ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A

Size: px
Start display at page:

Download "ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A"

Transcription

1 Nuclear Instruments and Methods in Physics Research A 614 (2010) Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: Development of a digital front-end electronics for the CdTe PET systems M. Nakhostin a,, Y. Kikuchi a, K. Ishii a, S. Matsuyama a, H. Yamazaki b a Department of Quantum Science and Energy Engineering, Tohoku University, Sendai , Japan b Cyclotron and Radioisotope Center, Tohoku University, Sendai , Japan article info Article history: Received 2 December 2009 Accepted 22 December 2009 Available online 5 January 2010 Keywords: Positron emission tomography (PET) Cadmium telluride (CdTe) Digital signal processing abstract We report on the development of a digital front-end electronics for high resolution CdTe PET systems. The energy and timing information are extracted through digital processing of the detector signals, digitized at the preamplifier stage. A cost effective preamplifier system and efficient digital algorithms for time pickoff and energy measurement are described. The effects of signals sampling rate and geometrical parameters of the detectors are explored. It is shown that with digitizers with 160 MSample/s sampling rates and 8 bit resolution, a timing resolution close to the analog results can be achieved. The advantages of the system include reasonable cost, short development time and ease of modification. & 2009 Elsevier B.V. All rights reserved. 1. Introduction In positron emission tomography (PET), direct detection of 511 kev g-rays by semiconductor detectors offers several advantages over conventional scintillator-based detectors. Advantages include excellent spatial resolution using pixilated detector arrays comprised of very small elements, excellent energy resolution and easy maintenance due to lack of photomultiplier tubes. Among the semiconductor detectors, Schottky cadmium telluride (CdTe) detectors appeared to be a promising detector for PET systems due to their high density (6 g/cm 3 ), high Z (50) and capability of operating at room temperature [1 3]. Our group has recently developed a very high spatial resolution small-animal PET system using Schottky CdTe detector arrays [1]. However, a CdTe PET scanner suffers from the huge number of readout channels [1 3]. To reduce the number of readout channels, we have recently developed a two-dimensional position sensitive Schottky CdTe detector with a position resolution of 1mm [4] and an effort is now underway to evaluate the performance of this detector in an actual PET system. For this purpose, a suitable front-end data acquisition system is required. Typical implementation of the PET front-end readout circuits relies on application specific integrated circuits (ASIC) designed to provide timing and energy information. However, commercial ASIC chips were found to be inapplicable for timing measurement with CdTe detectors, which require a different method of pulse timing due to the variation in the shape of detector signals. An alternative solution for the front-end Corresponding author. Present address: Department of Physics, University of Surrey, Guildford GU2 7XH, UK. Tel.: ; fax: address: M.nakhostin@surrey.ac.uk (M. Nakhostin). data acquisition is the digital processing of the sampled signals of detectors [5 8]. In this approach, detector signals are digitized by means of a free-running analog-to-digital converter (ADC), directly at the preamplifier stage, and the energy and timing information are extracted from the sampled waveforms by means of field-programmable gate arrays (FPGA). This paper reports on the development of a cost-effective charge sensitive preamplifier system and efficient algorithms for extracting timing and energy information from the sampled signals of the PET detectors. The effects of ADC sampling rate and geometrical parameters of the detectors are discussed as well. 2. CdTe PET detectors A schematic view of the CdTe PET detector blocks is shown in Fig. 1. The position sensitive Schottky CdTe detectors are tightly placed next to each other and, depending on the size of the detectors, several layers of detectors are stacked to reach the desirable detection efficiency. The Schottky CdTe detectors are fabricated by evaporating platinum and indium as electrodes onto surface of CdTe wafer [9]. Detectors are 1 mm thick and the slab of each detector is patterned with strips on one face. The strips are 1 mm wide and the pitch between the strips is 0.2 mm. Detectors with and mm 2 were examined in our tests. The first coordinate of a g-ray interaction point is determined by the strip from which the signal is originated and the second coordinate is determined by employing charge division technique along the strips, which are covered by a resistive layer of indium [4]. To reduce the number of position signals, the two ends of strips are connected to two chains of resistors and /$ - see front matter & 2009 Elsevier B.V. All rights reserved. doi: /j.nima

2 M. Nakhostin et al. / Nuclear Instruments and Methods in Physics Research A 614 (2010) Fig. 1. Schematic view of the CdTe PET detector blocks. A stack of detectors is used to reach the desirable detection efficiency. The detector blocks are arranged in a ring geometry to serve as a PET detector. pulse division technique is employed to determine a strip carrying a signal. The position signals from the resistor chains are readout by the commercially available ASIC chips [10] and the digital method is used to extract the timing and energy information from the common electrode. 3. Front-end electronics 3.1. Preamplifier system The preamplifier system was constructed by using monolithic ICs. This offers low cost, spatial compactness and short development time of the system. Tests showed that there are only a few commercially available monolithic amplifier circuits that can be used for this task. We selected the FET-input Op-Amp, OPA656 from Texas Instrument Corp with the following features: low input bias current (2 pa), 500 MHz unity-gain bandwidth, low input noise (7 nv/ohz, and 1.3 fa/ohz), small size of mm 3 and availability at low price. A diagram of the preamplifier circuit is shown in Fig. 2A. The charge sensitive preamplifiers are operated at R f =500 MO and C f =0.2 pf. An amplification stage is included in the preamplifier to adjust the amplitude of signals corresponding to the input voltage of the ADCs, which span 1 V. The Op-Amp, OPA847 from Texas Instrument Corp, was used for this stage. This Op-Amp combines very high gain bandwidth (3.9 GHz) with an ultra-low input noise (0.85 nv/ohz and 2.5 pa/ohz). A photograph of a prototype 4-channel preamplifier together with a CdTe detector and its holder is shown in Fig. 2B. The detectors are mounted on a flexible printed circuit (FPC), which is attached on a frame of fiberglass. The response of the preamplifier to a fast step pulse from a pulse generator is shown in Fig. 3. The preamplifier is connected to a mm 2 CdTe detector and the test pulse is injected to the preamplifier through a capacitor. The rise-time of the preamplifier with this detector was measured to be 11 ns. The preamplifier noise for and mm 2 CdTe detectors Fig. 2. Top: a diagram of the preamplifier circuit. Bottom: a photograph of a 4- channel prototype preamplifier connected to a position sensitive CdTe PET detector. were measured as 6 and 11 kev, respectively. Although preamplifier noise is rather large, it has the advantage that detector and preamplifier can be integrated on the same FPC board on the detector holder. This minimizes the connectionrelated stray capacitance that was found to be quite large for connection through a FPC board. Fig. 4 shows the energy spectra of 22 Na measured with a mm 2 CdTe detector for two cases of direct connection to the preamplifier and connection through a 5 cm long FPC board. It is seen that the direct connection of detector and preamplifier leads to a considerable improvement in the signal-to-noise ratio FPGA algorithms A major limitation in the timing performance of CdTe detectors is caused by the variation in the shape of detector signals due to the considerable difference in the mobility of electrons and holes. Variation in the shape of signals affects the time resolution by leading to a significant time walk when conventional timing methods such as leading edge or constant-fraction discrimination (CFD) methods are used. In analog domain, a general method for minimizing the effect of variations in the pulse shape of semiconductor detectors is to shape the signals with a small shaping time constant and determine the arrival time of pulses using the CFD method with an optimized delay on the CFD, corresponding to the so-called amplitude and rise-time compensation (ARC) mode of operation [11]. A digital implementation of this procedure is illustrated in Fig. 5 [8]: the preamplifier output signals are digitally shaped by a simple moving average filter (MAF1) whose smoothing power is chosen to not only remove the high-frequency noise but also attenuate the fast component of the signal. The smoothed signal is then subtracted from the original signal. Since the two signals only differ in the attenuated part of the original signal, subtraction leads to a signal formed by the fast

3 310 M. Nakhostin et al. / Nuclear Instruments and Methods in Physics Research A 614 (2010) Fig. 3. The preamplifier response to a fast test pulse. The rise time of the preamplifier is 11 ns with a mm 3 CdTe detector. Fig. 4. The energy spectra of 22 Na measured with a detector directly connected to the preamplifier (black spectrum) and connected through 5 cm of FPC board (gray spectrum). component of the original signal that is used for timing measurements. The slope-to-noise ratio of the timing signal is optimized by applying a second moving average filter (MAF2) which is chosen to only filter out the high-frequency noise, while keeping the signal leading edge. The pulse shaping process is followed by a digital version of the analog zero-crossing constantfraction time discriminator. The timing signal is delayed for some time steps, amplified, inverted, and added to the original timing signal. This process transforms the unipolar signal into a bipolar pulse. The moment that the bipolar pulse initially crosses the time axis is marked as the arrival time of the pulse. To determine this moment, the maximum value of the bipolar signal is localized and all the signal samples before the maximum value are replaced by zero. Then, the time corresponding to the first sample below the zero level is taken as the arrival time of the pulse. In regard to energy measurement, first, a moving average filter is applied to the preamplifier signal to remove the high-frequency noise and then, the amplitude of the signal is determined by taking the difference between the maximum and minimum values of the signal stream. A critical issue concerned with the digital extraction of timing information from a sampled signal is the signal sampling rate. Even though there are ADCs that can sample up 1 giga sample per second (GS/s), such ADCs are very expensive and have very high power consumption. For these reasons, digital PET scanners are currently using ADCs with sampling frequencies of less than 200 MS/s. Such sampling frequencies result in a relatively long time interval between each sample, which is much coarse than the desired timing resolution. Therefore, some timing refinement must be made in order to obtain a reasonable timing resolution at low sampling rates. The interpolate algorithm has been shown to be very effective for this purpose [12]. In our algorithms, a simple linear interpolation is used to estimate the signal samples at sampling intervals of 1 ns. To test the numerical timing pickoff and energy measurement algorithms, an experimental setup including a CdTe detector, connected to the prototype preamplifier, a fast liquid scintillator (NE213), coupled to a Hamamatsu Photo Multiplier Tube (PMT) and a fast digital oscilloscope was used to collect waveforms from the detectors. A 22 Na positron source is placed between the two detectors and output signals of the preamplifier and the PMT are simultaneously digitized at a sampling rate of 1 GS/s and 8 bit resolution. The oscilloscope bandwidth is 1 GHz and the bias voltage of CdTe detector is 300 V. To compare the digital results with the results of the standard analog electronics, the preamplifier and PMT signals are also sent to a timing circuit using NIM modules. The oscilloscope is triggered using the NIM timing circuit and approximately waveform pairs were stored to the hard disk drive of the oscilloscope. The data from the oscilloscope were then examined by a program written in

4 M. Nakhostin et al. / Nuclear Instruments and Methods in Physics Research A 614 (2010) Fig. 5. Different steps of digital pulse timing: (A) original preamplifier signal, (B) signal after filtering with the MAF1, (C) timing signal (D) timing signal after noise filtering with MAF2, (E) timing signal after CFD shaping, (F) detection of pulse arrival time. Fig. 6. Energy spectra of 22 Na measured with two different sizes of CdTe detectors. (A) The energy spectrum of a mm 2 detector (8%). (B) The energy spectrum of a mm 2 detector (14%). In both cases the signals sampling rate is 166 MS/ s and detectors voltage is 300 V. MATLAB. The parameters involved in the timing algorithm of the CdTe detectors are the two moving average filters, MAF1 and MAF2, as well as attenuation fraction and shaping delay involved in the CFD shaping. The attenuation fraction of the CFD was set at 0.2 and the moving average filters and CFD delay were varied to reach the best time resolution. In order to evaluate the effect of digitizer sampling rate, the original data acquired at 1 GS/s, were recalculated as if they had been acquired with reduced sampling rate. The signals with reduced sampling rate are then interpolated to estimate the signal samples at sampling intervals of 1 ns. Such data were used for the simulation of the fast digitizer operation at 500, 250, 166 and 100 MS/s sampling. The results of energy and time resolution measurements for two different detector sizes of and mm 2 are shown in Figs. 6 and 7. The energy resolutions of the small and large detectors at 166 MS/s are, respectively, 7% and 14%, which are sufficient for a PET system. In regard to timing performance, at 1 GS/s sampling rate and for an energy threshold of 300 kev, the time resolution of the small and large detectors are, respectively, 8 and 14 ns FWHM, which are the same with the measurements with the standard analog circuits. It is seen that for the sampling rate 250 MS/s 1 GS/s the difference in the timing resolutions is not significant and at 166 MS/s sampling a slightly worse resolution compared to the case 1 GS/s is obtained. The time resolutions at 166 MS/s sampling rate are 10 and 17 ns FWHM, respectively, for small and large size detectors. A considerable degradation of the time resolution for the larger size detector is caused by the electronic noise due to the larger capacitance and leakage current of the detector. Since the number of signal channels and consequently cost of data acquisition system is a function of detectors size, a compromise should be made between the cost and timing performance. 4. Summary and conclusion This work analyzes the expected performance of a CdTe PET data acquisition system, which operates based on the digital processing of preamplifier signals. It was shown that solutions based on small size preamplifiers using commercial ICs represent a reasonable trade-off between cost and performance for a prototype PET system. The small size of preamplifiers enables to make a highly integrated detector and preamplifier system, leading to an acceptable level of electronic noise. Efficient

5 312 M. Nakhostin et al. / Nuclear Instruments and Methods in Physics Research A 614 (2010) frequencies and it has been shown that, within the sampling range of interest (160 MHz), results are acceptable, as both the detectors provide enough resolution for the application of a 20 ns timing window. The results were obtained with a digitizer with 8 bit resolution and therefore a better resolution is expected for the prototype PET system, which is being constructed with 10 bit ADCs. The timing and energy performance of the system strongly depend on the size of detectors. Since the size of detectors determines the number of data channels, a detector size of mm 3 is a good compromise between the cost and performance. Acknowledgments This work was supported by a Grant-in-Aid for Specially Promoted Research no (K. Ishii) of the Ministry of Education, Culture, Sports, Science and Technology of Japan. References [1] K. Ishii, et al., Nucl. Instr. and Meth. A 576 (2007) 435. [2] G.S. Mitchell, et al., IEEE Trans. Nucl. Sci. NS-55 (2008) [3] A. Drezet, et al., Nucl. Instr. and Meth. A 571 (2007) 465. [4] K. Ishii, et al., Proceedings of the Annual Congress of the European Association of Nuclear Medicine, Barcelona, Spain, October 10 14, [5] M. Streun, et al., Nucl. Instr. and Meth. A 486 (2002) 18. [6] R. Fontaine, et al., Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 25, 2003, p [7] B. Joly, et al., Nuclear Science Symposium Record, vol. 3, IEEE, 2008, p [8] M. Nakhostin, et al., Nucl. Instr. and Meth. A 606 (2009) 681. [9] K. Matsumoto, et al., IEEE Trans. Nucl. Sci. NS-31 (1998) 556. [10] RENA-3, NOVA R&D, Inc. USA. [11] G.F. Knoll, Radiation Detection and Measurement, third ed, Wiley, New York, 2000, p [12] L. Bardelli, et al., Nucl. Instr. and Meth. A 521 (2004) 480. Fig. 7. Results of digital timing with two different sizes of CdTe detectors. (A) Time resolution of a mm 2 detector. At 166 MS/s sampling rate a time resolution of 10 ns FWHM at an energy threshold of 300 kev is obtained. The parameters for time pickoff are: MAF1=40, MAF2:=7 and CFD delay=25 ns. (B) Time resolution of a mm 2 detector. A time resolution of 17 ns at an energy threshold of 300 kev is achieved. The parameters of digital timing are MAF1=40, MAF2=9 and CFD delay=28 ns. algorithms for timing and energy measurement were developed, which are easily implemented with FPGA technology. Timing performance has been analyzed for a wide range of sampling

Simulation of Algorithms for Pulse Timing in FPGAs

Simulation of Algorithms for Pulse Timing in FPGAs 2007 IEEE Nuclear Science Symposium Conference Record M13-369 Simulation of Algorithms for Pulse Timing in FPGAs Michael D. Haselman, Member IEEE, Scott Hauck, Senior Member IEEE, Thomas K. Lewellen, Senior

More information

Investigation of low noise, low cost readout electronics for high sensitivity PET systems based on Avalanche Photodiode arrays

Investigation of low noise, low cost readout electronics for high sensitivity PET systems based on Avalanche Photodiode arrays Investigation of low noise, low cost readout electronics for high sensitivity PET systems based on Avalanche Photodiode arrays Frezghi Habte, Member, IEEE and Craig S.Levin, Member, IEEE Abstract A compact,

More information

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC R. Bellazzini a,b, G. Spandre a*, A. Brez a, M. Minuti a, M. Pinchera a and P. Mozzo b a INFN Pisa

More information

Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud

Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud University of Groningen Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Electronic Instrumentation for Radiation Detection Systems

Electronic Instrumentation for Radiation Detection Systems Electronic Instrumentation for Radiation Detection Systems January 23, 2018 Joshua W. Cates, Ph.D. and Craig S. Levin, Ph.D. Course Outline Lecture Overview Brief Review of Radiation Detectors Detector

More information

Traditional analog QDC chain and Digital Pulse Processing [1]

Traditional analog QDC chain and Digital Pulse Processing [1] Giuliano Mini Viareggio April 22, 2010 Introduction The aim of this paper is to compare the energy resolution of two gamma ray spectroscopy setups based on two different acquisition chains; the first chain

More information

CDTE and CdZnTe detector arrays have been recently

CDTE and CdZnTe detector arrays have been recently 20 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 44, NO. 1, FEBRUARY 1997 CMOS Low-Noise Switched Charge Sensitive Preamplifier for CdTe and CdZnTe X-Ray Detectors Claudio G. Jakobson and Yael Nemirovsky

More information

A digital method for separation and reconstruction of pile-up events in germanium detectors. Abstract

A digital method for separation and reconstruction of pile-up events in germanium detectors. Abstract A digital method for separation and reconstruction of pile-up events in germanium detectors M. Nakhostin a), Zs. Podolyak, P. H. Regan, P. M. Walker Department of Physics, University of Surrey, Guildford

More information

A high energy gamma camera using a multiple hole collimator

A high energy gamma camera using a multiple hole collimator ELSEVIER Nuclear Instruments and Methods in Physics Research A 353 (1994) 328-333 A high energy gamma camera using a multiple hole collimator and PSPMT SV Guru *, Z He, JC Ferreria, DK Wehe, G F Knoll

More information

Improvement of Energy Resolutions for Planar TlBr Detectors Using the Digital Pulse Processing Method

Improvement of Energy Resolutions for Planar TlBr Detectors Using the Digital Pulse Processing Method CYRIC Annual Report 2009 III. 5. Improvement of Energy Resolutions for Planar TlBr Detectors Using the Digital Pulse Processing Method Tada T. 1, Tanaka T. 2, Kim S.-Y. 1, Wu Y. 1, Hitomi K. 1, Yamazaki

More information

764 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 3, JUNE 2004

764 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 3, JUNE 2004 764 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 3, JUNE 2004 Study of Low Noise Multichannel Readout Electronics for High Sensitivity PET Systems Based on Avalanche Photodiode Arrays Frezghi Habte,

More information

Digital coincidence acquisition applied to portable β liquid scintillation counting device

Digital coincidence acquisition applied to portable β liquid scintillation counting device Nuclear Science and Techniques 24 (2013) 030401 Digital coincidence acquisition applied to portable β liquid scintillation counting device REN Zhongguo 1,2 HU Bitao 1 ZHAO Zhiping 2 LI Dongcang 1,* 1 School

More information

MAROC: Multi-Anode ReadOut Chip for MaPMTs

MAROC: Multi-Anode ReadOut Chip for MaPMTs Author manuscript, published in "2006 IEEE Nuclear Science Symposium, Medical Imaging Conference, and 15th International Room 2006 IEEE Nuclear Science Symposium Conference Temperature Record Semiconductor

More information

Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors

Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors Nuclear Physics #1 Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors Introduction: In this experiment you will use both scintillation and semiconductor detectors to study γ- ray energy spectra. The

More information

Design and development of compact readout electronics with silicon photomultiplier array for a compact imaging detector *

Design and development of compact readout electronics with silicon photomultiplier array for a compact imaging detector * CPC(HEP & NP), 2012, 36(10): 973 978 Chinese Physics C Vol. 36, No. 10, Oct., 2012 Design and development of compact readout electronics with silicon photomultiplier array for a compact imaging detector

More information

Timing Resolution Performance Comparison for Fast and Standard Outputs of SensL SiPM

Timing Resolution Performance Comparison for Fast and Standard Outputs of SensL SiPM Timing Resolution Performance Comparison for Fast and Standard Outputs of SensL SiPM Sergei Dolinsky, Geng Fu, and Adrian Ivan Abstract A new silicon photomultiplier (SiPM) with a unique fast output signal

More information

INDEX. Firmware for DPP (Digital Pulse Processing) DPP-PSD Digital Pulse Processing for Pulse Shape Discrimination

INDEX. Firmware for DPP (Digital Pulse Processing) DPP-PSD Digital Pulse Processing for Pulse Shape Discrimination Firmware for DPP (Digital Pulse Processing) Thanks to the powerful FPGAs available nowadays, it is possible to implement Digital Pulse Processing (DPP) algorithms directly on the acquisition boards and

More information

Performance characterization of a novel thin position-sensitive avalanche photodiode-based detector for high resolution PET

Performance characterization of a novel thin position-sensitive avalanche photodiode-based detector for high resolution PET 2005 IEEE Nuclear Science Symposium Conference Record M11-126 Performance characterization of a novel thin position-sensitive avalanche photodiode-based detector for high resolution PET Jin Zhang, Member,

More information

A Readout ASIC for CZT Detectors

A Readout ASIC for CZT Detectors A Readout ASIC for CZT Detectors L.L.Jones a, P.Seller a, I.Lazarus b, P.Coleman-Smith b a STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK b STFC Daresbury Laboratory, Warrington WA4 4AD, UK

More information

Design of a Novel Front-End Readout ASIC for PET Imaging System *

Design of a Novel Front-End Readout ASIC for PET Imaging System * Journal of Signal and Information Processing, 2013, 4, 129-133 http://dx.doi.org/10.4236/jsip.2013.42018 Published Online May 2013 (http://www.scirp.org/journal/jsip) 129 Design of a Novel Front-End Readout

More information

Charge Sharing Effect on 600 µm Pitch Pixelated CZT Detector for Imaging Applications *

Charge Sharing Effect on 600 µm Pitch Pixelated CZT Detector for Imaging Applications * Charge Sharing Effect on 600 µm Pitch Pixelated CZT Detector for Imaging Applications * Yin Yong-Zhi( 尹永智 ), Liu Qi( 刘奇 ), Xu Da-Peng( 徐大鹏 ), Chen Xi-Meng( 陈熙萌 ) School of Nuclear Science and Technology,

More information

Thomas Frach, Member, IEEE, Walter Ruetten, Member, IEEE, Klaus Fiedler, Gunnar Maehlum, Member, IEEE, Torsten Solf, and Andreas Thon

Thomas Frach, Member, IEEE, Walter Ruetten, Member, IEEE, Klaus Fiedler, Gunnar Maehlum, Member, IEEE, Torsten Solf, and Andreas Thon Assessment of Photodiodes as a Light Detector for PET Scanners Thomas Frach, Member, IEEE, Walter Ruetten, Member, IEEE, Klaus Fiedler, Gunnar Maehlum, Member, IEEE, Torsten Solf, and Andreas Thon Abstract

More information

SPECTROMETRIC CHARACTERISTIC IMPROVEMENT OF CdTe DETECTORS*

SPECTROMETRIC CHARACTERISTIC IMPROVEMENT OF CdTe DETECTORS* SPECTROMETRIC CHARACTERISTIC IMPROVEMENT OF CdTe DETECTORS* Abstract V. I. Ivanov, V. Garbusin, P. G. Dorogov, A. E. Loutchanski, V. V. Kondrashov Baltic Scientific Instruments, RITEC Ltd., P. O. Box 25,

More information

An innovative detector concept for hybrid 4D-PET/MRI Imaging

An innovative detector concept for hybrid 4D-PET/MRI Imaging Piergiorgio Cerello (INFN - Torino) on behalf of the 4D-MPET* project *4 Dimensions Magnetic compatible module for Positron Emission Tomography INFN Perugia, Pisa, Torino; Polytechnic of Bari; University

More information

Performance measurements of a depth-encoding PET detector module based on positionsensitive

Performance measurements of a depth-encoding PET detector module based on positionsensitive Home Search Collections Journals About Contact us My IOPscience Performance measurements of a depth-encoding PET detector module based on positionsensitive avalanche photodiode read-out This article has

More information

Tutors Dominik Dannheim, Thibault Frisson (CERN, Geneva, Switzerland)

Tutors Dominik Dannheim, Thibault Frisson (CERN, Geneva, Switzerland) Danube School on Instrumentation in Elementary Particle & Nuclear Physics University of Novi Sad, Serbia, September 8 th 13 th, 2014 Lab Experiment: Characterization of Silicon Photomultipliers Dominik

More information

X-ray Detectors: What are the Needs?

X-ray Detectors: What are the Needs? X-ray Detectors: What are the Needs? Sol M. Gruner Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY 14853 smg26@cornell.edu 1 simplified view of the Evolution of Imaging Synchrotron

More information

CAEN Tools for Discovery

CAEN Tools for Discovery Viareggio 5 September 211 Introduction In recent years CAEN has developed a complete family of digitizers that consists of several models differing in sampling frequency, resolution, form factor and other

More information

Preliminary simulation study of the front-end electronics for the central detector PMTs

Preliminary simulation study of the front-end electronics for the central detector PMTs Angra Neutrino Project AngraNote 1-27 (Draft) Preliminary simulation study of the front-end electronics for the central detector PMTs A. F. Barbosa Centro Brasileiro de Pesquisas Fsicas - CBPF, e-mail:

More information

CHAPTER 8 PHOTOMULTIPLIER TUBE MODULES

CHAPTER 8 PHOTOMULTIPLIER TUBE MODULES CHAPTER 8 PHOTOMULTIPLIER TUBE MODULES This chapter describes the structure, usage, and characteristics of photomultiplier tube () modules. These modules consist of a photomultiplier tube, a voltage-divider

More information

Highlights of Poster Session I: SiPMs

Highlights of Poster Session I: SiPMs Highlights of Poster Session I: SiPMs Yuri Musienko* FNAL(USA)/INR(Moscow) NDIP 2011, Lyon, 5.07.2011 Y. Musienko (Iouri.Musienko@cern.ch) 1 Poster Session I 21 contributions on SiPM characterization and

More information

The domino sampling chip: a 1.2 GHz waveform sampling CMOS chip

The domino sampling chip: a 1.2 GHz waveform sampling CMOS chip Nuclear Instruments and Methods in Physics Research A 420 (1999) 264 269 The domino sampling chip: a 1.2 GHz waveform sampling CMOS chip Christian Brönnimann *, Roland Horisberger, Roger Schnyder Swiss

More information

A Modular Readout System For A Small Liquid Argon TPC Carl Bromberg, Dan Edmunds Michigan State University

A Modular Readout System For A Small Liquid Argon TPC Carl Bromberg, Dan Edmunds Michigan State University A Modular Readout System For A Small Liquid Argon TPC Carl Bromberg, Dan Edmunds Michigan State University Abstract A dual-fet preamplifier and a multi-channel waveform digitizer form the basis of a modular

More information

Performance Evaluation of SiPM Detectors for PET Imaging in the Presence of Magnetic Fields

Performance Evaluation of SiPM Detectors for PET Imaging in the Presence of Magnetic Fields 2008 IEEE Nuclear Science Symposium Conference Record M02-4 Performance Evaluation of SiPM Detectors for PET Imaging in the Presence of Magnetic Fields Samuel España, Student Member, IEEE, Gustavo Tapias,

More information

Activities in Electronics Lab Associates are: Mrs. Arti Gupta, K.S.Golda, S.Muralithar & Dr.R.K.Bhowmik

Activities in Electronics Lab Associates are: Mrs. Arti Gupta, K.S.Golda, S.Muralithar & Dr.R.K.Bhowmik Activities in Electronics Lab. 2006 Associates are: Mrs. Arti Gupta, K.S.Golda, S.Muralithar & Dr.R.K.Bhowmik Nuclear Electronics (INGA, NAND) Pulse Shape Discriminator Electronics for NAND National Array

More information

236 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 59, NO. 1, FEBRUARY 2012

236 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 59, NO. 1, FEBRUARY 2012 236 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 59, NO. 1, FEBRUARY 2012 Characterization of the H3D ASIC Readout System and 6.0 cm 3-D Position Sensitive CdZnTe Detectors Feng Zhang, Cedric Herman, Zhong

More information

4 Time walk correction for TOF-PET detectors based on a monolithic scintillation crystal coupled to a photosensor array

4 Time walk correction for TOF-PET detectors based on a monolithic scintillation crystal coupled to a photosensor array 4 Time walk correction for TOF-PET detectors based on a monolithic scintillation crystal coupled to a photosensor array This chapter has been published as: R. Vinke, H. Löhner, D. Schaart, H. van Dam,

More information

APD Quantum Efficiency

APD Quantum Efficiency APD Quantum Efficiency Development of a 64-channel APD Detector Module with Individual Pixel Readout for Submillimeter Spatial Resolution in PET Philippe Bérard a, Mélanie Bergeron a, Catherine M. Pepin

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

CAEN. Electronic Instrumentation. CAEN Silicon Photomultiplier Kit

CAEN. Electronic Instrumentation. CAEN Silicon Photomultiplier Kit CAEN Tools for Discovery Electronic Instrumentation CAEN Silicon Photomultiplier Kit CAEN realized a modular development kit dedicated to Silicon Photomultipliers, representing the state-of-the art in

More information

A CMOS INTEGRATED CIRCUIT FOR PULSE-SHAPE DISCRIMINATION*

A CMOS INTEGRATED CIRCUIT FOR PULSE-SHAPE DISCRIMINATION* A CMOS INTEGRATED CIRCUIT FOR PULSE-SHAPE DISCRIMINATION* S. S. Frank, M. N. Ericson, M. L. Simpson, R. A. Todd, and D. P. Hutchinson Oak Ridge National Laboratory, Oak Ridge, TN 3783 1 Abstract and Summary

More information

Mass Spectrometry and the Modern Digitizer

Mass Spectrometry and the Modern Digitizer Mass Spectrometry and the Modern Digitizer The scientific field of Mass Spectrometry (MS) has been under constant research and development for over a hundred years, ever since scientists discovered that

More information

Journal of Radiation Protection and Research

Journal of Radiation Protection and Research 1) WOO JIN JO et al: CZT BASED PET SYSTEM IN KAERI Journal of Radiation Protection and Research pissn 2508-1888 eissn 2466-2461 http://dx.doi.org/10.14407/jrpr.2016.41.2.081 Paper Received July 17, 2015

More information

Development of Integration-Type Silicon-On-Insulator Monolithic Pixel. Detectors by Using a Float Zone Silicon

Development of Integration-Type Silicon-On-Insulator Monolithic Pixel. Detectors by Using a Float Zone Silicon Development of Integration-Type Silicon-On-Insulator Monolithic Pixel Detectors by Using a Float Zone Silicon S. Mitsui a*, Y. Arai b, T. Miyoshi b, A. Takeda c a Venture Business Laboratory, Organization

More information

arxiv: v1 [physics.ins-det] 5 Sep 2011

arxiv: v1 [physics.ins-det] 5 Sep 2011 Concept and status of the CALICE analog hadron calorimeter engineering prototype arxiv:1109.0927v1 [physics.ins-det] 5 Sep 2011 Abstract Mark Terwort on behalf of the CALICE collaboration DESY, Notkestrasse

More information

First Applications of the YAPPET Small Animal Scanner

First Applications of the YAPPET Small Animal Scanner First Applications of the YAPPET Small Animal Scanner Guido Zavattini Università di Ferrara CALOR2 Congress, Annecy - FRANCE YAP-PET scanner Scintillator: YAP:Ce Size: matrix of 2x2 match like crystals

More information

Instructions for gg Coincidence with 22 Na. Overview of the Experiment

Instructions for gg Coincidence with 22 Na. Overview of the Experiment Overview of the Experiment Instructions for gg Coincidence with 22 Na 22 Na is a radioactive element that decays by converting a proton into a neutron: about 90% of the time through β + decay and about

More information

Implementation of A Nanosecond Time-resolved APD Detector System for NRS Experiment in HEPS-TF

Implementation of A Nanosecond Time-resolved APD Detector System for NRS Experiment in HEPS-TF Implementation of A Nanosecond Time-resolved APD Detector System for NRS Experiment in HEPS-TF LI Zhen-jie a ; MA Yi-chao c ; LI Qiu-ju a ; LIU Peng a ; CHANG Jin-fan b ; ZHOU Yang-fan a * a Beijing Synchrotron

More information

SOLID state photodiode and avalanche photodiode scintillation

SOLID state photodiode and avalanche photodiode scintillation 2007 IEEE Nuclear Science Symposium Conference Record M14-1 Data acquisition system design for a 1 mm 3 resolution PSAPD-based PET system Peter D. Olcott,,Student Member, IEEE, Frances W. Y. Lau, Student

More information

COMPTON SCATTERING. Purpose. Introduction. Fundamentals of Experiment

COMPTON SCATTERING. Purpose. Introduction. Fundamentals of Experiment COMPTON SCATTERING Purpose The purpose of this experiment is to verify the energy dependence of gamma radiation upon scattering angle and to compare the differential cross section obtained from the data

More information

Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud

Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud University of Groningen Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Total Absorption Dual Readout Calorimetry R&D

Total Absorption Dual Readout Calorimetry R&D Available online at www.sciencedirect.com Physics Procedia 37 (2012 ) 309 316 TIPP 2011 - Technology and Instrumentation for Particle Physics 2011 Total Absorption Dual Readout Calorimetry R&D B. Bilki

More information

Study of Silicon Photomultipliers for Positron Emission Tomography (PET) Application

Study of Silicon Photomultipliers for Positron Emission Tomography (PET) Application Study of Silicon Photomultipliers for Positron Emission Tomography (PET) Application Eric Oberla 5 June 29 Abstract A relatively new photodetector, the silicon photomultiplier (SiPM), is well suited for

More information

PROGRESS in TOF PET timing resolution continues to

PROGRESS in TOF PET timing resolution continues to Combined Analog/Digital Approach to Performance Optimization for the LAPET Whole-Body TOF PET Scanner W. J. Ashmanskas, Member, IEEE, Z. S. Davidson, B. C. LeGeyt, F. M. Newcomer, Member, IEEE, J. V. Panetta,

More information

The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance

The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance 26 IEEE Nuclear Science Symposium Conference Record NM1-6 The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance R. Ballabriga, M. Campbell,

More information

Institute for Particle and Nuclear Studies, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki , Japan

Institute for Particle and Nuclear Studies, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki , Japan 1, Hiroaki Aihara, Masako Iwasaki University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan E-mail: chojyuro@gmail.com Manobu Tanaka Institute for Particle and Nuclear Studies, High Energy Accelerator

More information

Design and development of compact readout electronics with silicon photomultiplier array for a compact imaging detector

Design and development of compact readout electronics with silicon photomultiplier array for a compact imaging detector University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2012 Design and development of compact readout

More information

Nuclear Instruments and Methods in Physics Research A

Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A () 9 Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

Data Compression and Analysis Methods for High- Throughput Radiation Detector Systems

Data Compression and Analysis Methods for High- Throughput Radiation Detector Systems 1 Data Compression and Analysis Methods for High- Throughput Radiation Detector Systems John Mattingly Associate Professor, Nuclear Engineering North Carolina State University 2 Introduction The capabilities

More information

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology 1 KLauS: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology Z. Yuan, K. Briggl, H. Chen, Y. Munwes, W. Shen, V. Stankova, and H.-C. Schultz-Coulon Kirchhoff Institut für Physik, Heidelberg

More information

A comparative study of the time performance between NINO and FlexToT ASICs

A comparative study of the time performance between NINO and FlexToT ASICs Journal of Instrumentation OPEN ACCESS A comparative study of the time performance between NINO and FlexToT ASICs To cite this article: I. Sarasola et al View the article online for updates and enhancements.

More information

A high-performance, low-cost, leading edge discriminator

A high-performance, low-cost, leading edge discriminator PRAMANA c Indian Academy of Sciences Vol. 65, No. 2 journal of August 2005 physics pp. 273 283 A high-performance, low-cost, leading edge discriminator S K GUPTA a, Y HAYASHI b, A JAIN a, S KARTHIKEYAN

More information

PoS(PhotoDet 2012)022

PoS(PhotoDet 2012)022 SensL New Fast Timing Silicon Photomultiplier Kevin O`Neill 1 SensL Technologies Limited 6800 Airport Business Park, Cork, Ireland E-mail: koneill@sensl.com Nikolai Pavlov SensL Technologies Limited 6800

More information

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors Lecture 2 Part 1 (Electronics) Signal formation Readout electronics Noise Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction Strip/pixel detectors Drift detectors

More information

Development of a 256-channel Time-of-flight Electronics System For Neutron Beam Profiling

Development of a 256-channel Time-of-flight Electronics System For Neutron Beam Profiling JOURNAL OF L A TEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 Development of a 256-channel Time-of-flight Electronics System For Neutron Beam Profiling Haolei Chen, Changqing Feng, Jiadong Hu, Laifu Luo,

More information

Development of Solid-State Detector for X-ray Computed Tomography

Development of Solid-State Detector for X-ray Computed Tomography Proceedings of the Korea Nuclear Society Autumn Meeting Seoul, Korea, October 2001 Development of Solid-State Detector for X-ray Computed Tomography S.W Kwak 1), H.K Kim 1), Y. S Kim 1), S.C Jeon 1), G.

More information

Design and Simulation of N-Substrate Reverse Type Ingaasp/Inp Avalanche Photodiode

Design and Simulation of N-Substrate Reverse Type Ingaasp/Inp Avalanche Photodiode International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 8 (August 2013), PP.34-39 Design and Simulation of N-Substrate Reverse Type

More information

High collection efficiency MCPs for photon counting detectors

High collection efficiency MCPs for photon counting detectors High collection efficiency MCPs for photon counting detectors D. A. Orlov, * T. Ruardij, S. Duarte Pinto, R. Glazenborg and E. Kernen PHOTONIS Netherlands BV, Dwazziewegen 2, 9301 ZR Roden, The Netherlands

More information

Performance Assessment of Pixelated LaBr 3 Detector Modules for TOF PET

Performance Assessment of Pixelated LaBr 3 Detector Modules for TOF PET Performance Assessment of Pixelated LaBr 3 Detector Modules for TOF PET A. Kuhn, S. Surti, Member, IEEE, J. S. Karp, Senior Member, IEEE, G. Muehllehner, Fellow, IEEE, F.M. Newcomer, R. VanBerg Abstract--

More information

PET Detectors. William W. Moses Lawrence Berkeley National Laboratory March 26, 2002

PET Detectors. William W. Moses Lawrence Berkeley National Laboratory March 26, 2002 PET Detectors William W. Moses Lawrence Berkeley National Laboratory March 26, 2002 Step 1: Inject Patient with Radioactive Drug Drug is labeled with positron (β + ) emitting radionuclide. Drug localizes

More information

Simulation of Charge Sensitive Preamplifier using Multisim Software

Simulation of Charge Sensitive Preamplifier using Multisim Software International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Niharika

More information

Marten Bosma 1, Alex Fauler 2, Michael Fiederle 2 en Jan Visser Nikhef, Amsterdam, The Netherlands 2. FMF, Freiburg, Germany

Marten Bosma 1, Alex Fauler 2, Michael Fiederle 2 en Jan Visser Nikhef, Amsterdam, The Netherlands 2. FMF, Freiburg, Germany Marten Bosma 1, Alex Fauler 2, Michael Fiederle 2 en Jan Visser 1 1. Nikhef, Amsterdam, The Netherlands 2. FMF, Freiburg, Germany Digital Screen film Digital radiography advantages: Larger dynamic range

More information

Development of the LBNL Positron Emission Mammography Camera

Development of the LBNL Positron Emission Mammography Camera Development of the LBNL Positron Emission Mammography Camera J.S. Huber, Member, IEEE, W.S. Choong, Member, IEEE, J. Wang, Member, IEEE, J.S. Maltz, Member, IEEE, J. Qi, Member, IEEE, E. Mandelli, Member,

More information

nanomca 80 MHz HIGH PERFORMANCE, LOW POWER DIGITAL MCA Model Numbers: NM0530 and NM0530Z

nanomca 80 MHz HIGH PERFORMANCE, LOW POWER DIGITAL MCA Model Numbers: NM0530 and NM0530Z datasheet nanomca 80 MHz HIGH PERFORMANCE, LOW POWER DIGITAL MCA Model Numbers: NM0530 and NM0530Z I. FEATURES Finger-sized, high performance digital MCA. 16k channels utilizing smart spectrum-size technology

More information

A NOVEL FPGA-BASED DIGITAL APPROACH TO NEUTRON/ -RAY PULSE ACQUISITION AND DISCRIMINATION IN SCINTILLATORS

A NOVEL FPGA-BASED DIGITAL APPROACH TO NEUTRON/ -RAY PULSE ACQUISITION AND DISCRIMINATION IN SCINTILLATORS 10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10-14 Oct 2005, PO2.041-4 (2005) A NOVEL FPGA-BASED DIGITAL APPROACH TO NEUTRON/ -RAY PULSE ACQUISITION AND DISCRIMINATION

More information

Simulations of the J-PET detector response with the GATE package

Simulations of the J-PET detector response with the GATE package Simulations of the J-PET detector response with the GATE package Author: pawel.kowalski@ncbj.gov.pl 22nd to 24th September 2014 II Symposium on Positron Emission Tomography Outline 1. Introduction 2. Simulation

More information

PoS(TWEPP-17)025. ASICs and Readout System for a multi Mpixel single photon UV imaging detector capable of space applications

PoS(TWEPP-17)025. ASICs and Readout System for a multi Mpixel single photon UV imaging detector capable of space applications ASICs and Readout System for a multi Mpixel single photon UV imaging detector capable of space applications Andrej Seljak a, Gary S. Varner a, John Vallerga b, Rick Raffanti c, Vihtori Virta a, Camden

More information

PoS(PD07)026. Compact, Low-power and Precision Timing Photodetector Readout. Gary S. Varner. Larry L. Ruckman. Jochen Schwiening, Jaroslav Va vra

PoS(PD07)026. Compact, Low-power and Precision Timing Photodetector Readout. Gary S. Varner. Larry L. Ruckman. Jochen Schwiening, Jaroslav Va vra Compact, Low-power and Precision Timing Photodetector Readout Dept. of Physics and Astronomy, University of Hawaii E-mail: varner@phys.hawaii.edu Larry L. Ruckman Dept. of Physics and Astronomy, University

More information

SILICON DRIFT DETECTORS (SDDs) [1] with integrated. Preliminary Results on Compton Electrons in Silicon Drift Detector

SILICON DRIFT DETECTORS (SDDs) [1] with integrated. Preliminary Results on Compton Electrons in Silicon Drift Detector Preliminary Results on Compton Electrons in Silicon Drift Detector T. Çonka-Nurdan, K. Nurdan, K. Laihem, A. H. Walenta, C. Fiorini, B. Freisleben, N. Hörnel, N. A. Pavel, and L. Strüder Abstract Silicon

More information

Design of the Front-End Readout Electronics for ATLAS Tile Calorimeter at the slhc

Design of the Front-End Readout Electronics for ATLAS Tile Calorimeter at the slhc IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 2, APRIL 2013 1255 Design of the Front-End Readout Electronics for ATLAS Tile Calorimeter at the slhc F. Tang, Member, IEEE, K. Anderson, G. Drake, J.-F.

More information

Solid-State Photomultiplier in CMOS Technology for Gamma-Ray Detection and Imaging Applications

Solid-State Photomultiplier in CMOS Technology for Gamma-Ray Detection and Imaging Applications Solid-State Photomultiplier in CMOS Technology for Gamma-Ray Detection and Imaging Applications Christopher Stapels, Member, IEEE, William G. Lawrence, James Christian, Member, IEEE, Michael R. Squillante,

More information

Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1

Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1 Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1 Gianluigi De Geronimo a, Paul O Connor a, Rolf H. Beuttenmuller b, Zheng Li b, Antony J. Kuczewski c, D. Peter Siddons c a Microelectronics

More information

An introduction to Depletion-mode MOSFETs By Linden Harrison

An introduction to Depletion-mode MOSFETs By Linden Harrison An introduction to Depletion-mode MOSFETs By Linden Harrison Since the mid-nineteen seventies the enhancement-mode MOSFET has been the subject of almost continuous global research, development, and refinement

More information

Prototype of a Compact Imaging System for GEM Detectors Tomohisa Uchida, Member, IEEE, Yowichi Fujita, Manobu Tanaka, Member, IEEE, and Shoji Uno

Prototype of a Compact Imaging System for GEM Detectors Tomohisa Uchida, Member, IEEE, Yowichi Fujita, Manobu Tanaka, Member, IEEE, and Shoji Uno 2698 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 5, OCTOBER 2008 Prototype of a Compact Imaging System for GEM Detectors Tomohisa Uchida, Member, IEEE, Yowichi Fujita, Manobu Tanaka, Member, IEEE,

More information

Charge Loss Between Contacts Of CdZnTe Pixel Detectors

Charge Loss Between Contacts Of CdZnTe Pixel Detectors Charge Loss Between Contacts Of CdZnTe Pixel Detectors A. E. Bolotnikov 1, W. R. Cook, F. A. Harrison, A.-S. Wong, S. M. Schindler, A. C. Eichelberger Space Radiation Laboratory, California Institute of

More information

Analysis of 1=f Noise in CMOS Preamplifier With CDS Circuit

Analysis of 1=f Noise in CMOS Preamplifier With CDS Circuit IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 4, AUGUST 2002 1819 Analysis of 1=f Noise in CMOS Preamplifier With CDS Circuit Tae-Hoon Lee, Gyuseong Cho, Hee Joon Kim, Seung Wook Lee, Wanno Lee, and

More information

Analog Peak Detector and Derandomizer

Analog Peak Detector and Derandomizer Analog Peak Detector and Derandomizer G. De Geronimo, A. Kandasamy, P. O Connor Brookhaven National Laboratory IEEE Nuclear Sciences Symposium, San Diego November 7, 2001 Multichannel Readout Alternatives

More information

Real Time Pulse Pile-up Recovery in a High Throughput Digital Pulse Processor

Real Time Pulse Pile-up Recovery in a High Throughput Digital Pulse Processor Real Time Pulse Pile-up Recovery in a High Throughput Digital Pulse Processor Paul A. B. Scoullar a, Chris C. McLean a and Rob J. Evans b a Southern Innovation, Melbourne, Australia b Department of Electrical

More information

Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology

Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology 2009 IEEE Nuclear Science Symposium, Orlando, Florida, October 28 th 2009 Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch

More information

Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud

Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud University of Groningen Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Real-Time Digital Signal Processors with radiation detectors produced by TechnoAP

Real-Time Digital Signal Processors with radiation detectors produced by TechnoAP Real-Time Digital Signal Processors with radiation detectors produced by TechnoAP Lunch time Exhibitor presentation 2976-15 Mawatari, Hitachinaka-city, Ibaraki 312-0012, Japan Phone: +81-29-350-8011, FAX:

More information

THE USE OF CdTe DETECTORS FOR DENTAL X-RAY SPECTROMETRY

THE USE OF CdTe DETECTORS FOR DENTAL X-RAY SPECTROMETRY 2007 International Nuclear Atlantic Conference - INAC 2007 Santos, SP, Brazil, September 30 to October 5, 2007 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-02-1 THE USE OF CdTe DETECTORS

More information

Development of a simplified readout for a compact gamma camera based on 2 2 H8500 multi-anode PSPMT array

Development of a simplified readout for a compact gamma camera based on 2 2 H8500 multi-anode PSPMT array University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2010 Development of a simplified readout for a

More information

Positron Emission Tomography

Positron Emission Tomography Positron Emission Tomography UBC Physics & Astronomy / PHYS 409 1 Introduction Positron emission tomography (PET) is a non-invasive way to produce the functional 1 image of a patient. It works by injecting

More information

NIM INDEX. Attenuators. ADCs (Peak Sensing) Discriminators. Translators Analog Pulse Processors Amplifiers (Fast) Amplifiers (Spectroscopy)

NIM INDEX. Attenuators. ADCs (Peak Sensing) Discriminators. Translators Analog Pulse Processors Amplifiers (Fast) Amplifiers (Spectroscopy) NIM The NIM-Nuclear Instrumentation Module standard is a very popular form factor widely used in experimental Particle and Nuclear Physics setups. Defined the first time by the U.S. Atomic Energy Commission

More information

Gamma-ray spectral imaging using a single-shutter radiation camera

Gamma-ray spectral imaging using a single-shutter radiation camera Nuclear Instruments and Methods in Physics Research A299 (1990) 495-500 North-Holland 495 Gamma-ray spectral imaging using a single-shutter radiation camera T.A. DeVol, D.K. Wehe and G.F. Knoll The University

More information

Development of an amplifier module for measuring X-ray spectra using a photomultiplier tube

Development of an amplifier module for measuring X-ray spectra using a photomultiplier tube Annual Report of Iwate Medical University Center for Liberal Arts and Sciences No. 53(2018), 1-6. 1 Development of an amplifier module for measuring X-ray spectra using a photomultiplier tube Eiichi SATO

More information

Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors

Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors L. Gaioni a,c, D. Braga d, D. Christian d, G. Deptuch d, F. Fahim d,b. Nodari e, L. Ratti b,c, V. Re a,c,

More information

arxiv: v2 [physics.ins-det] 17 Oct 2015

arxiv: v2 [physics.ins-det] 17 Oct 2015 arxiv:55.9v2 [physics.ins-det] 7 Oct 25 Performance of VUV-sensitive MPPC for Liquid Argon Scintillation Light T.Igarashi, S.Naka, M.Tanaka, T.Washimi, K.Yorita Waseda University, Tokyo, Japan E-mail:

More information

ORTEC Experiment 13. Gamma-Gamma Coincidence with Angular Correlation. Equipment Required

ORTEC Experiment 13. Gamma-Gamma Coincidence with Angular Correlation. Equipment Required ORTEC Experiment 13 Equipment Required Two 905-3 2-in. x 2-in. NaI(Tl) Scintillation Detector Assemblies. Two 266 Photomultiplier Tube Bases. Two 113 Scintillation Preamplifiers. Two 556 High Voltage Power

More information