channel Estimation for MIMO MC-CDMA

Pilot Aided Channel Estimation for MIMO MC-CDMA Pilot Aided Channel Estimation for MIMO MC-CDMA Stephan Sand (DLR) Fabrice Portier CNRS/IETR NEWCOM Dept. 1, SWP 2, Barcelona, Spain, 3 rd November, 2005 Outline System model Frame structure MIMO Pilot

More information

Mobile Communication Systems. Part 7- Multiplexing

Mobile Communication Systems. Part 7- Multiplexing Mobile Communication Systems Part 7- Multiplexing Professor Z Ghassemlooy Faculty of Engineering and Environment University of Northumbria U.K. http://soe.ac.uk/ocr Contents Multiple Access Multiplexing

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

Baseline Proposal for EPoC PHY Layer IEEE 802.3bn EPoC September 2012 AVI KLIGER, BROADCOM LEO MONTREUIL, BROADCOM ED BOYD, BROADCOM

Baseline Proposal for EPoC PHY Layer IEEE 802.3bn EPoC September 2012 AVI KLIGER, BROADCOM LEO MONTREUIL, BROADCOM ED BOYD, BROADCOM Baseline Proposal for EPoC PHY Layer IEEE 802.3bn EPoC September 2012 AVI KLIGER, BROADCOM LEO MONTREUIL, BROADCOM ED BOYD, BROADCOM NOTE This presentation includes results based on an inhouse Channel

More information

OFDMA and MIMO Notes

OFDMA and MIMO Notes OFDMA and MIMO Notes EE 442 Spring Semester Lecture 14 Orthogonal Frequency Division Multiplexing (OFDM) is a digital multi-carrier modulation technique extending the concept of single subcarrier modulation

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 PLCP format, Data Rates, OFDM, Modulations, 2 IEEE 802.11a: Transmit and Receive Procedure 802.11a Modulations BPSK Performance Analysis Convolutional

More information

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note Keysight Technologies Testing WLAN Devices According to IEEE 802.11 Standards Application Note Table of Contents The Evolution of IEEE 802.11...04 Frequency Channels and Frame Structures... 05 Frame structure:

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Department of Computer Science Institute for System Architecture, Chair for Computer Networks Department of Computer Science Institute for System Architecture, Chair for Computer Networks LTE, WiMAX and 4G Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

More information

A passion for performance. Intuitive, fast, digital. modulation waveform. creation tool. making waves...

A passion for performance. Intuitive, fast, digital. modulation waveform. creation tool. making waves... A passion for performance. Intuitive, fast, digital modulation waveform creation tool making waves... Waveform Creation and Simulation Modulation Formats Designed for use with Aeroflex's digital RF signal

More information

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-5,

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-5, PERFORMANCE ANALYSIS ON LTE BASED TRANSCEIVER DESIGN WITH DIFFERENT MODULATION SCHEMES Delson T R 1, Iven Jose 2 1 Research Scholar, ECE Department, 2 Professor, ECE Department Christ University, Bangalore,

More information