EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Size: px
Start display at page:

Download "EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH"

Transcription

1 EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-TOTEM-NOTE September 2015 Timing performance of diamond detectors with Charge Sensitive Amplifier readout M. Berretti, E. Bossini, N. Minafra Abstract CERN-TOTEM-NOTE /10/2015 Research on particle detectors based on synthetic diamonds has always been limited by the cost, quality and availability of the sensitive material. Moreover, the read-out electronics requires particular care due to the small number of electron/hole pairs generated by the passage of a minimum ionizing particle. However, high radiation hardness, low leakage currents and high mobility of the electron/hole pairs make them an attractive solution for the time-of-flight measurements and the beam monitoring of new high energy physics experiments where the severe radiation environment is a limitation for most of the technologies commonly used in particle detection. In this work we report the results on the timing performance of a mm 2 sccvd (single crystal Chemical Vapour Deposition) sensor read-out using a charge sensitive amplifier. Both sensors and amplifiers have been purchased from CIVIDEC Instrumentation. The measurements have been performed on minimum ionizing pions in two beam tests at the PSI and CERN-PS facilities with two different detector capacitances. In particular, a time resolution of the order of 200ps has been obtained. CERN and INFN Sezione di Pisa INFN Sezione di Pisa and Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi CERN, University of Bari and INFN Sezione di Bari

2

3 Timing performances of diamond detectors with Charge Sensitive Amplifier readout 1 Introduction Particle detectors based on artificial diamond as sensitive material are characterised by high radiation hardness, low leakage currents and high mobility of the electron/hole pairs [1]. Such properties make them an attractive solution for time-of-flight measurements and beam monitoring of new high energy physics experiments where the severe radiation environment [2 4] is a limitation for most of the technologies commonly used in particle detection. Thanks to the continued developments in the single crystal Chemical Vapour Deposition (sccvd) diamond production technology, detectors with high charge collection efficiency are nowadays available, with affordable prices if the surface to be covered by the detector is small. However, due to the high effective energy which is needed to create an electron/hole pair ( 13eV) the charge released in sccvd sensor by a Minimum Ionized Particle (MIP) is small (on average e for a thickness of 500 µm) and a low noise amplifier is therefore needed. In this work we report the results on the timing performance of a 4.5x4.5 mm 2 sccvd sensor read out by a Charge Sensitive Amplifier (CSA). Both sensors and amplifiers have been purchased from CIVIDEC Instrumentation 1. The measurements have been performed on MIP pions in two beam tests at the PSI and CERN-PS facilities with two different detector capacitances. The time resolution measured in this work is, to our knowledge, the best result so far obtained on MIP particles with commercial diamonds and amplifiers. Better performance can be obtained by developing a single PCB hosting both the diamond sensor and a transconductance preamplifier. The latter has to be placed as close as possible to the sensor in order to minimize the parasitic capacitance of the connection. This approach, proposed in [5] allowed to obtain a time resolution on MIP of about 110 ps, which is the best result in the literature. The document is organized as follows: section reports the experimental setup used to perform the timing measurement. Section reports details about the diamond sensor and the CSA. In section the measurements of the time resolution, obtained with different analysis techniques, are finally reported. Experimental setup The data used in this article have been taken in two test-beams. The first set of measurements has been collected at the πm1 beam facility of the Paul Scherrer Institute (PSI, Villigen, Switzerland). The πm1 beam is a quasi-continuous high-intensity secondary beam generated on a fixed target 22 meters upstream of our detector. Although the beam is mainly composed of pions, a non negligible contamination of electrons and muons is present. The particle momentum can be selected in the range MeV/c with a resolution better than 0.1%. The detector consists of an RF-shielded box (30x30x60 cm 3 ) housing both the diamond detectors and the trigger system. The trigger system is composed of two fingers of plastic scintillator (3x3x30 mm 3 ) directly coupled to two single pixel SiPM (HAMAMATSU S C), as shown in fig1. The two detectors were placed one upstream the diamond detectors and the other downstream in cross configuration, selecting particles in a spot of 3x3 mm 2. Amplification to the SiPM signal was provided through custom amplifier boards and the amplified signal sent to a NIM crate. The trigger efficiency, defined as number of triggered events with signal from at least one of the diamond detectors was around 40%, depending on the alignment of the detector with respect to the beam. The intrinsic efficiency of the diamond can be instead considered to be around 100%. To check this we tried to repeat the alignment until we reached an efficiency of almost 100% during one data taking run (since this fine alignment was time consuming we can not do it for every setup we tested). Moreover we took data triggering on electrons: the trigger efficiency in the electron samples was the same as with the π, meaning that there was no inefficiency due to the lower energy release of the π in the detectors. 1

4 2 M. Berretti, E. Bossini, N. Minafra Fig. 1: Picture of the scintillator fingers (a) and SiPM (b) used for the trigger and one assembled detector (c). The diamond configuration for all test-beams will be presented in the next section, while a schematic representation of the entire setup can be found in fig.2 Fig. 2: On the left the box with the two diamond detector in the middle. On the right a scheme of the complete setup; the top scintillator was used only at PS and will be described below. It was possible to identify the different particles thanks to the possibility of changing the momentum of the beam: electrons are already relativistic at the minimum energy, hence their TOF is not depending on the beam momentum. On the other hand, the TOF of the pions is the most affected. Therefore, to perform particle identification we made use of the RF signal of the beam and of the trigger timing. RF provides the time of the impact of the primary beam on the production target, while the trigger signal gave the arrival time of the generated particle at the detector. The trigger system was able to detect the particle arrival with a time resolution of 1 ns, enough to trigger only on desired particles. The distribution of the arrival time with respect to the RF signal for different beam energies is given in fig.3. The particle flow was reduced by closing the beam collimator to obtain a trigger rate of 1 khz in order to prevent more than one particle passing through the detectors at the same time. Data at 250 MeV/c triggering on different particles were collected using an oscilloscope Agilent DSO9254A, placed in the experimental area as close as possible to the Diamond amplifier output. Almost the same configuration was used during the data taking at the T9 beam line [6] at CERN, served by the Proton Synchrotron (PS) accelerator. The T9 beam line is able to provide charged particles with momenta up to 12 GeV/c, mainly π ± and protons, randomly distributed in slots of 400 ms. For our purpose we selected negative particles with momenta of 10 GeV/c. Selecting particles with negative sign is possible to get rid of the proton component, leaving an almost pure π beam. To check contamination with electrons and muons a gaseous cherenkov counter placed near the detector was used. The cherenkov gas pressure was tuned to detect 10 GeV/c particles lighter than π and put in coincidence with the trigger system. A contamination well below 1 was detected.

5 Timing performances of diamond detectors with Charge Sensitive Amplifier readout 3 Fig. 3: Distribution of particle time of flight (TOF) with respect to the beam RF signal. Particle peaks generated from the same collision are indicated; since TOF difference between different particles type is bigger than the collision period (20 ns) multiple collisions are overlapped. As expected the e time of flight does not vary with beam energy. The selection of negative particles had as side effect a very low luminosity beam and thus forced us to enhance the trigger efficiency by placing another detector in front of the box. This detector was a 10x10 cm 2 tile of plastic scintillator with a hole of 1 mm aligned with the beam coupled to a PMT. The signal from it was used to generate a veto signal on the trigger. Thus a maximum efficiency of 60% was reached. Data collection was performed with two different oscilloscopes, the Agilent of the previous test-beam and a Tektronix DPO73304, still placed next to the detector. Diamond detectors with charge sensitive amplifiers Several previous works [7] [8] have shown the relevance of Cividec Instrumentation on the market of Diamond Detectors. The selected diamonds are a pair of identical sccvd diamonds 4.5x4.5x0.5 mm 3 provided by Cividec Instrumentation with a single pixel metallization of 4x4 mm 2. Each diamond is protected by an RF shield. The layout has been designed to work with Cividec amplifiers that provide the bias voltage and read the signal through an SMA connector. Among the others, the Cividec C6 Fast Charge Amplifiers have been proven to be the best solution for timing measurements. The tolerances on the components used by the company result in small differences in the behaviour of the amplifier that can lead to different results of the time resolution. For this reason, several amplifiers of the same type have been tested. The main parameters to characterize an amplifier are the Signal to Noise Ratio (SNR) and the Rise Time (RT); these parameters can be measured using a synthesized input and studying the output. The resistance of the diamond is of the order of PΩ and can be modelled as a capacitance and a current generator. However, for the purpose of this work, the amplifiers were tested using the diamond as signal source to be sure that the amplifiers are working in the right conditions. Usually, the rise time t 10% 90% is measured as the time difference between the instants when the signal is equal to 10% and 90% of its maximum. This value is related to the bandwidth of the signal, assuming a single-pole amplifier: BW = 0.35 t 10% 90% (1)

6 4 M. Berretti, E. Bossini, N. Minafra Fig. 4: General schema of an amplifier with the equivalent circuit of a diamond detector. However, it is possible to measure the rise time t 20% 80% between 20% and 80% of signal s maximum that is more robust for low SNR. In the same way, it is possible to relate it with the bandwidth of the signal: BW = 0.22 t 20% 80% (2) On the other hand, to compute the SNR, the usual procedure is to find the Most Probable Value (MPV) of the maximum of the signal and divide it by the RMS noise: SNR = MAX{v out} RMS{v noise } (3) In figure 6 we can see the distribution of signal maximum, used to compute SNR. The capacitance of the detector has a non-negligible influence on the behaviour of the output signal; in fact, the commercial PCB was modified together with Cividec with the goal of the lowest possible capacitance for a non-integrated system. The improvement in the rise time using the modified PCB is of the order of 20% for one of the amplifiers, as shown in fig. 5. Fig. 5: Rise time t 20% 80% distribution of one of the tested charge sensitive amplifiers; the modified PCB allows a rise time 20% faster, using the same CSA. The modified diamond board has a similar SNR compared to the commercial version, of about 17 for the MPV of a MIP.

7 Timing performances of diamond detectors with Charge Sensitive Amplifier readout 5 Fig. 6: Distribution of output signal maximum of the two CSA. The black line indicates the thresholds that will be used in the analysis described in sec.. From the measured values of t 20% 80%, combining (1), (2), we can obtain t 10% 90%. Using the SNR we can extimate a timing resolution on the order of 230 ps [5]: σ t t 10% 90% SNR Measurement of the time resolution 1.6t 20% 80% SNR 230ps (4) The time resolution σ T has been measured with several off-line algorithms. For each recorded event the time of a particular point in each of the two waveforms is determined (t Det1,t Det2 ). The time resolution is obtained as σ T / 2 where σ T is the standard deviation of the T 12 distribution, with T 12 t Det1 t Det2. The time resolutions obtained with different techniques are shown in Tab 1. The results are reported for minimum ionizing π, by using the two charge amplifiers CIV A, CIV B described in section and the diamonds with the smallest connecting capacitance ( 5 pf). The results are obtained by selecting waveforms having V peak > 10 mv for the first diamond and V peak > 8 mv for the second. Offline method T 12 fitted-value, ( T 12 RMS), [resolution] 1 Simple Threshold 1450 (1490) [1025] ps 2 Position of the Maximum 719 (754) [508] ps 3 Normalized Threshold (70%) 467 (491) [330] ps 4 Normalized Threshold (50%) 353 (359) [250] ps 5 Normalized Threshold (30%) 336 (341) [238] ps 6 Fitted Normalized Threshold (35%) 308 (315) [217] ps 7 Offline CFD 306 (298) [210] ps 8 Extrapolation of normalized Threshold 277 (281) [196] ps Table 1: Time resolution summary In method 1 a threshold of 12 mv is set and t Det1,2 is taken at the crossing point of the threshold. Method 2 selects the time t Det1,2 as the one where the maximum of the waveform is reached. The Normalized

8 6 M. Berretti, E. Bossini, N. Minafra Threshold (X%) method (3 to 5) takes the time t Det1,2 from the point in the rising edge of the waveform where the amplitude reaches X% of the maximum. In the method 6, in addition a polynomial fit (of 6 th order) of the waveform rising edge is performed and the Normalized Threshold value is measured on the fitted function. The Offline Constant Fraction Discriminator (CFD, method 7) emulates the standard technique widely used in the electronic circuits to reduce the time walk effects. More details on this method are reported in [9]. In short, each waveform is inverted, attenuated, delayed and finally added to the original one. The time for which the resulting function has a null amplitude is taken as an estimate of t Det1,2. The value of the attenuation factor and of the time shift used in this method is 0.45 and 7 ns respectively. Method 8 is obtained by performing a linear extrapolation to X=0 of the time values obtained by using a fitted normalized threshold method at 25% and 60%. In all our methods a constant fit has been performed on a 20 ns time interval prior to the diamond signal, aiming to remove the effect of the baseline fluctuation on the diamond signal. We didn t find any important variation of the results (< 5%) by introducing a filter based on the FFT transform or by smoothing the signal with a moving average or a Butterworth filter. The smallest time resolution, 196 ps, is obtained with method 8. The corresponding T 12 distribution is shown in fig. 7 with a Gaussian fit superimposed. It has been also found that the reported time resolutions are better by about 15% with respect to the ones obtained in the first beam test where the detectors had a larger capacitance (C 15 pf, see section ). The analysis has been repeated by reducing the minimum value of V peak of the analyzed waveforms to 4.5 mv. The fit results are stable at 1% level while outliers appear in the T 12 distribution so that the RMS gets worse by about 10%. In general, by selecting the signal where the highest amount of charge is released, the time resolution improves. As an example, by not including in the analysis the 20% of the diamond signals having the smallest V peak the time resolution is about 5-10% better, depending on the method. Fig. 7: Distributions of the time differences T 12 = t Det1 t Det2, obtained with method 8 (see tab. 1). A Gaussian fit is superimposed. Summary In this work we measured the time resolution of a timing detector based on commercial sccvd diamonds and charge sensitive amplifiers. A S/N of about 17 has been measured with a typical rise-time of about 2.5 ns. The time resolution

9 Timing performances of diamond detectors with Charge Sensitive Amplifier readout 7 was measured for MIP particles with several off-line methods, the best of which gives a result of about 200 ps. After the first tests, the capacitance of the detector was found to be critical and was improved with a custom PCB made in collaboration with Cividec. On this way, we plan to improve our results by assembling a setup similar to the one presented in [5], with a unique PCB hosting both the diamond sensors and a discrete-component front end electronics. Acknowledgments We thank Cividec, in particular its CEO Erich Griesmayer, for providing us the state of the art components used in this work and for their customizations to our needs. We are also grateful to Tektronix for giving us one of their top-line oscilloscopes. This work has been possible thanks to the TOTEM Collaboration. References [1] S. Koizumi, C. Nebel, M. Nesladek. Physics and Applications of CVD Diamond. Wiley, ISBN: , [2] M. Albrow et al. (CMS and TOTEM collaboration). CERN-LHCC ; TOTEM-TDR-003 ; CMS-TDR-13, [3] A. Goriek et al. Nucl. Inst. Meth. A, 572(1):67 69, [4] J. Pietraszko et al. Nucl. Inst. Meth. A, 618: , [5] M. Ciobanu et al. IEEE Trans. Nucl. Sci. 58(4), , [6] L. Durieu, A. Mueller, and M. Martini. Optics Studies for the T9 Beam Line in the CERN PS East Area Secondary Beam Facility. Conf.Proc., C : , [7] Nunzio Randazzo, Sebastiano Aiello, Gabriele Chiodini, Giuseppe AP Cirrone, Giacomo Cuttone, M De Napoli, V Giordano, Simon Kwan, Emanuele Leonora, Fabio Longhitano, et al. Comparative timing performances of s-cvd diamond detectors with different particle beams and readout electronics. In Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE, pages IEEE, [8] M Osipenko, S Minutoli, P Musico, M Ripani, B Caiffi, A Balbi, G Ottonello, S Argirò, S Beolè, N Amapane, et al. Comparison of fast amplifiers for diamond detectors. arxiv preprint arxiv: , [9] D. Lucsanyi. CERN-STUDENTS-Note , 2014.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-TOTEM-NOTE-2015-003 September 2015 Timing performance of diamond detectors with Charge Sensitive Amplifier readout M. Berretti, E. Bossini, N. Minafra Abstract

More information

arxiv: v1 [physics.ins-det] 29 Dec 2016

arxiv: v1 [physics.ins-det] 29 Dec 2016 Jinst manuscript No. (will be inserted by the editor) Timing Performance of a Double Layer Diamond Detector M. Berretti 1, E. Bossini 3,2, M. Bozzo 4, V. Georgiev 5, T. Isidori 2, R. Linhart 5, N. Turini

More information

High granularity scintillating fiber trackers based on Silicon Photomultiplier

High granularity scintillating fiber trackers based on Silicon Photomultiplier High granularity scintillating fiber trackers based on Silicon Photomultiplier A. Papa Paul Scherrer Institut, Villigen, Switzerland E-mail: angela.papa@psi.ch Istituto Nazionale di Fisica Nucleare Sez.

More information

MCP-PMT status. Samo Korpar. University of Maribor and Jožef Stefan Institute, Ljubljana Super KEKB - 3st Open Meeting, 7-9 July 2009

MCP-PMT status. Samo Korpar. University of Maribor and Jožef Stefan Institute, Ljubljana Super KEKB - 3st Open Meeting, 7-9 July 2009 , Ljubljana, 7-9 July 2009 Outline: MCP aging waveform readout (MPPC) summary (slide 1) Aging preliminary news from Photonis Old information: Current performance (no Al protection layer): 50% drop of efficiency

More information

Diamond sensors as beam conditions monitors in CMS and LHC

Diamond sensors as beam conditions monitors in CMS and LHC Diamond sensors as beam conditions monitors in CMS and LHC Maria Hempel DESY Zeuthen & BTU Cottbus on behalf of the BRM-CMS and CMS-DESY groups GSI Darmstadt, 11th - 13th December 2011 Outline 1. Description

More information

PoS(LHCP2018)031. ATLAS Forward Proton Detector

PoS(LHCP2018)031. ATLAS Forward Proton Detector . Institut de Física d Altes Energies (IFAE) Barcelona Edifici CN UAB Campus, 08193 Bellaterra (Barcelona), Spain E-mail: cgrieco@ifae.es The purpose of the ATLAS Forward Proton (AFP) detector is to measure

More information

Total Absorption Dual Readout Calorimetry R&D

Total Absorption Dual Readout Calorimetry R&D Available online at www.sciencedirect.com Physics Procedia 37 (2012 ) 309 316 TIPP 2011 - Technology and Instrumentation for Particle Physics 2011 Total Absorption Dual Readout Calorimetry R&D B. Bilki

More information

Contents. The AMADEUS experiment at the DAFNE collider. The AMADEUS trigger. SiPM characterization and lab tests

Contents. The AMADEUS experiment at the DAFNE collider. The AMADEUS trigger. SiPM characterization and lab tests Contents The AMADEUS experiment at the DAFNE collider The AMADEUS trigger SiPM characterization and lab tests First trigger prototype; tests at the DAFNE beam Second prototype and tests at PSI beam Conclusions

More information

Tutors Dominik Dannheim, Thibault Frisson (CERN, Geneva, Switzerland)

Tutors Dominik Dannheim, Thibault Frisson (CERN, Geneva, Switzerland) Danube School on Instrumentation in Elementary Particle & Nuclear Physics University of Novi Sad, Serbia, September 8 th 13 th, 2014 Lab Experiment: Characterization of Silicon Photomultipliers Dominik

More information

The CMS Silicon Strip Tracker and its Electronic Readout

The CMS Silicon Strip Tracker and its Electronic Readout The CMS Silicon Strip Tracker and its Electronic Readout Markus Friedl Dissertation May 2001 M. Friedl The CMS Silicon Strip Tracker and its Electronic Readout 2 Introduction LHC Large Hadron Collider:

More information

HF Upgrade Studies: Characterization of Photo-Multiplier Tubes

HF Upgrade Studies: Characterization of Photo-Multiplier Tubes HF Upgrade Studies: Characterization of Photo-Multiplier Tubes 1. Introduction Photomultiplier tubes (PMTs) are very sensitive light detectors which are commonly used in high energy physics experiments.

More information

A high-performance, low-cost, leading edge discriminator

A high-performance, low-cost, leading edge discriminator PRAMANA c Indian Academy of Sciences Vol. 65, No. 2 journal of August 2005 physics pp. 273 283 A high-performance, low-cost, leading edge discriminator S K GUPTA a, Y HAYASHI b, A JAIN a, S KARTHIKEYAN

More information

arxiv: v2 [physics.ins-det] 14 Jan 2009

arxiv: v2 [physics.ins-det] 14 Jan 2009 Study of Solid State Photon Detectors Read Out of Scintillator Tiles arxiv:.v2 [physics.ins-det] 4 Jan 2 A. Calcaterra, R. de Sangro [], G. Finocchiaro, E. Kuznetsova 2, P. Patteri and M. Piccolo - INFN,

More information

Understanding the Properties of Gallium Implanted LGAD Timing Detectors

Understanding the Properties of Gallium Implanted LGAD Timing Detectors Understanding the Properties of Gallium Implanted LGAD Timing Detectors Arifin Luthfi Maulana 1 and Stefan Guindon 2 1 Institut Teknologi Bandung, Bandung, Indonesia 2 CERN, Geneva, Switzerland Corresponding

More information

P ILC A. Calcaterra (Resp.), L. Daniello (Tecn.), R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, M. Rama

P ILC A. Calcaterra (Resp.), L. Daniello (Tecn.), R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, M. Rama P ILC A. Calcaterra (Resp.), L. Daniello (Tecn.), R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, M. Rama Introduction and motivation for this study Silicon photomultipliers ), often called SiPM

More information

Development and tests of a large area CsI-TGEM-based RICH prototype

Development and tests of a large area CsI-TGEM-based RICH prototype Development and tests of a large area CsI-TGEM-based RICH prototype G. Bencze 1,2, A. Di Mauro 1, P. Martinengo 1, L. Mornar 1, D. Mayani Paras 3, E. Nappi 4, G. Paic 1,3, V. Peskov 1,3 1 CERN, Geneva,

More information

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators. Milestone Report

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators. Milestone Report AIDA-2020-MS15 AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators Milestone Report Design specifications of test stations for irradiated silicon sensors and LHC oriented front-end

More information

Trigger Rate Dependence and Gas Mixture of MRPC for the LEPS2 Experiment at SPring-8

Trigger Rate Dependence and Gas Mixture of MRPC for the LEPS2 Experiment at SPring-8 Trigger Rate Dependence and Gas Mixture of MRPC for the LEPS2 Experiment at SPring-8 1 Institite of Physics, Academia Sinica 128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan cyhsieh0531@gmail.com

More information

Development of Large Area and of Position Sensitive Timing RPCs

Development of Large Area and of Position Sensitive Timing RPCs Development of Large Area and of Position Sensitive Timing RPCs A.Blanco, C.Finck, R. Ferreira Marques, P.Fonte, A.Gobbi, A.Policarpo and M.Rozas LIP, Coimbra, Portugal. GSI, Darmstadt, Germany Univ. de

More information

The domino sampling chip: a 1.2 GHz waveform sampling CMOS chip

The domino sampling chip: a 1.2 GHz waveform sampling CMOS chip Nuclear Instruments and Methods in Physics Research A 420 (1999) 264 269 The domino sampling chip: a 1.2 GHz waveform sampling CMOS chip Christian Brönnimann *, Roland Horisberger, Roger Schnyder Swiss

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH A 1024 PAD SILICON DETECTOR TO SOLVE TRACKING AMBIGUITIES IN HIGH MULTIPLICITY EVENTS

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH A 1024 PAD SILICON DETECTOR TO SOLVE TRACKING AMBIGUITIES IN HIGH MULTIPLICITY EVENTS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-PPE/95-98 July 5, 1995 A 1024 PAD SILICON DETECTOR TO SOLVE TRACKING AMBIGUITIES IN HIGH MULTIPLICITY EVENTS S. Simone, M.G. Catanesi, D. Di Bari, V. Didonna,

More information

Development of a 256-channel Time-of-flight Electronics System For Neutron Beam Profiling

Development of a 256-channel Time-of-flight Electronics System For Neutron Beam Profiling JOURNAL OF L A TEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 Development of a 256-channel Time-of-flight Electronics System For Neutron Beam Profiling Haolei Chen, Changqing Feng, Jiadong Hu, Laifu Luo,

More information

arxiv:physics/ v1 [physics.ins-det] 19 Oct 2001

arxiv:physics/ v1 [physics.ins-det] 19 Oct 2001 arxiv:physics/0110054v1 [physics.ins-det] 19 Oct 2001 Performance of the triple-gem detector with optimized 2-D readout in high intensity hadron beam. A.Bondar, A.Buzulutskov, L.Shekhtman, A.Sokolov, A.Vasiljev

More information

Radiation Test Report Paul Scherer Institute Proton Irradiation Facility

Radiation Test Report Paul Scherer Institute Proton Irradiation Facility the Large Hadron Collider project CERN CH-2 Geneva 23 Switzerland CERN Div./Group RadWG EDMS Document No. xxxxx Radiation Test Report Paul Scherer Institute Proton Irradiation Facility Responsibility Tested

More information

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology 1 KLauS: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology Z. Yuan, K. Briggl, H. Chen, Y. Munwes, W. Shen, V. Stankova, and H.-C. Schultz-Coulon Kirchhoff Institut für Physik, Heidelberg

More information

A new single channel readout for a hadronic calorimeter for ILC

A new single channel readout for a hadronic calorimeter for ILC A new single channel readout for a hadronic calorimeter for ILC Peter Buhmann, Erika Garutti,, Michael Matysek, Marco Ramilli for the CALICE collaboration University of Hamburg E-mail: sebastian.laurien@desy.de

More information

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A 614 (2010) 308 312 Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

PoS(EPS-HEP2017)476. The CMS Tracker upgrade for HL-LHC. Sudha Ahuja on behalf of the CMS Collaboration

PoS(EPS-HEP2017)476. The CMS Tracker upgrade for HL-LHC. Sudha Ahuja on behalf of the CMS Collaboration UNESP - Universidade Estadual Paulista (BR) E-mail: sudha.ahuja@cern.ch he LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5 34 cm s in 228, to possibly reach

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2017/308 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 28 September 2017 (v2, 11 October 2017)

More information

LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring

LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring Eduardo Picatoste Olloqui on behalf of the LHCb Collaboration Universitat de Barcelona, Facultat de Física,

More information

The CMS HGCAL detector for HL-LHC upgrade

The CMS HGCAL detector for HL-LHC upgrade on behalf of the CMS collaboration. National Taiwan University E-mail: arnaud.steen@cern.ch The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges

More information

arxiv: v1 [physics.ins-det] 25 Oct 2012

arxiv: v1 [physics.ins-det] 25 Oct 2012 The RPC-based proposal for the ATLAS forward muon trigger upgrade in view of super-lhc arxiv:1210.6728v1 [physics.ins-det] 25 Oct 2012 University of Michigan, Ann Arbor, MI, 48109 On behalf of the ATLAS

More information

R3B Heavy Ion Tracking

R3B Heavy Ion Tracking R3B Heavy Ion Tracking Roman Gernhäuser, TU-München High Rate Diamond Detectors for Heavy Ion Tracking and TOF material investigations detector concept (a reminder) electronics development prototype production

More information

Pixel hybrid photon detectors

Pixel hybrid photon detectors Pixel hybrid photon detectors for the LHCb-RICH system Ken Wyllie On behalf of the LHCb-RICH group CERN, Geneva, Switzerland 1 Outline of the talk Introduction The LHCb detector The RICH 2 counter Overall

More information

MAROC: Multi-Anode ReadOut Chip for MaPMTs

MAROC: Multi-Anode ReadOut Chip for MaPMTs Author manuscript, published in "2006 IEEE Nuclear Science Symposium, Medical Imaging Conference, and 15th International Room 2006 IEEE Nuclear Science Symposium Conference Temperature Record Semiconductor

More information

Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors

Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors L. Gaioni a,c, D. Braga d, D. Christian d, G. Deptuch d, F. Fahim d,b. Nodari e, L. Ratti b,c, V. Re a,c,

More information

R & D for Aerogel RICH

R & D for Aerogel RICH 1 R & D for Aerogel RICH Ichiro Adachi KEK Proto-Collaboration Meeting March 20, 2008 2 1 st Cherenkov Image detected by 3 hybrid avalanche photon detectors from a beam test About 3:00 AM TODAY Clear image

More information

The DMILL readout chip for the CMS pixel detector

The DMILL readout chip for the CMS pixel detector The DMILL readout chip for the CMS pixel detector Wolfram Erdmann Institute for Particle Physics Eidgenössische Technische Hochschule Zürich Zürich, SWITZERLAND 1 Introduction The CMS pixel detector will

More information

cividec PORTFOLIO Instrumentation CIVIDEC Instrumentation GmbH Vienna België / Belgique Nederland

cividec PORTFOLIO Instrumentation CIVIDEC Instrumentation GmbH Vienna België / Belgique Nederland cividec Instrumentation PORTFOLIO Nederland België / Belgique T +31 (0)24 648 86 88 T +32 (0)3 309 32 09 info@gotopeo.com www.gotopeo.com CIVIDEC Instrumentation GmbH Vienna CONTENTS Preface...3 A Monitors

More information

Scintillation Counters

Scintillation Counters PHY311/312 Detectors for Nuclear and Particle Physics Dr. C.N. Booth Scintillation Counters Unlike many other particle detectors, which exploit the ionisation produced by the passage of a charged particle,

More information

Development of large readout area, high time resolution RPCs for LEPS2 at SPring-8

Development of large readout area, high time resolution RPCs for LEPS2 at SPring-8 Development of large readout area, high time resolution RPCs for LEPS2 at SPring-8 1 Department of physics, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan E-mail: natsuki@scphys.kyoto-u.ac.jp

More information

Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

Silicon Sensor and Detector Developments for the CMS Tracker Upgrade Silicon Sensor and Detector Developments for the CMS Tracker Upgrade Università degli Studi di Firenze and INFN Sezione di Firenze E-mail: candi@fi.infn.it CMS has started a campaign to identify the future

More information

The LHCb Upgrade BEACH Simon Akar on behalf of the LHCb collaboration

The LHCb Upgrade BEACH Simon Akar on behalf of the LHCb collaboration The LHCb Upgrade BEACH 2014 XI International Conference on Hyperons, Charm and Beauty Hadrons! University of Birmingham, UK 21-26 July 2014 Simon Akar on behalf of the LHCb collaboration Outline The LHCb

More information

The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance

The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance 26 IEEE Nuclear Science Symposium Conference Record NM1-6 The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance R. Ballabriga, M. Campbell,

More information

Development of Ultra Fast Silicon Detectors for 4D Tracking

Development of Ultra Fast Silicon Detectors for 4D Tracking Development of Ultra Fast Silicon Detectors for 4D Tracking V. Sola, R. Arcidiacono, R. Bellan, A. Bellora, S. Durando, N. Cartiglia, F. Cenna, M. Ferrero, V. Monaco, R. Mulargia, M.M. Obertino, R. Sacchi,

More information

Scintillation counter with MRS APD light readout

Scintillation counter with MRS APD light readout Scintillation counter with MRS APD light readout A. Akindinov a, G. Bondarenko b, V. Golovin c, E. Grigoriev d, Yu. Grishuk a, D. Mal'kevich a, A. Martemiyanov a, M. Ryabinin a, A. Smirnitskiy a, K. Voloshin

More information

A Modular Readout System For A Small Liquid Argon TPC Carl Bromberg, Dan Edmunds Michigan State University

A Modular Readout System For A Small Liquid Argon TPC Carl Bromberg, Dan Edmunds Michigan State University A Modular Readout System For A Small Liquid Argon TPC Carl Bromberg, Dan Edmunds Michigan State University Abstract A dual-fet preamplifier and a multi-channel waveform digitizer form the basis of a modular

More information

Beam Condition Monitors and a Luminometer Based on Diamond Sensors

Beam Condition Monitors and a Luminometer Based on Diamond Sensors Beam Condition Monitors and a Luminometer Based on Diamond Sensors Wolfgang Lange, DESY Zeuthen and CMS BRIL group Beam Condition Monitors and a Luminometer Based on Diamond Sensors INSTR14 in Novosibirsk,

More information

arxiv: v1 [physics.ins-det] 26 Nov 2015

arxiv: v1 [physics.ins-det] 26 Nov 2015 arxiv:1511.08368v1 [physics.ins-det] 26 Nov 2015 European Organization for Nuclear Research (CERN), Switzerland and Utrecht University, Netherlands E-mail: monika.kofarago@cern.ch The upgrade of the Inner

More information

Implementation of A Nanosecond Time-resolved APD Detector System for NRS Experiment in HEPS-TF

Implementation of A Nanosecond Time-resolved APD Detector System for NRS Experiment in HEPS-TF Implementation of A Nanosecond Time-resolved APD Detector System for NRS Experiment in HEPS-TF LI Zhen-jie a ; MA Yi-chao c ; LI Qiu-ju a ; LIU Peng a ; CHANG Jin-fan b ; ZHOU Yang-fan a * a Beijing Synchrotron

More information

CERN Experiment. CERN-RO ISAB Meeting, November 2015, IFA Măgurele. Alexandru Mario Bragadireanu, Particle Physics Department, IFIN-HH Măgurele

CERN Experiment. CERN-RO ISAB Meeting, November 2015, IFA Măgurele. Alexandru Mario Bragadireanu, Particle Physics Department, IFIN-HH Măgurele CERN Experiment Project Title NA62 Study of rare kaon decays at the CERN SPS CERN-RO ISAB Meeting, 23-25 November 2015, IFA Măgurele Alexandru Mario Bragadireanu, Particle Physics Department, IFIN-HH Măgurele

More information

ATLAS ITk and new pixel sensors technologies

ATLAS ITk and new pixel sensors technologies IL NUOVO CIMENTO 39 C (2016) 258 DOI 10.1393/ncc/i2016-16258-1 Colloquia: IFAE 2015 ATLAS ITk and new pixel sensors technologies A. Gaudiello INFN, Sezione di Genova and Dipartimento di Fisica, Università

More information

Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud

Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud University of Groningen Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Gas Electron Multiplier 2. Detectors Gas Electron Multiplier (GEM) is a thin insulating foil which have thin electrodes on both sides and many

Gas Electron Multiplier 2. Detectors Gas Electron Multiplier (GEM) is a thin insulating foil which have thin electrodes on both sides and many 1 Test of GEM Tracker, Hadron Blind Detector and Lead-glass EMC for the J-PARC E16 experiment D.Kawama 1 ), K. Aoki 1, Y. Aramaki 1, H. En yo 1, H. Hamagaki 2, J. Kanaya 1, K. Kanno 3, A. Kiyomichi 4,

More information

Performance of a Single-Crystal Diamond-Pixel Telescope

Performance of a Single-Crystal Diamond-Pixel Telescope University of Tennessee, Knoxville From the SelectedWorks of stefan spanier 29 Performance of a Single-Crystal Diamond-Pixel Telescope R. Hall-Wilton V. Ryjov M. Pernicka V. Halyo B. Harrop, et al. Available

More information

arxiv: v1 [physics.ins-det] 5 Sep 2011

arxiv: v1 [physics.ins-det] 5 Sep 2011 Concept and status of the CALICE analog hadron calorimeter engineering prototype arxiv:1109.0927v1 [physics.ins-det] 5 Sep 2011 Abstract Mark Terwort on behalf of the CALICE collaboration DESY, Notkestrasse

More information

SiPMs as detectors of Cherenkov photons

SiPMs as detectors of Cherenkov photons SiPMs as detectors of Cherenkov photons Peter Križan University of Ljubljana and J. Stefan Institute Light07, September 26, 2007 Contents Photon detection for Ring Imaging CHerenkov counters Can G-APDs

More information

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A ] (]]]]) ]]] ]]] Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

Upgrade tracking with the UT Hits

Upgrade tracking with the UT Hits LHCb-PUB-2014-004 (v4) May 20, 2014 Upgrade tracking with the UT Hits P. Gandini 1, C. Hadjivasiliou 1, J. Wang 1 1 Syracuse University, USA LHCb-PUB-2014-004 20/05/2014 Abstract The performance of the

More information

PoS(PhotoDet 2012)016

PoS(PhotoDet 2012)016 SiPM Photodetectors for Highest Time Resolution in PET, E. Auffray, B. Frisch, T. Meyer, P. Jarron, P. Lecoq European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland E-mail: stefan.gundacker@cern.ch

More information

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment K. Matsuoka (KMI, Nagoya Univ.) on behalf of the Belle II TOP group 5th International Workshop on New

More information

An innovative detector concept for hybrid 4D-PET/MRI Imaging

An innovative detector concept for hybrid 4D-PET/MRI Imaging Piergiorgio Cerello (INFN - Torino) on behalf of the 4D-MPET* project *4 Dimensions Magnetic compatible module for Positron Emission Tomography INFN Perugia, Pisa, Torino; Polytechnic of Bari; University

More information

arxiv: v2 [physics.ins-det] 10 Jan 2014

arxiv: v2 [physics.ins-det] 10 Jan 2014 Preprint typeset in JINST style - HYPER VERSION Time resolution below 1 ps for the SciTil detector of PANDA employing SiPM arxiv:1312.4153v2 [physics.ins-det] 1 Jan 214 S. E. Brunner a, L. Gruber a, J.

More information

Small-pad Resistive Micromegas for Operation at Very High Rates. M. Alviggi, M.T. Camerlingo, V. Canale, M. Della Pietra, C. Di Donato, C.

Small-pad Resistive Micromegas for Operation at Very High Rates. M. Alviggi, M.T. Camerlingo, V. Canale, M. Della Pietra, C. Di Donato, C. Small-pad Resistive Micromegas for Operation at Very High Rates CERN; E-mail: paolo.iengo@cern.ch M. Alviggi, M.T. Camerlingo, V. Canale, M. Della Pietra, C. Di Donato, C. Grieco University of Naples and

More information

arxiv: v2 [physics.ins-det] 17 Oct 2015

arxiv: v2 [physics.ins-det] 17 Oct 2015 arxiv:55.9v2 [physics.ins-det] 7 Oct 25 Performance of VUV-sensitive MPPC for Liquid Argon Scintillation Light T.Igarashi, S.Naka, M.Tanaka, T.Washimi, K.Yorita Waseda University, Tokyo, Japan E-mail:

More information

The Multigap RPC: The Time-of-Flight Detector for the ALICE experiment

The Multigap RPC: The Time-of-Flight Detector for the ALICE experiment ALICE-PUB-21-8 The Multigap RPC: The Time-of-Flight Detector for the ALICE experiment M.C.S. Williams for the ALICE collaboration EP Division, CERN, 1211 Geneva 23, Switzerland Abstract The selected device

More information

Nuclear Instruments and Methods in Physics Research A

Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A ] (]]]]) ]]] ]]] Contents lists available at SciVerse ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

THE Hadronic Tile Calorimeter (TileCal) is the central

THE Hadronic Tile Calorimeter (TileCal) is the central IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 53, NO 4, AUGUST 2006 2139 Digital Signal Reconstruction in the ATLAS Hadronic Tile Calorimeter E Fullana, J Castelo, V Castillo, C Cuenca, A Ferrer, E Higon,

More information

Phase 1 upgrade of the CMS pixel detector

Phase 1 upgrade of the CMS pixel detector Phase 1 upgrade of the CMS pixel detector, INFN & University of Perugia, On behalf of the CMS Collaboration. IPRD conference, Siena, Italy. Oct 05, 2016 1 Outline The performance of the present CMS pixel

More information

Development of LYSO detector modules for a charge-particle EDM polarimeter

Development of LYSO detector modules for a charge-particle EDM polarimeter Mitglied der Helmholtz-Gemeinschaft Development of LYSO detector modules for a charge-particle EDM polarimeter on behalf of the JEDI collaboration Dito Shergelashvili, PhD student @ SMART EDM_Lab, TSU,

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2017/349 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 09 October 2017 (v4, 10 October 2017)

More information

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators Grant Agreement No: 654168 AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators Horizon 2020 Research Infrastructures project AIDA -2020 MILESTONE REPORT SMALL-SIZE PROTOTYPE OF THE

More information

A tracking detector to study O(1 GeV) ν μ CC interactions

A tracking detector to study O(1 GeV) ν μ CC interactions A tracking detector to study O(1 GeV) ν μ CC interactions Laura Pasqualini on behalf of the mm-tracker Collaboration IPRD16, 3-6 October 2016, Siena Motivations ν/μ Tracking system for a light magnetic

More information

Readout electronics for LumiCal detector

Readout electronics for LumiCal detector Readout electronics for Lumial detector arek Idzik 1, Krzysztof Swientek 1 and Szymon Kulis 1 1- AGH niversity of Science and Technology Faculty of Physics and Applied omputer Science racow - Poland The

More information

Broadband Electronics for CVD-Diamond Detectors

Broadband Electronics for CVD-Diamond Detectors Broadband Electronics for CVD-Diamond Detectors P. Moritz, E. Berdermann, K. Blasche, H. Stelzer, B. Voss GSI - Gesellschaft für Schwerionenforschung mbh, Planckstr. 1, D-64291 Darmstadt, Germany Abstract

More information

START as the detector of choice for large-scale muon triggering systems

START as the detector of choice for large-scale muon triggering systems START as the detector of choice for large-scale muon triggering systems A. Akindinov a, *, G. Bondarenko b, V. Golovin c, E. Grigoriev d, Yu. Grishuk a, D. Mal'kevich a, A. Martemiyanov a, A. Nedosekin

More information

A 2-D large area imaging system based on scintillating fibers. Nunzio Randazzo, Sebastiano Aiello, Emanuele Leonora, Fabio Longhitano

A 2-D large area imaging system based on scintillating fibers. Nunzio Randazzo, Sebastiano Aiello, Emanuele Leonora, Fabio Longhitano A 2-D large area imaging system based on scintillating fibers 1, Giovanni Valerio Russo, Marco Russo Università degli studi di Catania, Catania (Italy) INFN Sezione di Catania, Catania (Italy) Nunzio Randazzo,

More information

The DIRC-like TOF : a time-of-flight Cherenkov detector for particle identification at SuperB

The DIRC-like TOF : a time-of-flight Cherenkov detector for particle identification at SuperB The DIRC-like TOF : a time-of-flight Cherenkov detector for particle identification at SuperB Laboratoire de l Accélérateur Linéaire (CNRS/IN2P3), Université Paris-Sud 11 N. Arnaud, D. Breton, L. Burmistrov,

More information

NIM INDEX. Attenuators. ADCs (Peak Sensing) Discriminators. Translators Analog Pulse Processors Amplifiers (Fast) Amplifiers (Spectroscopy)

NIM INDEX. Attenuators. ADCs (Peak Sensing) Discriminators. Translators Analog Pulse Processors Amplifiers (Fast) Amplifiers (Spectroscopy) NIM The NIM-Nuclear Instrumentation Module standard is a very popular form factor widely used in experimental Particle and Nuclear Physics setups. Defined the first time by the U.S. Atomic Energy Commission

More information

Development of a large area silicon pad detector for the identification of cosmic ions

Development of a large area silicon pad detector for the identification of cosmic ions Development of a large area silicon pad detector for the identification of cosmic ions M.Y. Kim 1,2 P.S. Marrocchesi 1, C. Avanzini 2, M.G. Bagliesi 1, G. Bigongiari 1,A. Caldarone 1,R. Cecchi 1,, P. Maestro

More information

arxiv:nucl-ex/ v1 7 Feb 2007

arxiv:nucl-ex/ v1 7 Feb 2007 Application of the time-dependent charge asymmetry method for longitudinal position determination in prototype proportional arxiv:nucl-ex/0702012v1 7 Feb 2007 chambers for the PANDA experiment. Andrey

More information

Seminar. BELLE II Particle Identification Detector and readout system. Andrej Seljak advisor: Prof. Samo Korpar October 2010

Seminar. BELLE II Particle Identification Detector and readout system. Andrej Seljak advisor: Prof. Samo Korpar October 2010 Seminar BELLE II Particle Identification Detector and readout system Andrej Seljak advisor: Prof. Samo Korpar October 2010 Outline Motivation BELLE experiment and future upgrade plans RICH proximity focusing

More information

Readout ASICs and Electronics for the 144-channel HAPDs for the Aerogel RICH at Belle II

Readout ASICs and Electronics for the 144-channel HAPDs for the Aerogel RICH at Belle II Available online at www.sciencedirect.com Physics Procedia 37 (2012 ) 1730 1735 TIPP 2011 - Technology and Instrumentation in Particle Physics 2011 Readout ASICs and Electronics for the 144-channel HAPDs

More information

Considerations on the ICARUS read-out and on data compression

Considerations on the ICARUS read-out and on data compression ICARUS-TM/2002-05 May 16, 2002 Considerations on the ICARUS read-out and on data compression S. Amerio, M. Antonello, B. Baiboussinov, S. Centro, F. Pietropaolo, W. Polchlopek, S. Ventura Dipartimento

More information

Beam Loss monitoring R&D. Arden Warner Fermilab MPS2014 Workshop March 5-6, 2014

Beam Loss monitoring R&D. Arden Warner Fermilab MPS2014 Workshop March 5-6, 2014 Beam Loss monitoring R&D Arden Warner Fermilab MPS2014 Workshop March 5-6, 2014 Outline PXIE Technical Concerns PXIE Study plans Preliminary scvd R&D Cold Ionization chambers 2 MPS2014; Arden Warner Loss

More information

Timing Measurement in the CALICE Analogue Hadronic Calorimeter.

Timing Measurement in the CALICE Analogue Hadronic Calorimeter. Timing Measurement in the CALICE Analogue Hadronic Calorimeter. AHCAL Main Meeting Motivation SPS CERN Testbeam setup Timing Calibration Results and Conclusion Eldwan Brianne Hamburg 16/12/16 Motivation

More information

Test (Irradiate) Delivered Parts

Test (Irradiate) Delivered Parts Radiation Hardness Evaluation of the Analog Devices AD9042 ADC for use in the CMS Electromagnetic Calorimeter P. Denes, B. Lev, R. Wixted Physics Department, Princeton University, Princeton NJ 08544, USA

More information

SAMPIC: a readout chip for fast timing detectors in particle physics and medical imaging

SAMPIC: a readout chip for fast timing detectors in particle physics and medical imaging Journal of Physics: Conference Series PAPER OPEN ACCESS SAMPIC: a readout chip for fast timing detectors in particle physics and medical imaging To cite this article: Christophe Royon 2015 J. Phys.: Conf.

More information

RF Time Measuring Technique With Picosecond Resolution and Its Possible Applications at JLab. A. Margaryan

RF Time Measuring Technique With Picosecond Resolution and Its Possible Applications at JLab. A. Margaryan RF Time Measuring Technique With Picosecond Resolution and Its Possible Applications at JLab A. Margaryan 1 Contents Introduction RF time measuring technique: Principles and experimental results of recent

More information

Signal Reconstruction of the ATLAS Hadronic Tile Calorimeter: implementation and performance

Signal Reconstruction of the ATLAS Hadronic Tile Calorimeter: implementation and performance Signal Reconstruction of the ATLAS Hadronic Tile Calorimeter: implementation and performance G. Usai (on behalf of the ATLAS Tile Calorimeter group) University of Texas at Arlington E-mail: giulio.usai@cern.ch

More information

Application of avalanche photodiodes as a readout for scintillator tile-fiber systems

Application of avalanche photodiodes as a readout for scintillator tile-fiber systems Application of avalanche photodiodes as a readout for scintillator tile-fiber systems C. Cheshkov a, G. Georgiev b, E. Gouchtchine c,l.litov a, I. Mandjoukov a, V. Spassov d a Faculty of Physics, Sofia

More information

Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1

Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1 Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1 Gianluigi De Geronimo a, Paul O Connor a, Rolf H. Beuttenmuller b, Zheng Li b, Antony J. Kuczewski c, D. Peter Siddons c a Microelectronics

More information

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC R. Bellazzini a,b, G. Spandre a*, A. Brez a, M. Minuti a, M. Pinchera a and P. Mozzo b a INFN Pisa

More information

1.1 The Muon Veto Detector (MUV)

1.1 The Muon Veto Detector (MUV) 1.1 The Muon Veto Detector (MUV) 1.1 The Muon Veto Detector (MUV) 1.1.1 Introduction 1.1.1.1 Physics Requirements and General Layout In addition to the straw chambers and the RICH detector, further muon

More information

A Real Time Digital Signal Processing Readout System for the PANDA Straw Tube Tracker

A Real Time Digital Signal Processing Readout System for the PANDA Straw Tube Tracker A Real Time Digital Signal Processing Readout System for the PANDA Straw Tube Tracker a, M. Drochner b, A. Erven b, W. Erven b, L. Jokhovets b, G. Kemmerling b, H. Kleines b, H. Ohm b, K. Pysz a, J. Ritman

More information

Single sided µ-strip detector with backplane readout for fast trigger applications

Single sided µ-strip detector with backplane readout for fast trigger applications Single sided µ-strip detector with backplane readout for fast trigger applications C. Regenfus Sektion Physik, Universität München, D-85748 Garching, Germany on behalf of the Crystal Barrel Collaboration

More information

GEM Detector Assembly, Implementation, Data Analysis

GEM Detector Assembly, Implementation, Data Analysis 1 GEM Detector Assembly, Implementation, Data Analysis William C. Colvin & Anthony R. Losada Christopher Newport University PCSE 498W Advisors: Dr. Fatiha Benmokhtar (Spring 2012) Dr. Edward Brash (Fall

More information

Study of irradiated 3D detectors. University of Glasgow, Scotland. University of Glasgow, Scotland

Study of irradiated 3D detectors. University of Glasgow, Scotland. University of Glasgow, Scotland Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow Glasgow, G12 8QQ, Scotland Telephone: ++44 (0)141 339 8855 Fax: +44 (0)141 330 5881 GLAS-PPE/2002-20

More information

Study of Silicon Photomultipliers for Positron Emission Tomography (PET) Application

Study of Silicon Photomultipliers for Positron Emission Tomography (PET) Application Study of Silicon Photomultipliers for Positron Emission Tomography (PET) Application Eric Oberla 5 June 29 Abstract A relatively new photodetector, the silicon photomultiplier (SiPM), is well suited for

More information

arxiv: v1 [astro-ph.im] 19 Nov 2014

arxiv: v1 [astro-ph.im] 19 Nov 2014 Measurements and tests on FBK silicon sensors with an optimized electronic design for a CTA camera arxiv:1411.5241v1 [astro-ph.im] 19 Nov 214 G. Ambrosi (1), M. Ambrosio (2), C. Aramo (2), E. Bissaldi

More information